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Abstract: 

The radial displacement had been ignored in the 

analysis of unloading curve of instrumented 

indentation test. There are two representative 

methods of radial displacement correction, 

proposed by Hay et al. [J. Mater. Res., 14, 2296, 

(1999)] and Chudoba-Jennett [J. Phys. D, 41, 

215407, (2008)]. In this study, we examine the 

effect of radial displacement corrections in finite 

element analysis and experiments.  
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1. INTRODUCTION 

Instrumented indentation testing is a useful 

method to evaluate local mechanical properties such 

as the elastic modulus (E) and hardness (H). 

Sneddon’s solution indicates the relationship 

between load (P) and displacement (h) in elastic half 

space [1]. After that, Oliver and Pharr showed the 

calculation elastic modulus and hardness in elastic-

plastic deformation, by following equations [2]: 

𝐸𝑟 = 𝑆 (2𝑎)⁄   (1) 

𝐻 = 𝑃𝑚 (𝜋𝑎2)⁄   (2) 

where Pm is the maximum load, S is the unloading 

stiffness at the maximum depth, and a is the contact 

radius. Er is reduced modulus. However, it is 

pointed out that this method can cause errors in 

measuring elastic modulus and hardness due to 

ignoring radial displacement (ur) [3-4]. The 

correction factor of radial displacement is basically 

shown as γ = 1 + |ur/a|. There are two representative 

method of radial displacement correction, proposed 

by Hay et al. [3] and Chudoba-Jennett [4]. 

Hay et al. [3] pointed out that indentation by a 

rigid cone requires larger loads than those predicted 

by Sneddon’s analysis due to the radial surface 

displacements. They proposed that the following 

correction:  

𝐸𝑟_𝑐𝑜𝑟𝑟 = (1 𝛾𝐻⁄ ) ∙ 𝑆 (2𝑎)⁄    (3) 

𝛾𝐻 = 1 +
1−2𝑣

4(1−𝑣)
cot 𝜃   (4) 

𝛾𝐻 = 𝜋

𝜋

4
+0.1548cot𝜃

1−2𝑣
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[
𝜋
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−0.8312cot𝜃
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4(1−𝑣)
]
2  (5) 

where a = (2hmtanθ)/π, θ is the indenter angle and v 

is the Poisson’s ratio. Eq.(4) is suitable for cube-

corners, and Eq.(5) is for indenters whose 

equivalent cone angles are 70.3°.  

Chudoba and Jennett [4] assumed elastic-plastic 

deformation and proposed the following correction 

factor based on the radial displacement at the 

contact edge: 

𝛾𝐶 = 1 + [(1 − 2𝑣)(1 + 𝑣)𝐻] (2𝐸)⁄ ∙ cos 𝛼𝑟  (6) 

where αr assumes the residual angle between the 

face of the impression and the original surface plane. 

ISO14577 recommends the correction by Chudoba-

Jennett method [5]. In the ISO, correcting 

indentation results for radial displacement increases 

the elastic modulus as given in following equation: 

𝐸𝑟_𝑐𝑜𝑟𝑟 = 𝛾𝐶 ∙ 𝑆 (2𝑎)⁄   (7) 

where a is determined by real (unloaded) indenter 

shape. The contact radius satisfying S = 2Era is the 

one during loading and smaller than after unloading. 

Note that (90° − θ) is used instead of αr when γC is 

calculated in the ISO, because it is difficult to obtain 

the residual angle from load-displacement data. 

The correction factors γH and γC are both γ > 1. 

Hay’s correction decrease Er as shown in Eq.(3), 

whereas Chudoba’s correction increase Er as shown 

in Eq.(7). These methods are inconsistent in the 

direction of correcting elastic modulus, although 
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they both assume that the surface point is displaced 

inward under pressure.  

In actual experiment, the area function, Ac, is 

defined by experimental data of the reference 

materials whose E is known, by following equation: 

𝐴𝑐 = (𝜋 4⁄ ) ∙ (𝑆 𝐸𝑟⁄ )2  (8) 

Fused silica (FS) is often used as reference material. 

Hay et al. mentioned that Eq.(8) led to an 

overestimation of Ac by 20% when FS was used. On 

the other hand, Chudoba and Jennett indicated that 

Ac determined by FS was underestimated by 13 % 

compared with the area function from direct 

measurement by AFM. Correction ways of area 

function are also different between Hay’s and 

Chudoba’s methods. 

In this study, the effectiveness of these methods 

is verified by actual experiments and simulation of 

finite element analysis (FEA). In experiments, the 

materials whose elastic moduli are known are 

measured by indentation testing. The effects of 

radial displacement corrections are investigated by 

comparing to theoretical elastic modulus. In FEA 

simulation, the contact radius with radial 

displacement is considered in fully elastic 

deformation and elastic-plastic deformation. Then, 

we discuss the accurate correction method which 

can be applied to actual measurement. 

2. METHODS 

2.1. Experiments 

To verify the effects of the correction methods, 

nanoindentation-tests were carried out by using 

iMicro (Nanomechanics) with a Berkovich indenter. 

To calculate the elastic modulus, continuous 

stiffness measurements were used. Measured 

materials were sapphire (Al2O3), tungsten (W), 

Aluminium (Al), SiC, GaN, MgO, Molybdenum 

(Mo), and CaF2. These materials have single crystal 

structure. Area function, Ac(hc), was determined by 

measuring data of FS (E = 72 GPa, v = 0.17) or BK7 

glass (E = 83 GPa, v = 0.21) as reference materials. 

It is necessary to consider both radial displacement 

effects of reference and measured materials. The 

significant difference due to the radial displacement 

was found for FS [3-4]. FS and BK7 were used as 

reference materials to consider the difference 

between reference materials.  

2.2. Finite element analysis (FEA) 

To confirm the validity of the correction 

methods, we simulated the fully elastic half-space 

and the elastic-plastic half-space by FEA using 

COMSOL Multiphysics.  

Fully elastic deformation with a 70.3° rigid 

conical indenter was simulated with a two-

dimensional axisymmetric model. The examined 

materials have different Poisson’s ratios (v = 0.0, 

0.1, 0.2, 0.3, 0.4 and 0.5). The elastic modulus was 

fixed with 100 GPa. In addition, elastic-plastic 

deformation with a 70.3° rigid conical indenter was 

simulated with a two-dimensional axisymmetric 

model. The elastic-plastic materials were modelled 

by Swift’s law. The examined materials have 

different work-hardening coefficients (n = 0.0, 0.2, 

and 0.4), Poisson’s ratios (v = 0.1, 0.2, 0.3 and 0.4), 

and ratios between elastic modulus and yield stress 

(E/σy = 10, 25, 50, and 100). 

3. RESULTS 

3.1. Experiments 

Table 1 shows the elastic moduli with and 

without radial displacement correction by Hay and 

Chudoba methods in the experiments. Corrected 

elastic moduli of measured materials depend on the 

radial displacement of both themselves and the 

reference material, because Ac(hc) is corrected by 

the radial displacement of the reference material 

before applying the correction method to measured 

materials. In the case of using Ac function from FS, 

most of corrected elastic moduli by Chudoba 

method got closer to the theoretical values than that 

by Hay method. However, in the Ac function from 

BK7, elastic moduli of Hay method approach the 

Table 1: Elastic moduli obtained from experiments. 

Samples v 
Theo. 

E 

Experimental E, GPa 

Ac(hc) from FS Ac(hc) from BK7 

No-corr. Hay Chudoba No-corr. Hay Chudoba 

SiC 0.07 475 576 ± 17 567 ± 17 568 ± 18 554 ± 27 542 ± 26 554 ± 28 

Al2O3 0.16 422 483 ± 9 482 ± 9 473 ± 9 465 ± 13 461 ± 13 461 ± 14 

GaN 0.18 320 326 ± 3 326 ± 3 318 ± 3 314 ± 6 313 ± 6 311 ± 6 

CaF2 0.21 120 132 ± 3 133 ± 3 127 ± 3 127 ± 3 127 ± 3 124 ± 3 

MgO 0.24 288 315 ± 5 319 ± 5 305 ± 5 304 ± 6 306 ± 7 298 ± 7 

Mo 0.28 332 338 ± 7 345 ± 7 324 ± 6 325 ± 7 329 ± 7 316 ± 7 

W 0.28 409 411 ± 10 419 ± 10 394 ± 10 394 ± 10 399 ± 10 383 ± 10 

Al 0.36 68 70 ± 3 73 ± 3 67 ± 3 68 ± 3 70 ± 3 66 ± 3 

Average absolute 

difference from theo. 
7.8 % 8.8 % 6.4 % 5.7 % 5.5 % 6.2 % 

Values reported as mean ± standard deviation. 
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theoretical values than that of Chudoba method. It 

is unclear that the effectiveness of Hay and Chudoba 

method only from experiments, thus, we conducted 

the simulation of FEA. 

3.2. Fully elastic deformation by FEA 

For verifying the way of correcting radial 

displacements, the indentation was simulated by 

FEA. Figure 1 shows the FEA simulation results of 

fully elastic deformation. There are three ways to 

calculate contact radius, aSN based on Sneddon’s 

solution a = (2hmtanθ)/π, aFEA obtained from FEA 

results, and aE calculated from a = S/(2Er). In v = 0.5, 

aSN, aFEA and aE were consistent each other because 

of ur = 0. However, they were not consistent in v = 

0. The surface point is displaced inward, thus aFEA 

is smaller than aSN. In contrast, aE is larger than aSN, 

because the indentation load and stiffness of FEA is 

higher than that of Sneddon’s solution. As shown in 

figure 1b, aE and aFEA depend on Poisson’s ratio but 

their tendencies are different. In addition, the ratio 

of the correction by Hay and Chudoba methods is 

also shown in figure 1b. Note that Pm/(πa2) was used 

instead of H in Chudoba’s factor because the fully 

elastic half space was assumed. These results 

suggest that Hay’s method can be useful for aE 

estimation, and Chudoba’s method can estimate 

aFEA. 

3.3. Elastic-plastic deformation by FEA  

For verifying the way of correcting radial 

displacements in experiments, the elastic-plastic 

indentation was simulated by FEA. Note that Hay’s 

method doesn’t assume elastic-plastic deformation. 

Figure 2 shows the FEA simulation results of 

elastic-plastic deformation. Figure 2a shows the 

relationship between the amount of radial 

displacement and hf/hm, where hm is the maximum 

depth and hf is the final depth. ur/a are directly 

obtained from FEA, ur indicates the difference 

between loading and unloading at r = a. FEA results 

indicate that the radial displacement depends on the 

Poisson’s ratio and the amount of elastic 

deformation. |ur/a| values calculated by Chudoba-

Jennett method agreed with FEA results, whereas 

the estimated values by Hay et al. method which 

depends on the Poisson’s ratio were different from 

FEA values. This result suggest that Chudoba-

Jennett method is suitable for estimating |ur/a| in the 

actual experiments. 

The Figures 2b and 2c indicate the difference in 

contact radii calculated by three ways, aE, aFEA and 

aOP which is obtained by hc = hm – ε(Pm/S). When 

sink-in behaviour is easy to be occurred such as n = 

0.4, the FEA results were similar to those of fully 

elastic deformation. aE/aOP is consistent with the 

correction factor of Hay’s method whereas aFEA/aOP 

is consistent with that of Chudoba’s method. 

However, when pile-up behavior is easy to be 

occurred such as n = 0.0, the variation of aE/aOP and 

aFEA/aOP was large, because the estimation of hc and 

aOP might be wrong.  

4. DISCUSSION 

In fully elastic deformation, our results of FEA 

simulation suggest aFEA < aSN < aE. Schwarzer 

indicated the contact radius considering radial 

displacement was smaller than that based on 

Sneddon’s analysis, by using basic principles of 

linear elasticity [6]. In addition, Hay et al. showed 

the load from FEA simulation was larger than that 

from Sneddon’s analysis, and the effective cone 

angle was larger than the original angle [3]. These 

previous studies are consistent with our results of 

FEA. It is necessary to be careful not to confuse a 

in FEA and a = S/(2Er) which is used for calculating 

elastic modulus by Eq. (1). 

The present results of FEA suggest that Hay’s 

method can obtain the contact area for calculating 

 
(a) Scheme of FEA simulation at v = 0.0 and v = 0.5 

 

 
(b) Difference in calculated contact radius  

 

Figure 2: FEA simulation results of fully elastic 

deformation considering radial displacement effects. 

aSN: contact radius based on Sneddon’s solution. 

aFEA: contact radius obtained from FEA. aE: contact 

radius calculated by 𝑎𝐸 = 𝑆 (2𝐸𝑟)⁄ . 
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elastic modulus by Eq.(1), while Chudoba’s method 

can obtain the apparent contact area during loading. 

Therefore, Eq.(3) of Hay’s method seems to be 

suitable to obtain appropriate elastic modulus than 

Eq.(7) of Chudoba’s method. However, Hay’s 

method considered the ideal boundary condition 

based on Sneddon analysis (related to aSN), although 

it should consider the actual boundary condition 

(related to aFEA). This suggests that both of Hay’s 

and Chudoba’s corrections should be taken into 

account. Recent research shows the improved 

correction factor of Hay’s method which is taken the 

boundary condition after the surface displaced 

inward into consideration in fully elastic 

deformation [7]. Furthermore, the boundary 

condition in elastic-plastic deformation is more 

complex than that in fully elastic deformation, 

because the amount of radial displacement is varied 

with E/σy and v as shown in figure 2a. It can be 

disputable to consider the value of correction factor 

in elastic-plastic deformation.   

In addition, Xu et al. suggested that γ-factor with 

Berkovich indenter is almost independent of the 

E/σy ratio, whereas that with conical indenter 

depends on the E/σy [8]. If the γ-factors of reference 

and measured materials are the same, and it is 

unnecessary to correct the radial displacement effect. 

The further studies require to consider about the 

radial displacement effect of actual indentation 

testing using Berkovich indenters. 

     
(a) The relationship between |ur/a| and hf/hm with different E/σy and n 

 

   
(b) Difference in aE/aOP with Poisson’s ratio, work-hardening coefficients and E/σy ratio. aOP: contact radius based 

on Oliver-Pharr method. aE: contact radius calculated by 𝑎𝐸 = 𝑆 (2𝐸𝑟)⁄ . 

 

 
(c) Difference in aFEA/aOP with Poisson’s ratio, work-hardening coefficients and E/σy ratio.  aOP: contact radius based 

on Oliver-Pharr method. aFEA: contact radius obtained from FEA.  

 

Figure 2: FEA simulation results of elastic-plastic deformation considering radial displacement effects. 
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In actual experiments as shown in table 1, these 

limited results suggest that the radial displacement 

correction is small because the effect of difference 

in reference materials is larger than that of radial 

displacement. Some studies pointed out that fused 

silica has densification effects, and higher elastic 

recovery than borosilicate glasses [9-10]. Thus, the 

determination of area function also depends on 

characteristics of reference material. The cause for 

errors of elastic moduli measured by 

nanoindentation requires further investigation. 

5. SUMMARY 

In this study, we examined the effect of radial 

displacement corrections using FEA and 

experiments. Hay’s method can obtain the contact 

area for calculating appropriate elastic modulus, 

whereas Chudoba’s method can estimate the 

apparent contact area during loading. The further 

studies require to consider that the necessary 

correction method for obtaining appropriate elastic 

moduli and hardness values in actual indentation 

testing. 
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