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Introduction
Alloy chemical composition, microstructural features and corrosion layerslayer stratiﬁcation provide archaeologists, researchers and conservators with the scientiﬁc evidence necessary for the dating, authentication and identiﬁcation of archaeological metal ﬁndings. EventuallyThus, the understanding of the complex corrosion mechanisms occurring on copper (Cu-)-based alloys during burial is a fundamental prerequisite for their long-lasting conservation and safeguardsafeguarding.
Corrosion The corrosion of Cu-based archaeological artefacts buried in soil for long timesperiods depends on many variables related to the microclimatemicroclimatic conditions and to the soil chemical-–physical properties. As a matter of factsIn fact, soil is a very complex environment and many different parameters, such as geological and hydrological factors as well as theand soil chemical composition, can affect the degradation mechanisms of the objects. The formation of patinas during burial seems tocan be ascribed to oxygen and carbon dioxide, moisture content, temperature, pH and saltssalt content [1], [2].  Moreover, it has to be considered that the soil water in the soil acts as an electrolyte on the surface of the buried object surface, and, in the case of Cu-based artefacts, a minimum pH value of pH is required to induce the formation of stable corrosion productsproduct layers [3]. 
A precipitation-–dissolution mechanism is involved and forms part of the degradation process, which can be explained by considering the dissolution of copper, which is kinetically controlled by the mass transport of this element from the alloy to the environment, and the diffusion of the aggressive ions towards the alloy interphase. Anionic control, in the presence of chloride ions, produces higher volume change and less coherent corrosion layers, whereas cationic processes arise in the diffusion of metallic components becomingand become the rate-determining step, and resultresulting in compact corrosion layers [4][5], [5]. 	Comment by Proofed: I have made this change here to improve the flow. Please check that I have retained your original meaning. 
Due to the complexity of both the patina structure and of the degradation mechanisms, several analytical techniques and statistical data analyses are employed to collect trustablereliable information on Cu-based artefacts. Among them, Raman spectroscopy has found a wide application in the Cultural Heritagecultural heritage field, due to its because it is non-destructivenessdestructive and to the possibility to performallows measurements directlyto be performed in- situ using portable instrumentation [6], [7]. In the last decades, different studies have analysed Raman spectra acquired onfrom copper minerals, providing important knowledge to characterise patinas related to copper corrosion [8], [9]. Actually, thisThis has allowed researchers to use Raman spectroscopy in different investigations in order to identify the compounds present in the patinas of archaeological findings [10][11]-[12]. This kind of studiesstudy has a great relevance in order to assessfor assessing the artefactsartefacts’ conservation state and, thus propose, proposing the most appropriate restoration strategy [13]. 
An additional tool that is often is used by researchers involved in spectrometric analyses is multivariate statistics and, in particular Principal Components Analysis, principal components analysis (PCA). This chemometric technique allows the user to find characteristic patterns in the acquired spectra and thus, therefore, to discriminate between the different components that belong to the system under study. It is possible to find in literature various case studies in the literature that tookhave taken advantage of this technique in different contexts [14][15][16]-[16].
This study deals with a non-invasive Raman investigation on bronze artefacts coming from the Rakafot 54 archaeological site of Rakafot 54, in Israel. The proposed measuring approach can be veryis appropriate as a preliminary investigation, which could be performed in the field in order, to collect information about the stability and the conservation state of the artefacts immediately after the excavation, thus leading therefore to the development of tailored preservation strategies for the storage of thethese items.
In section 2, details onof the Israeli bronze artefacts and on the experimental methodology are presented, together with the model for PCA analysis and data matrix decomposition. Section 3 deals with the presentation and discussion of the results of the Raman spectroscopy measurements and of the PCA data processing. EventuallyFinally, in the concluding section, the major achievements are summarised.
MATERIALS AND METHODS
In this section, the archaeological artefacts under investigation are described, as well as the main methodological issues and the performed data analysis performed.
Archaeological artefacts under study
The artefacts that are the subject of this study were excavated in the Rakafot 54 archaeological site of Rakafot 54 near Beer-Sheva, in Israel, close to the border between Judea and Nabataea, involving a settlement dating back to the Roman period. The site dates back from the first century AD (Second Temple) period to the Bar Kochba revolt against Rome, in 135 AD. 
[image: ]
[bookmark: _Ref38810091][bookmark: _Ref38810085]Figure 1. Images of the 24 analysed artefacts from the Rakafot 54 archaeological site, labelled with their identifier code. Each photograph represents an area of 3.5 cm x 3.5 cm.
The excavations were carried out by Peter Fabian of the, Department of Bible, Archaeology and Ancient Near East at, Ben- Gurion University of the Negev (Beer-Sheva, Israel)), and Daniel Varga of the, Israel Antiquities Authority.
During the excavation, several artefacts and dozens of bronze coins were found, most of them belonging to the Roman procurators' period (6-–66 AD). Among themOf these, a set of 24 artefacts, 23 coins and a pendant, were selected for the investigation of the corrosion products. Figure 1 shows the high-resolution images of the artefacts and their identifier codes. 
At theUnder visual observation, most of the artefacts appeared to be covered by a thick layer of corrosion products that were rather ununiform. Actually, brownishnon-uniform. Brownish or dark -green patinas were predominantly present on the surface, while some areas had a light -green colour; soil traces were also found on the surface as well. 
Raman spectroscopy
Superficial corrosion products were analysed using Raman spectroscopy, a technique widely used in the characterizationcharacterisation of metallic artefacts. Measurements were performed using the BWTEK i-Raman Plus spectrometer. ItThis is a portable instrument equipped with an optical-fibre probe to analyse specific areas of the sample and a high quantum efficiency CCD array detector to guarantee a good signal -to -noise ratio in the acquired spectra. A laser wavelength of 532 nm was used for all measurements, thatwhich were performedcarried out in the range between 150 cm-1−1 and 42004,200 cm-1−1 with a resolution of 7.3 cm-1−1. After optimizingoptimising the measurement parameters on reference samples, as described in [17], spectra were acquired using a laser power of 6 mW, with 10 repetitions and an integration time of 20s20 s, in order to avoid any modification or degradation being induced in the material by the laser radiation.	Comment by Proofed: You have requested British English for this article, but here you have used US English. I have made the necessary changes here and elsewhere in this paper. 
[bookmark: _Ref37938240]As the samples under study were not flat, but had irregular shapes and high surface roughness, measurements were carried out by gradually changing the distance between the probe and the analysed artefact in order to focus the laser beam and have the best signal -to -noise ratio in the acquired spectrum.
[bookmark: _Ref38882480]Data analysis
Principal Components Analysis (PCA)  was used in order to recognizerecognise the different patterns that are present in the acquired Raman spectra and to support the identification of corrosion products on the samples. Actually, PCA is a powerful tool that allows one to reduce the reduction of the dimensionality of a dataset, keeping only those variables that mainly account primarily for data variance [18]. SoThus, it basically transposes all the vectors representing each one of the acquired spectra into a new space havingthat has a dimension equal to the number of significant components evaluated through PCA. In matrix notation, it is possible to express the original spectra as follows:	Comment by Proofed: This abbreviation has already been introduced, so doesn’t need introducing again. 
,	(1)	Comment by Proofed: Equations are considered part of the previous sentence and should, when appropriate, be followed by a full stop or comma. 
where, if we have I samples and J points for each measurement, X is the original data matrix (havingwith a dimension of I x J), P is the loading matrix (with a dimension of J x K, where K is the number of significant components), that iswhich form the eigenvectors representing the new space,  T is the score matrix (havingwith a dimension of I x K), that iswhich form the eigenvalues derived from the X matrix decomposition, and E is the residual matrix, also known as the error matrix, thatwhich contains the variance burden not explained by the PCA model [19].
In this workthe present study, PC analysis was carried out on the acquired Raman spectra using a Python script. First, a pre-processing was performed, as is usually neededrequired for this kind of data [20]. The analysed spectrum was limited to the interval of interest between 150 cm-1−1 and 11501,150 cm-1−1, where the peaks related to the copper corrosion products are present [21]. Baseline removal was performed using asymmetric least square smoothing, as described in [22]. Then,A Savitzky-Golay filter was then applied [23] using the savgol_filter function from Scipythe SciPy library [24]; the original spectrum was processed using a window length of 15 cm-1−1 and fitted with a 2nd order polynomial. After that, Standard Normal Variate Transformationstandard normal variate transformation was performed [25], using the following calculation for each measurement point: 
,	(2)
where,  is the variable value after transformation,  is the original variable,  is the mean value in the original spectrum and std is the standard deviation. 
[image: ]
[bookmark: _Ref316057347][bookmark: _Ref37840239]Figure 2. On topTop: original Raman spectrum acquired on sample 9883. At the bottomBottom: same spectrum in the restricted range of interest between 150 cm-1−1 and 11501,150 cm-1−1 after pre-processing and normalizationnormalisation. The yellow line represents the computed baseline in the original spectrum. 
The effectresults of allthe pre-processing operations can be seen in Figure 2, where the resultresults obtained for one of the spectra is presented. As can be seen, only the wavenumber range from 150 cm-1−1 to 11501,150 cm-1−1 is selected. Then, theThe broad background due tocaused by fluorescence is then removed, the spectrum is filtered to improve the signal -to -noise ratio and, finally normalization, normalisation is performed.
Original data matrix decomposition was performed using the PCA package from the sklearn.decomposition module [26]; in this way, eigenvectors and scores are directly computed. The PCA model was improved by eliminating possible outliers, thatwhich generally proved to be noisy measurements, considering two parameters:, leverage and root mean square deviation. (RMSD). The former is defined as the diagonals of the “‘hat matrix”matrix’ H:
,	(3)
where T is again is the score matrix. All measurements havingwith a leverage higher than three times the median value, were discarded from the model construction and analysed separately [27]. Moreover, root mean square deviation (RMSD), that, which quantifies the difference between the acquired spectrum and the same spectrum reproduced by the PC model, was calculated as follows:
,	(4)
where J is the number of points for each measurement, X is the original data matrix, T is the score matrix and P is the loading matrix. Model optimizationoptimisation was carried out until all the reproduced spectra had aan RMSD lower than 30% of the initial standard deviation.
After applying the obtained PCA model to the spectra, it was possible to compute the scores related to the most important components. Similarity between spectra was evaluated using hierarchical clustering. This analysis was performed using the Agglomerative clustering method in the sklearn.cluster module; Euclidean metric was used to compute the linkage. In Figure 3, a flow chart summarises allthe steps involved in the PCA processing.
[image: ]	Comment by Proofed: A couple of amendments for this figure:

In 5, only the first word should be capitalised, i.e. ‘Standard normal variate transformation’.

In 6, it should say ‘score and loading computation’, i.e. remove the ‘s’ from the end of ‘scores’ and ‘loadings’. 
[bookmark: _Ref47280258][bookmark: _Ref47280252]Figure 3. Flow-chart summarizing all summarising the steps involved in the PCA processing.
RESULTS AND DISCUSSION
A preliminary study by Peters and co-authors et al. [28] analysed the chemical composition of the artefacts under investigation, by means of X-ray Fluorescencefluorescence. This study revealed that most of the artefacts were produced from a copper-lead-tin alloy, with a lead content that, in some cases reaches the, reached 14 wt%. Starting from this basis, the present investigation tried to specifically identify the specific corrosion products that characterise the artefacts by means of Raman spectroscopy. 	Comment by Proofed: This is the terminology usually used in academic writing. However, please check with the journal’s style guide. 
Gentle brushing, without any solvent in order, to avoid surface modification or the dissolution of the corrosion products, was the only cleaning operation that was performed before the Raman measurements were taken, as soil traces can affect thetheir acquisition by causing large fluorescence signals in the spectrum. 
[image: ]
[bookmark: _Ref316054575][bookmark: _Ref37945164]Figure 4. Cumulative explained variance for the first five components, as obtained from the PCA model.
AcquisitionThe acquisition of Raman spectra was not straightforward, as the shape and conservation state of the artefacts were not optimal. As mentioned above, due to the irregular shape, the focusing of the laser beam was performed by manually adjusting manually the distance between the spectrophotometer probe and the sample in order to reach theachieve optimal conditionconditions. Moreover, despite the preliminary cleaning, soil traces caused a broad fluorescence signal in the central part of the spectrum, between 12001,200 cm-1−1 and 30003,000 cm-1−1, as can be seen in Figure 2 for sample 9883. A good signal -to -noise ratio could be obtained only when bright -green patinas were analysed, while measurements could not be performed on the brownish patinas, which could possibly be associated towith cuprite [28]. This could be due to the low thickness of these layers or to the excitation wavelength that was used in this study; actually, only a 532 nm laser light was employed.
For all 24 artefacts, at least five Raman spectra were acquired infor different areas, and in all cases, it was possible to find at least one area giving a good Raman signal.
Taking into account the characteristic peaks for copper corrosion products [21], the analysis was restrainedlimited to the wavenumber range between 150 cm-1−1 and 11501,150 cm-1−1. After performing the pre-processing operations, as described in Section 2.3, the resulting spectrum appears as shown in Figure 2 for sample 9883. From a visual comparison of the different measurements, it was possible to distinguish two patterns that were predominant in most of the spectra. The first one was characterizedcharacterised by four intense peaks at 505 cm-1−1, 814 cm-1−1, 905 cm-1−1 and 972 cm-1−1, with the peak at 814 cm-1−1 having a shoulder at a higher wavelength. The second pattern exhibited an intense peak at 505 cm-1−1 and then otheranother four, respectively, at 796 cm-1−1, 888 cm-1−1, 921 cm-1−1 and 967 cm-1−1. These two patterns could be associated towith the characteristic spectra of two copper hydroxy-chlorides (Cu2Cl(OH)3), respectively atacamite and its polymorph, clinoatacamite. 
Due to the presence of several minor peaks and to the noise related to the non-ideal acquisition conditions, data were processed also using PCA, an unsupervised multivariate analysis. Actually, usingUsing this chemometric technique, it is possible to classify different measurements, identifying their characteristic patterns. The PCA model was built progressively, removing those spectra that were identified as outliers by the algorithm (see Section 2.3 for further details on outliersoutlier detection). All these measurements had been previously classified as noisy acquisitions, and some of them were dubiously identified as atacamite. After model optimizationoptimisation, all measurements fell ininto the desired leverage and RMSD range (leverage below three times the median value and RMSD lower than 30% of the initial variance). 
The trend of the cumulative explained variance trend can be observed in Figure 4. The first three components represent an overall variance of about 85.5%,% - respectively, 59.7%, 19.8% and 6.0%, which is a satisfactory level. Taking also into account that the fourth component captures only the 4.2% of the total variance, it was decided to use only the first three components to carry out the analysis. Actually, usingUsing components representing a low percentage of the initial variance can have adverse effects asbecause they would generally would fit the measurement noise and not the important parts of the spectrum. 
[image: ]
[bookmark: _Ref38013112]Figure 5. Loadings associated towith the first three components in PCA.
The result of the PC analysis is presented in Figure 6 plotting, which plots the scores of the three principal components two at thea time; so spectra that appear close in these graphs are similar to each other. As can be seen, measurements group together in two clusters, and the main discriminant is the PC1 score value, which is positive in one case and negative or with low positive values in the other. Actually, thisThis behaviour is clearly visible in the PC1-PC2 and PC1-PC3 plots, while cluster formation is not evident in the PC2-PC3 plot. Four samples belong to the first group, namely 6151, 8103, 8299 and 8599, while 6015, 6058, 6081, 6101, 8260, 8261, 8591, 8603, 8893, 9024, 9483, 9803, 9830 and 9883 are part of the second. The absence of clusters in the PC2-PC3 plot can be explained by considering the low variance captured by the third component (only 6.0%) and the trend of the PC3 -loading trend (Figure 5). Actually, it In fact, this plot does not contain many significativesignificant features, but only a peak at about 977 cm-1−1, which can be found in the atacamite spectrum, and a minimum in the region around 198 cm-1−1. So presumablyPresumably, this component is used in the model in linear combination with the main two components only to improve the fitting of the most important peaks, that can be found in the other twothese components.
[image: ]
[bookmark: _Ref312314329][bookmark: _Ref38012523]Figure 6. Score plots of the first three components (PC1-PC2, PC1-PC3 and PC2-PC3). Percent variance captured by each PC is reported in parenthesis along each axis. 
The reason for the discrimination in separated clusters can be found by looking at the loadings associated towith the first two components (Figure 5). In the PC1 loading, peaks associated towith atacamite (811 cm-1−1 and 904 cm-1−1) are in the negative range, so a negative score is needed in order to fit the original spectrum. At the same time, peaks associated towith clinoatacamite (for example, at 884 cm-1−1) are in the positive range. PC2 loading exhibits a different trend; here, it is possible to find a peak in the negative range (506 cm-1−1)), which can be foundseen both in the atacamite and clinoatacamite spectrum. ThenHowever, peaks associated towith clinoatacamite (885 cm-1−1 and 922 cm-1−1) are in the negative range, sothus justifying the reason for the negative scores in the samples of the first group, and an intense peak at 970 cm-1−1 associated towith atacamite is present. SoTherefore, the attribution of both positive and negative scores for atacamite samples in the second component for atacamite samples can be explained becauseby their features arebeing in both ranges. Moreover, in samples havingwith a negative PC2 score, the feature at around 970 cm-1−1 in the original spectrum can be reproduced by peaks at 962 cm-1−1 and 977 cm-1−1 in the PC1 and PC3 loading. The goodness of fit for the two example spectra can be evaluated by looking at Figure 7: on top, a spectrum identified as atacamite is presented, while at the bottom, one associated towith clinoatacamite is shown. The yellow line, representing the model, was computed as the product between the scores and the loading matrix:
.	(5)
It correctly fits the black dots that represent the measured spectrum. Notably all, the most important peaks in both spectra are correctly fitted by the model, and the residual error is low in the whole range.
Thus, it is possible to state that the corrosion patina of the artefacts under study is mainly composed of copper hydroxy-chlorideshydroxychlorides, specifically atacamite and clinoatacamite. This agrees with the preliminary studies that, which indicated the presence of chlorides in the excavation soil [28]. The presence of only two kinds of corrosion productsproduct suggests the existence of quite uniform conditions in the soil where the artefacts were buried, even ifalthough, as discussed above, performing Raman spectroscopy with a different laser wavelength might reveal other compounds.
Atacamite and its polymorph clinoatacamite are generally considered as the final product of copper corrosion in environments containing chlorides. Actually, firstlyFirst, a layer of cuprite (Cu2O) grows on the metal; then, in the presence of water and chloride ions, firstly cuprous chloride is formed (nantokite, CuCl), and thenfollowed by copper hydroxy-chlorideshydroxychlorides. For this reason, conservation conditions of the investigated artefacts can be considered quite stable, even if in presence of chlorides are present. Finally, the morphology of the grown patina should also be taken in account. Actually, onlyOnly if this layer is sufficiently dense and continuous, it can it hinder the diffusion of the reactive compounds, otherwise the cyclic reactions related to copper corrosion would continue until the complete mineralizationmineralisation of the metal is complete. 
Conclusions
A non-invasive characterizationcharacterisation of bronze artefacts was carried out using Raman spectroscopy. Thanks also to the use ofUsing multivariate analysis (PCA), it was possible to identify the main corrosion products that are present in the artefactsartefacts’ patina, namely atacamite and clinoatacamite. These results, coupled with the information coming from the soil characterization, givecharacterisation, provides a deeper insight into the artefactsartefacts’ corrosion processes occurringthat occur during long-term exposure in a predominantly dry environment containing chlorides. Moreover, they can be used by restorers and conservators in order to define the most appropriate restoration strategy for these artefacts.
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[bookmark: _Ref38018603]Figure 7. On topTop: sample 9883 (identified as atacamite). At the bottomBottom: sample 8103 (identified as clinoatacamite). Black dots are the measured spectra, while the result coming from the PCA model is represented by the yellow line. 
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