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Chord   C 254 mm

Pitch   S 236 mm

Span  Hb 249.8 mm

Inlet angle (Measured 
from axial direction) β1

65.1 deg.

Stagger angle (Measured 
from axial direction)

56.9 deg.

Solidity  C/S 1.08

 
 
 
 
 
 
 
 
 
 
 
 
 
blade tip shape of the GE Rotor B Section Blade and 
has the tip clearances. In the present study, the flows in 
the two type cascades were analyzed numerically at 
different tip clearances. The first cascade has the smooth 
wall as the tip side endwall (SW), and another one has 
the endwall in which the single groove is installed (GW). 
The tip clearance sizes were set to 4.2 mm (1.65% of C) 
and 1.27 mm (0.5% of C). The groove shape was 
designed by reference to [5].  

3. NUMERICAL ANALYSIS 

3.1 Computational method 
In this study, the computations were performed by 

using the open source CFD code OpenFoam with the 
assumption that the flow in cascade is steady state 
incompressible flow. The solution algorithm was the 
SIMPLE method. The convection term was estimated 
by the MUSCL scheme. The low-Reynolds type of SST 
k-ω model was chosen as the turbulence model. 

  

3.2 Computational condition 
In order to reduce the computational resource, the 

computational domain was set to the tip side endwall 
from the midspan in the single passage. The inlet and 
outlet boundary planes were arranged at 1C upstream of 
the cascade inlet and 2C downstream of the exit, 
respectively. The computational grids were generated by 
using the H and C type structured grids. The total 
number of cell of SW was approximately 5.5 million 
and that of GW was approximately 6.8 million. 

As boundary conditions, the inlet velocity V1 and the 
inlet flow angle α1 were applied uniformly at inlet 
boundary. By reference to the experimental condition in 
[6], the V1 and the α1 were set to 25.5 m/s and 65.1 deg., 
respectively. The free-stream boundary was used at the 
outlet boundary. The cyclic boundary condition was 
applied at the pitchwise boundary plane. In order to 
reveal the basic flow phenomena generated by the single 
groove, the relative motion of the tip side endwall 
against the blade row was not considered in this study. 

4. RESUITS AND DISCASSIONS 

In this section, the influences of the single groove on 
the flow behavior and the loss generation in the cascade 
will be investigated at the small and the large tip 
clearance cases. Figure 3 shows the axialwise 

distribution of the static pressure coefficient Cps on the 
blade surface near the blade tip. In this figure, the X/Ca 
is the axialwise length normalized by the blade axial 
chord length, and it takes 0 at the leading edge and 1.0 
at the trailing edge, respectively. The Cps is defined by 
the following equation. 
 
𝐶௦ ൌ ሺ𝑃௦ െ 𝑃௦ଵሻ ሺ𝑃௧ଵ െ 𝑃௦ଵሻ⁄                    (1) 
 
where the Ps is the static pressure, and the Ps1 and the 
Pt1 are the cross-sectional mass averaged values of the 
static and the total pressures at X/Ca=-1.3, respectively. 
Figure 4 gives the streamlines with the origin near the 
mid-gap at the blade suction side in the tip clearance. In 
this figure, the streamline colors are varied depending 
on the locations of origins (Upstream of groove : Red, 
Groove location : Black, Downstream of groove : Blue). 
Figure 5 shows the trajectory of the tip leakage vortex 
core generated from the blade leading edge. Figure 6 
indicates the axialwise and the pitchwise momentums 
ψx

* and ψy
* of the tip leakage flow through the surface 

Stc which is the blade suction surface extended from the 
blade tip to the tip side endwall. The ψx

* and ψy
* are 

defined by the following equations and indicate the 
non-dimensional axialwise and pitchwise momentums 
per unit length at each axialwise location, respectively 
[7].  
 

𝛹௫
∗ ൌ  𝛹௫

୬ୢ୵ୟ୪୪
୪ୟୢୣ ୲୧୮ 𝑑𝑧 𝑆ଵൗ                       (2) 

 

𝛹௬
∗ ൌ  𝛹௬

୬ୢ୵ୟ୪୪
୪ୟୢୣ ୲୧୮ 𝑑𝑧 𝑆ଵൗ                       (3) 

 
where the ψx is ρVnVx/ρV1V1 and the ψy is ρVnVy/ρV1V1. 
As shown in Fig. 1, the Vn is the velocity component 
normal to the Stc, and the Vx and the Vy are the axialwise 
and the pitchwise velocity components, respectively. 
The ρ is the density and the S1 is the cross-sectional area 
at the cascade inlet. Figure 7 shows the tip leakage flow 
rate through the surface Sg indicated in this figure. 
Figure 8 gives the spanwise velocity Vz, which is 
normalized by the V1, distribution on the interface 
between the groove and the blade-to-blade passage. 
Figure 9 indicates the total pressure loss coefficient Cpt 

distribution on the planes normal to the blade chord line 
and the streamlines with the origin around the high loss 
regions (LR). The Cpt is defined by following: 
 
𝐶௧ ൌ ሺ𝑃௧ଵ െ 𝑃௧ሻ 𝑃௧ଵ⁄                          (4) 
 
where the Pt is the total pressure. Table 2 gives the 
mixed-out averaged total pressure loss coefficient Cpt2,m 
downstream the cascade. The Cpt2,m is defined by   
 
𝐶௧ଶ, ൌ ൫𝑃௧ଵ െ 𝑃௧ଶ,൯ 𝑃௧ଵ⁄                     (5) 
 
where the Pt2,m is the mixed-out averaged total pressure 
at X/Ca = 1.3. 
 
  

Table 1 Specification of test cascade 
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the loss generation due to TLV downstream the groove 
but generates the LR2 and the LR3 in the same manner 
as in the small tip clearance case as observed in Figs. 
9(c) and 9(d). As a consequence, the Cpt2,m in the GW 
shows similar value to that in the SW also at the large 
tip clearance case as in Table 2. Therefore, the influence 
of the single groove on the loss generation in the large 
tip clearance case is considered to be almost the same as 
that in the small tip clearance case. 

 

5. CONCLUSIONS 

In this study, the influences of the single groove on 
the flow behavior and the loss generation in the linear 
compressor cascade were investigated in the small and 
the large tip clearance cases. The conclusions derived 
from the present study were summarized as follows: 

 
(1) In the cascade which has the smooth tip side endwall, 

the tip leakage vortex is generated from the blade 
leading edge commonly in the small and the large tip 
clearance cases. This vortex generates the loss and it 
is increased according to the increase of the tip 
clearance size. 

(2) The single groove installed at the mid-chord locally 
weakens the tip leakage flow by the reduction of the 
blade loading and the flowing of the flow near the 
blade pressure side into the groove, and 
consequently reduces the distance of tip leakage 
vortex from the blade suction surface. Moreover, the 
groove has the effect to decrease the loss due to the 
tip leakage vortex generated from the blade leading 
edge. However, the loss generation in the entire 
cascade passage is almost the same as that in the 
cascade without groove because the additional loss 
generation due to the presence of groove. These 
phenomena are observed commonly in the small and 
the large tip clearance cases. 
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