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Abstract – Rotating-coil magnetometers are among the
most common and most accurate transducers for mea-
suring the integral magnetic-field harmonics in acceler-
ator magnets. The measurement uncertainty depends
on the mechanical properties of the shafts, bearings,
drive systems, and supports. In this paper we study
the mechanical phenomena (static and dynamic) affect-
ing rotating-coil measurements and propose analysis
and diagnostic methods for improving the instrument
in terms of material choice and geometrical design.

The propagation of uncertainty is investigated on
the measured quantities (induced voltages, integrated
and developed into a Fourier series, the coefficients of
which are know as field harmonics). This results in a
consistent framework for the design of a measurement
bench for rotating-coil magnetometers. The paper also
presents the design of a complete system, including dis-
placement stages, supports, rotating coils, and an an-
gular position system.

I. INTRODUCTION
Rotating-coil systems are a special form of induction-

coil magnetometers, making use of Faraday’s law of induc-
tion. They are applied to measuring integral field harmon-
ics in the magnet bore, using coils mounted on a rotating
shaft that is aligned with the magnet axis. A voltage is thus
induced, directly proportional to the flux linkage with the
coil. Typically, one long coil (or a chain of shorter coils)
spans the entire magnet, including the fringe-field areas,
because the transversal, integrated field is often sufficient
for beam tracking in particle accelerators [1].

Precise measurements of magnetic fields rely on the me-
chanical properties of the benches and the rotating coils,
subject to static and dynamic forces. This requires con-
trol of mechanical properties [2] and the evaluation of vi-
brations [3]. Typically, a shaft is designed to have natural
frequencies higher than the operating frequencies [4]. Ad-
ditionally, compensation schemes for the main field har-
monic, commonly referred to as bucking, provide an effec-
tive mitigation of spurious field harmonics due these vibra-
tions [5].

An analytical model for the mechanical description of
rotating-coils was proposed in [6]. This model can pre-
dict the effect of static coil deformations, coil-axis to mag-
net alignment tolerances, and vibration modes on the mea-
sured field harmonics. The model suffers, however, from
intrinsic limitations, mainly because axial and torsional dy-
namics are not explicitly considered and the shaft is mod-
eled as a single, homogeneous, straight beam on two end
supports. Although these aspects can be partially over-
come by expanding the analytical model [7], a mathemati-
cal optimization of the shaft often requires numerical simu-
lations of complex geometries with different material com-
binations. Therefore, this paper proposes a finite-element
formulation (FEM), suitable to include more complicated
coil geometries and shaft.

Improving the insight of how the mechanical design and
properties affect the measured quantities is particularly im-
portant for slim shafts and/or moving systems. The realiza-
tion of a versatile rotating-coil system at CERN is the first
tangible outcome of this study.

II. THE MAGNETO-MECHANICAL MODEL
A 3D FEM is proposed to describe rotating-coil shafts

and their supporting structures. The resulting mechanical
deformation field u(r) (where u is the displacement vector
and r the position) is applied to the coil geometry in order
to evaluate its effects on the magnetic measurements. The
FEM model is shown in Fig. 1.

A. The mechanical model
In the simplest case of quasi-static rotation of an axisym-

metric shaft, the rotating coil and support can be modelled
as directly coupled, otherwise it is more suitable to con-
struct separate models and link them by appropriate inter-
face conditions. This allows, if necessary, to approach the
rotating coil in terms of rotordynamics [8]. The model
is based on Timoshenko beams with 12 degrees of free-
dom (DOF) per node. Details on the implementation can
be found in [10]. FEM can model also lumped masses,
springs and dampers. It allows to include non-ideal bound-
ary conditions: clamped or hinged ends can be replaced by
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Fig. 1. A schematics of the FEM model, representing
a rotating-coil system mounted on a support structure.
Both shaft (light grey) and supporting structure (black) are
meshed with beam elements. The induction coil is mod-
elled as a surface that is subjected to the shaft deformation
field. When the shaft rotates it will intercept a magnetic
flux density whose y component is indicated.

elastic foundations with a suitable stiffness. After matrix
assembly, the subset z of free DOFs is taken. The equation
of motion is

M z̈ +Rż +Kz = f , (1)

where M , K and R are the mass, stiffness and damping
matrices of the system. Damping is characterized exper-
imentally as modal damping, and f accounts for external
forces acting on the system. These include gravity, un-
balancing, and vibration of moving parts. Modal transfor-
mation is applied to introduce modal coordinates q with
z = [Λ]q. Rearranging equation 1 and rescaling mode
to have unitary modal masses (it implies that modal mass
matrix becomes the identity matrix), the mechanical model
results in a state-space formulation of the form(
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)
=
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)(
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q

)
+

(
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ż
z

)
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[0] [Λ]

)(
q̇
q

)
, (3)

where [Rm] is the modal damping, [Km] the modal stiffness
matrix. The second equation system described the systems
response in terms of nodal displacements. Employing the
FEM shape functions, the nodal displacements can be in-
terpolated for any point of the shaft, which yields the de-
formation field also for the geometry of the coil. For the
calculation of the magnetic flux increments, the nominal
shaft rotation is expressed by the angular displacement θ.
Despite the fact that this paper presents only rotating-coil
applications, so θ = ωt, it is possible to model any type of
induction coil. For instance, flip-coils [9].

B. The magnetic model
The mechanical model is coupled with the magnetic

model, by computing the magnetic-flux linkage with the
induction coil. For calculating the system’s response to

a given field distribution, the magnetic flux density is ex-
pressed analytically. The typical description for integral
flux density is the 2D multipoles expansion [1] but, for a
correct modelling, the full 3D field is required, because in-
tegral coils intercept also magnet fringing field. Therefore,
3D pseudo-multipoles are adopted [11]:

Br(r, ϕ, z) = −µ0

∞∑
n=1

rn−1

(
Cn(r, z) sinnϕ

+Dn(r, z) cosnϕ

) (4)

Bϕ(r, ϕ, z) = −µ0

∞∑
n=1

nrn−1

(
C̃n(r, z) cosnϕ

− D̃n(r, z) sinnϕ

) (5)

Bz(r, ϕ, z) = −µ0

∞∑
n=1

rn
(
∂C̃n(r, z)

∂z
sinnϕ

+
∂D̃n(r, z)

∂z
cosnϕ

) (6)

where

Cn(r, z) = nCn,n(z)− (n+ 2)C(2)n,n(z)

4(n+ 1)
r2 + . . . (7)

Experience shows that this series can be typically truncated
after first term. Therefore, only the leading terms nCn,n(z)
are considered and expressed as

Cn,n(z) = CnE(z) , (8)

where E(z) is the Enge function modelling the field roll-
off in the magnet ends. The field profile is shown in Fig. 1.
The flux linkage in the coils is then calculated numerically
with

Φ =

∫
A

B · da . (9)

In a discrete setting, the flux increments Φm for angular
positions θm can be developed into a discrete Fourier series

Ψn =

M−1∑
m=0

Φm · e
−i2πmn

N . (10)

This yields the harmonic content of the systems response:

Cn(r0) = r0
n−1 Ψn

kn
, (11)

where Ca
n(r0) = Ba

n(r0) + iAa
n(r0) are the measured (ap-

parent) field harmonics and kn are the coil sensitivity fac-
tors for the n-th field harmonic:

kn =
NTLc
n

(rn2 − rn1 ) , (12)

where NT is the number of coil turns, Lc the total length
of the coil and the two radii are the position of the go and
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Fig. 2. Investigated shaft solutions. A bulk epoxy-resin
coil; Variant 1. Square-shaped carbon-fiber tubes in dif-
ferent structures and dimensions; Variants 2 and 3. Full
carbon-fibre shaft; Variant 4.

return wire of the coil. kn expresses the integral sensitiv-
ity of the coil and it is therefore not function of z. The
difference between the imposed An, Bn and the apparent
Aa
n, B

a
n coefficients at the reference radius of measurement

is the main figure of merit to evaluate the effects of me-
chanical defects.

III. THE MEASUREMENT SYSTEM
The proposed model is devoted to the design of mea-

surement systems. Given the flexibility of the model, the
design process can be simplified and generalized by sepa-
rating the procedure in three steps. A rotating-coil can be
designed by approximating the structure with an estimated
equivalent stiffness. Then, the support can be designed for
a worst-case shaft properties. Finally, the rotating-coil and
the support are evaluated together.

A. Rotating-coil design
The magneto-mechanical model presented in the previ-

ous section is the basis for the shaft design. Without a loss
of generality, the shaft is designed for measuring the field
harmonics in a quadrupole magnet. The bucking improves
the field harmonics sensitivity by compensating mechan-
ical influences. The requirements for the coil fabrication
and mounting process give a bucking ratio between 100
and 2000 (ratio between main-coil sensitivity kA to the
sensitivity of compensation scheme kA−kB−kC+kD). In
the proposed evaluation procedure, the coil imperfections
are introduced as a Gaussian distribution of the coil width
(or displacements, or both effects combined), and a sample
of coil sets is analysed statistically.
The external forces are gravity, support vibrations (in the
form of harmonic forces on bearings), bearing-friction re-
lated torque, and shaft unbalancing due to eccentricity and
sag. The excitations which do not depend upon the shaft
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Fig. 3. A summary of the evaluation of structure solutions.
The probability function of the multipole field errors Aa

3

and Aa
4 is plotted, together with the evolution of standard

deviation of errors of the main component. The final solu-
tion is shown in more detail in the bottom part of the figure.

design (practically all, but gravity) are given in Table 1.
The boundary conditions for the shaft are elastic supports
(lumped springs and dampers), accounting for the equiva-
lent stiffness of the supporting structure. This is a simplifi-
cation with respect to the general case presented in Sec IIA,
to speed up the design process. It is valid only if the first
natural frequency of the structure is outside the range of
interest (typically 0− 30 Hz). The designs were tested for
the entire sample of bucking schemes and excitations.

As an example, different proposals for a shaft of 1.5 m
length and 72 mm diameter (with a measurement refer-
ence radius of 30 mm) are evaluated, as shown in Figure
2. A bucking ratio of 100 is assumed. Measurements are

Table 1. Excitation amplitudes and directions assumed for
rotating-coil design simulations

Support vibr. Eccentricity Bear. friction
Ampl. 50 µm 1 mm 0.002 mg
Dir. x− y plane x− y plane θ dir.



simulated with the coil on the magnetic axis of a perfect
quadrupole magnet. From the simulated feed-down com-
ponents (Aa

1, B
a
1), the apparent axis misalignment can be

calculated. Variant 4 is by a factor of 2 better than Vari-
ant 1. The apparent main componentBa

2 is mainly affected
by the support and bearing stiffness, therefore it is not sig-
nificant for shaft variants comparison. The largest higher-
order field harmonic is Aa

3. Its distribution is evaluated in
terms of a probability function.

B. Bench design
It may appear reasonable to perform an integrated de-

sign of the rotating-coil and its support. But as the coil
diameter must be as large as possible for a given magnet
aperture, the support must be designed to accommodate a
number of different shafts. Therefore, the worst case of
a slim coil is considered. Proposed designs are evaluated
in terms of measurement errors caused by their vibration.
The support displacement must then be related to expected
forces, in order to obtain the overall stiffness required to
the design.
The design of supporting structures becomes particularly
critical when the rotating-coil is mounted on moving
stages; the example proposed in this section is indeed moti-
vated by the construction of a versatile rotating-coil bench.
The support structure under investigation is required to
hold the shaft at 1 m distance from a rigid fixation. The
slim coil considered is a bulk-resin coil with a diameter of
50 mm. A summary of the evaluation steps is shown in
Fig. 3. For the support structure design, the error of the
main component is the most relevant figure of merit. The
design process is an iteration of different space-frame lay-
outs. They are made by aluminium profiles, taken from
a set of commercially available cross-sections. Magnetic
measurement performance is maximized, while keeping
the weight of the assembly under a certain value.

IV. EXPERIMENTAL VALIDATION
The experimental validation has two main purposes.

The first one is the validation of the FEM model, the
second is to identify the limitations of the analytical
model. Therefore, previously designed, and readily avail-
able shafts have been analyzed. The analytical model pre-
sented in [6] was experimentally validated, with the vi-
bration analysis of a simple shaft made of a circular outer
shell and a PCB. The experimental campaign presented in
this paper investigates another shaft with a more compli-
cated layout. This shaft consists of two beams connected
by flexible joints. Three coils are mounted on the inner
beam and two on the outer one, as shown in Fig. 4. The
shaft is entirely made of epoxy resin, whose mechanical
properties are given by the manufacturer. In particular,
E = 23 GPa, ρ = 1700 kg/m3 and G = 8.5 GPa. Cross-
section properties are computed approximating the outer
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Fig. 4. The validation of FEM model against the analyti-
cal model, for a coil made of a double beam. The response
function of three points on the beam are given for an exci-
tation with an impact hammer on point 3. The first to the
third bending mode in x direction appears in the spectra.
It can be noticed that, above 200 Hz, the analytical model
(from [6]) is not able to represent the behaviour of the
shaft. The shaft design shown in Fig. is the classical design
used at CERN, with D = 56 mm and L = 1360 mm.

shell as a hollow cylinder and the inner beam as a rectan-
gular prism. For both geometries, shear correction factors
are available [12]. In the most general case, these param-
eters can be computed also numerically [13]. The main
objective is to measure the mechanical vibration modes
of the shaft. Two set of measurements are performed, in-
volving both time-domain and frequency domain-signals,
for modal analysis [14],[15]. The first one investigates the
shaft mounted on an almost ideal elastic supports, the sec-
ond one on its own bearings. Ideal supports are elastic
bands with low stiffness (2 · 103 N/m, estimated indepen-
dently), similar to the one in [6]. The system is externally
excited by an impact hammer (PCB 086D20) with differ-
ent tips, mainly one medium tips (-20 dB at 700 Hz) and
one hard tips (-20 dB at 1050 Hz). Impacts are provided
along x and y axes, to excite modes in both directions. In
all the experiments, the system is mounted on an optical ta-
ble with a tuned mass-damping system. The 3D vibration



spectra of a set of points on the shaft surface is recorded
by a 3D vibrometer system (Polytec PSV-400). At least
six correct impacts per point are acquired and processed.
Model validation is focused on bending modes, but also
axial and torsional modes are recorded, to assess that they
are not coupled with bending modes.

Moreover, the experimental results are compared with
the analytical model, in which the shaft is described as a
single beam with equivalent properties. The spectra are
shown in Figure 4 up to the third bending mode in x direc-
tion. It can be seen that the first two modes are correctly
represented by the analytical model, while the following
modes require the FEM model.

V. CONCLUSION
The proposed magneto-mechanical model for rotating-

coils, expanded in capabilities through FEM formulation,
can describe all the main mechanical phenomena affecting
magnetic measurements. It has proven to be an effective
tool not only for real coil diagnostics but also for predict-
ing the behavior of rotating coils during the design phase.
Furthermore, it is possible to assess the design of the sup-
porting structure of the magnetometer. It resulted in the
design of the rotating-coil supports for a versatile bench,
where the mechanics of the measurement system is par-
ticularly critical. The framework here described is easily
implementable in optimization routines, and therefore its
capabilities in the rotating-coil design are expected to ex-
pand in future research.
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