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Abstract—The growing demand for superior quality 
products at higher throughput rates and the constant evolution 
of industrial environments require an increasingly strict control 
over manual operations performed by workers. This paper 
presents a study evaluating the possibility of using a modular 
wearable system to track workers’ fingers motion during 
different tasks in industrial environments. The system is 
composed by a series of modules with embedded sensors and 
electronics, each worn on a single finger, and an external data 
elaboration device. In order to test system performances, we 
simulated some actions potentially executed by workers in 
industrial environments. Achieved results show the system 
capability in discriminating between different ways of handling 
a tool, such as a precision screwdriver. In addition, results point 
out system ability in recognizing grasped objects. Finally, they 
highlight the possibility to identify different hand gestures to 
enhance human-robot interaction. System modularity permits 
using the lowest number of wearable modules that guarantees 
reliability and minimizes invasiveness at the same time. 
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I. INTRODUCTION 

Over the last years, we are assisting to an increasing 
demand for superior quality products, to be realized and 
distributed at higher rates [1]. Enabling contributions to 
achieve this goal come from automation (e.g., the growing 
presence of robots and cobots in assembly lines) and the 
combination of manufacturing world with information and 
communication technologies, according to Industry 4.0 
paradigms [2]. This leads to the transformation of industrial 
environments from static and isolated manufacturing and/or 
distribution sites to smart factories, where Internet-of-Things 
and cyber-physical production systems gather information 
about the processes on course, with positive effects on their 
efficiency and, consequently, on the throughput [3]-[4]. 

Nonetheless, the execution of manual operations by 
workers remains one of the most performed tasks, for 
example, in situations requiring the complete process 
flexibility [5] or the collaboration between humans and robots 
in shared workspaces, such as robotic cells [6]. Furthermore, 
manual operations (even those repetitive) are still fundamental 

in semi-automated or non-automated environments [7]. 
Therefore, it is clear how the correctness of manual operations 
plays a central role among the factors affecting many 
industrial processes. For instance, the incorrect execution of 
repetitive movements in workshops, associated with 
individual predisposition, may cause musculoskeletal injuries 
indicated as repetitive motion disorders (RMDs) [8]. Another 
important task is the assembly of different parts composing a 
product. In this case, finding the right part in the warehouse 
and following a specified assembly order are fundamental 
operations, to avoid any possible mistake. This is true 
especially when the task becomes repetitive, as for different 
variants of the same product. Thus, worker knowledge about 
how a task has to be carried out helps reducing human errors, 
which may slow down the process and decrease final product 
quality. Finally, active collaborations between human 
operator and robot requires the latter to recognize specific 
actions performed by the former [6]. In these contexts, the 
possibility of having available a supervisor system that tracks 
worker’s hand gestures (in particular, of fingers) may give an 
important contribution. In fact, such a system may verify 
whether movements are correct, guide a worker towards the 
right operation to be performed at a precise moment, and/or 
improve human/robot interaction. As an example of this 
interest, tracking devices have been already conceived to help 
identifying the right position of items in inventories [9].  

Fingers motion tracking systems are currently spread, as 
they represent suitable solutions for different applications. 
Examples range from monitoring impaired people capabilities 
[10]-[11], to movement analysis during the execution of 
precise actions [12], from enhancing object design in 
combination with virtual reality environments [13], to the 
contribution in developing human-machine interfaces [14]-
[16]. Such systems belong to two main groups, based on their 
operating principle to obtain data about fingers movement. 
Those from the first group rely on optical instrumentation, 
such as cameras and image processing algorithms. They 
guarantee the hand to move freely in the space, without 
constraints. However, achieving high performances generally 
means employing expensive instrumentation. In addition, 
industrial environments are characterized by conditions, such 
as changing illumination and the presence of waste and dust 
possibly accumulating on the lenses of cameras, which may 
heavily affect final results. The second group includes This work is supported by the Italian Ministry of Education, University and 
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wearable devices equipped with sensors and electronics for 
data elaboration and transmission. These devices can be 
realized with low-cost components, but they must comply 
with workspace safety rules, be comfortable to the worker and 
not limit task execution because of fabrication constraints. As 
an example, wired solutions may not be suitable. 

In previous works [17]-[18], we proposed a measurement 
system for tracking fingers movement. Such system is 
composed by different wearable modules with embedded 
sensors and electronics, which can be worn in a minimally 
invasive way, and an external data elaboration device. In this 
paper, we present a study evaluating the possibility of system 
application to industrial environments. In particular, by 
simulating tasks potentially performed by a worker, we aim at 
assessing system ability in recognizing different actions 
during task execution. 

II. SYSTEM DESCRIPTION 

The measurement system (Fig. 1) consists of two parts: 1) 
a wearable device for tracking fingers movement and 2) an 
external mobile device for post-elaborating and displaying 
collected data. The wearable device consists of independent 
and portable modules, which are positioned on thumb and 
index in Fig. 1a. No cables, wires or garment connect them. In 
this way, the measuring system is modular and more control 
modules may be interconnected for measuring the motion of 
more fingers. Furthermore, no constraints obstruct finger 
movements. The modules are equal and they can be adapted 
to any finger. 

A single module measures flexion and extension of the 
proximal interphalangeal joint and tracks position and motion 
of the first and second phalanges in space. Joint movements 
are monitored by a commercial stretchable strain sensor for 
large deformation, produced by Images SI Inc. [19]. The 
stretch sensor is based on a conductive rubber that increases 
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(b) 
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Fig. 1. Measurement system. (a) wearable device with two identical measurement modules (stretch sensor + IMU + circuit board). Module coordinate system 
is highlighted. (b) LabVIEW interface running on an external mobile device for data collection and elaboration via Bluetooth standard. 
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its electrical resistance when it is stretched. This kind of sensor 
is frequently used in the literature for these applications [20]. 
It is fixed to the finger through two rings positioned on the 
first and second phalanges. Then, the motion of the first 
phalanx is tracked by an inertial measurement unit (IMU). 
Therefore, considering that the second phalanx can perform 
only a flexion/extension movement with respect to the first 
one, then complete information about finger movement can be 
collected by IMU and stretch sensor. The IMU is single chip 
LMS9DS1, produced by STMicroelectronics, and includes a 
3-axis accelerometer, a 3-axis gyroscope, and a 3-axis 
magnetometer. Both IMU and circuit board are closed inside 
a box (36 mm x 25 mm x 10 mm) fixed on the ring of the first 
phalanx. The circuit board includes a conditioning circuit for 
the stretch sensor and a microcontroller unit for collecting and 
sending (via Bluetooth) the measurement data to the external 
device at a sample rate of 20 Hz. A 40 mAh polymer Li-ion 
rechargeable battery (20 mm x 11 mm x 3 mm) is placed in 
the box and guarantees module proper functioning, which 
requires 20.52 mA on average and 38 mA during data 
transmission for 1 ms. The total weight of a single module is 
14 g. A more extended description of the module is reported 
in [17]. 

Measurement data can be received by any external device 
equipped with a Bluetooth Low Energy module. Data 
communication and elaboration are managed by the built 
LabVIEW Virtual Instrument (VI), which shows all data 
collected by IMUs and stretch sensors (Fig. 1b). It also 
displays IMUs orientation in the space. In this work, the VI 
runs on a notebook with two Bluetooth transceivers. 

III. EXPERIMENTAL ANALYSIS 

A. Performed tests 
We carried out a series of tests, mimicking typical actions 

that a worker could potentially execute in different industrial 
environments. In this way, we evaluated system capabilities in 
such illustrative scenarios. 

The first test permitted to monitor operator’s fingers 
movement while performing a precision screwing operation. 
A male subject wore the measurement modules on his middle 
and thumb. Then, he repeated the screwing operation five 
times, by handling a precision screwdriver in the way shown 
in Fig. 2a (grip #1). Afterwards, he executed the same 
operation, but handling the screwdriver once as illustrated in 
Fig. 2b (grip #2) and once in the way shown in Fig. 2c (grip 
#3). We analysed the data obtained from each measurement 
module and fused them to discriminate between the 
movements derived from the three different grips, taking grip 
#1 as reference for the comparison. 

The second test aimed at assessing the system ability in 
recognizing which object is grasped when the operator is 
required to assemble a box consisting of a container, a lid, and 
four screws to fix the two parts. The assembly scheme is 
graphically explained in Fig. 3. The operator has to secure the 
container (Fig. 3a), by collecting the lid (Fig. 3b) and the four 
mounting screws (Fig. 3c), in order to complete the task 
(Fig. 3d). Measurement modules were worn on the index and 
thumb by a male subject, who grasped and released the lid 
multiple times in a repetitive way. Then, he repeated such 
operation with one of the screws. Again, we combined the data 
coming from the sensors present in each module, in order to 
perform this type of recognition. 

The third test is a preliminary study about the 
identification of a simple and reduced gesture set. As the 
measurement module is able to recognize hand orientation and 
the flexion angle of the first phalanx, it can also be used to 
discriminate different hand poses (Fig. 4). In fact, in an 
industrial environment, these gestures might be associated to 
some actions carried out by a robot/cobot. During the test, the 
system was worn on the thumb and index by a male user, who 
performed the following movements involving the hand poses 
represented in Fig. 4. Movement M1 is between positions (0) 

(a) (b) (c) 
 

Fig. 2. Different grips when handling a precision screwdriver during
analyzed screwing operation. (a) grip #1. (b) grip #2. (c) grip #3. 

(a) (b) 

(c) (d) 
 

Fig. 3. Assembly scheme of the box. (a) the container is automatically 
supplied. (b) lid grasping. (c) screw grasping. (d) assemblied box. 

(0) (2) (1) 

M2 

M1

 

Fig. 4. Hand poses chosen for gesture recognition function. Pose (0) is used 
as a reference of no gesture, (1) and (2) are the positions to be recognized.  
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and (1); movement M2 is between positions (0) and (2). Pose 
(0) was exploited as a default base position, whereas the others 
had to be actively recognized. Movements were repeated five 
times each. 

B. Results 
As one of the parameters for movement discrimination, in 

Fig. 5 we show the time trends characterizing the angle of 
rotation around x-axis of module coordinate system, both for 
thumb (Fig. 5a) and middle (Fig. 5b). Each trend corresponds 
to the movement generated when precision screwdriver was 
handled in the ways shown in Fig. 2. We determined angle 
values by following established techniques known from the 
literature [17]-[18]. The repetition of the movement with grip 
#1 permitted to identify a tolerance band for the rotation angle, 
which is equal to 64° for thumb and 40° for middle. This band 
contains all values corresponding to such movement with a 
95% degree of confidence. Therefore, it helps discriminating 
whether screwing operation is being performed with grip #1. 
In fact, angle trends related to other grips are out of the band, 
as it happens for grip #2. Furthermore, combining data from 
the two fingers augments results reliability. The case of grip 
#3 is a clear example. In fact, the trend for the middle lies 
entirely inside the tolerance band, but, at the same time, the 
one related to thumb is completely out. Gathering data from 

other fingers through additional wearable modules would 
even ameliorate the outcome of this analysis. 

Fig. 6 reports the variation of stretch sensor resistance R as 
a function of time, for both thumb and index, when lid 
(Fig. 6a) or screw (Fig. 6b) are grasped. Stress relaxation 
behavior is visible and this is a common behavior well 
described in the literature for strain sensors [21]. In this 
application, such behavior has negligible effects on the 
resistance variation due to the movement. This variation is 
represented as percentage with respect to resistance R0, 
corresponding to the case in which fingers are extended and 
are grasping no objects. The value of R0 is equal to 
(118 ± 3) Ω for thumb and (135 ± 2) Ω for index, 
respectively. Reported graphs highlight that ΔR/R0 response is 
strongly dependent on grasped object, looking in particular to 
the peak plateau levels. In fact, as expected, different object 
sizes cause different bending degrees of the phalanges. In 
addition, the combination of the values obtained from the two 
measurement modules enhances object identification. For 
example, when the screw is grasped, peak plateau levels for 
both fingers are close to each other, lying between 50% and 
70%. On the other side, they are completely different in the 
case of the lid, being between 20% and 30% for the thumb and 
around 80% for the index. Therefore, stretch resistance 

(a) 

(b) 

TOLERANCE BAND 

TOLERANCE BAND 

 

Fig. 5. Angle of rotation around x-axis as a function of time, corresponding
to the grips analyzed during the execution of a precision screwing operation. 
(a) thumb. (b) middle. 

(a) 

(b) 

SCREW GRASPED 

LID 
GRASPED 

 

Fig. 6. Variation of stretch sensor resistance as a function of time for thumb 
and index, when different objects are grasped. (a) lid. (b) screw. 
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variation is a useful indicator for object recognition, especially 
if data are collected from multiple fingers. 

 Results from the third test are arranged in Fig. 7 and Fig. 8, 
for movements M1 and M2, respectively. Fig. 7a and Fig. 8a 
report the rotation angle around y-axis, whereas Fig. 7b and 
Fig. 8b represent stretch sensor resistance R, as a function of 
time and for thumb and index. To get better graphic results, 
only three of five repetitions of the same movement are 
shown. The hand poses are recognized analyzing the data. 
Movement M1 is associated to a complete index flexion and a 
partial thumb flexion. This is reflected in the variation of the 
observed parameters with respect from pose (0). In fact, the 
angle of rotation presents a variation for the index five times 
greater than the one characterizing the thumb. Also R increase 
is higher for the index, on average. On the other side, 
movement M2 implies a complete thumb flexion (R increase 
equal to 42%, angle decrease around 20°), whereas the 
involuntary movement due to anatomical constraints is just 
observed for the index. If crossing the analysed parameters, all 
these poses are non-overlapping, permitting to discriminate 
between different gestures. 

IV. CONCLUSIONS 

In this paper, we presented a study to evaluate the 
application of a finger tracking system for monitoring the 
tasks performed by workers in industrial environments. The 

system is composed by wearable modules with embedded 
sensors and electronics and an external data elaboration 
device. After having illustrated system fundamental 
characteristics, we described the tests through which we 
evaluated its performances. In particular, we mimicked some 
actions that a worker has potentially to execute in an industrial 
environment. Finally, we showed the obtained results. First, 
they highlight the capability of the system in discriminating 
between different ways of handling a tool, such as a precision 
screwdriver. Then, they point out system ability in 
recognizing objects when they are grasped. Finally, they show 
the possibility to identify different hand gestures. 
Furthermore, collecting data from more than one finger 
simultaneously increases system reliability. 

Presented study suggests that the measurement system 
could be potentially employed to track workers’ fingers 
motion and orientation, in order to evaluate if workers are 
carrying out a task correctly. For instance, it could inform 
workers in real time if they are handling a tool incorrectly, or 
in case of wrong movements that could lead to RMDs when 
repeated. As an alternative, given a specified assembly order 
of parts, it could warn a worker when a wrong part is being 
grasped. In addition, it could be employed to control the 
movement of robots in shared workspaces or, in general, it 
could enhance human/robot interaction. System modularity 
allows using the lowest number of wearable modules that 

(a) 

(b) 

Fig. 8. Results for thumb and index during movement M2. (a) angle of 
rotation around y-axis. (b) stretch sensor resistance. 

(a) 

(b) 
 

Fig. 7. Results for thumb and index during movement M1. (a) angle of 
rotation around y-axis. (b) stretch sensor resistance. 
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permits to track workers gestures correctly, minimizing 
module invasiveness at the same time. Then, the system could 
be connected with other devices, robots, or machines present 
in the factory, allowing information exchange in compliance 
with Industry 4.0 principles. 
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