Measuring randomness in IoT products
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Abstract—Choosing and using a random number generator is
no simple task. Most random number generators fail statistical
tests, revealing patterns in their output. Good generators can
lead to disasters if not properly seeded. IoT products may not
afford safe random number generators if these products are built
on low resource hardware because safety tends to require more
resources than not. Testing the chosen random number generator
under the conditions of the product is important to know its
limitations. We present an easy-to-use tool we have developed
to bring the industry’s products the state-of-the-art in random
number generator testing.

Index Terms—PRNG, RNG, randomness, random number
generators, statistical tests, TestU01.

I. INTRODUCTION

Unfortunately, the list of past incidents involving bad ran-
dom number generation is not too modest. Bad randomness
has been with us for as long as random number generation has
been in use. Perhaps the oldest catastrophe is RANDU, from
IBM’s System/370, used in the 60s. “[Its] very name RANDU
is enough to bring dismay into the eyes and stomachs of many
computer scientists! [...] [It] fails most three-dimensional cri-
teria for randomness, and it should never have been used.” [1,
section 3.3.4, page 105].

In 1996, Netscape Communications failed to properly seed
their random number generator during SSL handshaking: they
used the current timestamp and the browser’s PID. The seed
per se was computed by the MD5 hash function, but, since
an adversary could have a precise measurement of the current
timestamp and the universe of possible PID numbers is not
large, it was possible to considerably reduce the set of possible
seeds available to the generator. While Netscape thought they
had 128 bits of security, it was 47 bits [2].

In 2003, Taiwan launched a project offering its citizens
a smart card with which they could authenticate themselves
with the government, file taxes et cetera. RSA keys were
generated by the cards using built-in hardware random number
generators advertised as having passed FIPS 140-2 Level 2 cer-
tification [18]. “On some of these smart cards, unfortunately,
the random-number generators used for key generation are
fatally flawed and have generated real certificates containing
keys that provide no security whatsoever.” As a result, a
total of 184 distinct certificate secret keys were found out of
more than two million 1024-bit RSA keys downloaded from
Taiwan’s national key repository [3, page 342].

This work has been partially supported by the SHCDCiber project. Authors
listed in alphabetical order: see https:/goo.gl/rzBAq9.
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In 2008, a vulnerability in OpenSSL on Debian-based
operating systems was caused by “a random number gener-
ator that [produced] predictable numbers, [making] it easier
for remote attackers to conduct brute force guessing attacks
against cryptographic keys.” [8]

In 2012, a large survey of TLS and SSH servers was
performed [4]. The entire IPv4 space was scanned, giving us
a macroscopic view of the universe of keys on the Internet.
Unfortunately, many servers were powered by malfunctioning
random number generators. About 5.8 million distinct TLS
certificates, 6.2 million SSH distinct keys were analyzed from
about 10.2 million hosts. It was found that 5.57% of the TLS
servers and 9.60% of the SSH servers shared keys with at
least one other server. For TLS, at least 5.23% were using
default keys generated by the manufacturer and had never
been changed by the user. It seems some 0.34% generated
the same keys as one or more hosts due to malfunctioning
random number generators. As a result, about 64,000 (0.50%)
TLS private RSA keys and about 108,000 (1.06%) SSH private
RSA keys were factored by exploiting the fact that some of
these keys shared a common factor with at least one other host
due to entropy problems in random number generation.

As technology adoption advances, incidents become more
frequent. In 2013, a bitcoin theft was related to the imple-
mentation of the pseudo-random number generator used in
Android [7] [10], later replaced by Google Inc. In 2015, a
flaw in FreeBSD’s kernel turned SSH keys and keys generated
by OpenSSL vulnerable due to a possible predictability of a
random number generator [9].

Most incidents mentioned involve computer and smart
phone systems, but it is not absurd to assume most IoT devices
will use some of the same libraries powering these applica-
tions, in the same way smart phones use the same libraries
used in server and desktop systems. Worse, IoT devices will
probably use slim versions of these software due to their
low resource demands, generating more concern as stable
implementations of verified software might be changed to fit
in with the requirements of an IoT hardware or application.

II. TERMINOLOGY

There are at least two types of random number generators,
those called true random generators and those called pseudo-
random generators. The former is usually associated with a
physical mechanism which produces randomness by way of a
physical process “such as the timing between successive events



in atomic decay” [12, section 2.2.1, page 38]. The acronym
TRNG stands for true random number generator and is usually
used to represent them. (Sometimes RNG refers to TRNG,
but we prefer to reserve RNG to mean any random number
generator, pseudo or not.) PRNG stands for pseudo-random
number generator and is the acronym used to refer to them.
A PRNG is often an arithmetical procedure performed by a
machine given by an initial, hopefully random, information
called the seed. If a PRNG has enough desirable properties to
the point of being advised for cryptographic applications, then
the term CSPRNG is often used, meaning cryptographically
secure pseudo-random number generator.

III. DESIRABLE PROPERTIES

TRNG have several disadvantages compared to a good
PRNG. For example, they are more cumbersome to install
and run, more costly, slower and cannot reproduce the same
sequence twice. (Reproducing the same sequence is important
for repeating simulations and testing applications.) But a
PRNG does need a good seed, which TRNGs can provide [12,
section 2.2.1, page 38].

When choosing a PRNG, we must know what to look for.
Some of the properties one can find in PRNGs, to name a few,
is good statistical properties, good mathematical foundations,
lack of predictability, cryptographic security, efficient time and
space performance, small code size, a sufficiently long period
and uniformity [11, section 2].

In the context of computer-generated randomness, good
statistical properties are effectively what is meant by “ran-
dom” [11, section 2.1]. Mathematical foundations allow us to
be sure a PRNG has some desirable property such as its period,
which is defined as the length of the sequence of random
numbers the generator can produce, at the end of which the
generator must repeat itself, so having a long period is surely
desirable.

Uniformity is a property closely related to the period. After
the generator has output all its period, each number produced
should occur the same number of times, otherwise it is not
uniform. If it is not uniform, it is biased. Uniformity alone,
without a long period, is certainly not desirable. Consider what
happens as we consume a uniform generator. As we draw near
the end of its period, its uniformity effectively allows us to
predict more and more its output, since all output must occur
the same number of times [11, section 2.1.1].

For example, let us consider a case where we can show that
a generator must lack uniformity in its output. Consider
a generator with b bits of state, but where one of the
2" possible states is never used, (perhaps because the
implementation must avoid an all-bits-are-zero state). The
missing state would leave the generator with a period of
2% — 1. By the pigeonhole principle, we can immediately
know that it cannot uniformly output 2° unique b-bit
values.

A period of a generator cannot be too short, lest it repeat
itself while in use, which makes it statistically unsound. A
large internal state implies the possibility of a longer period
because it allows for more distinct states to be represented.

However, in terms of period size, more is not always better. For
example, if we are to choose between generators with period
size of 2128 and 22°6, we should notice that it would take
billions of years to exhaust the period of the 2'2® generator,
so picking the 2256 is not a relevant advantage. “Even a period
as ‘small’ as 2°6 would take a single CPU core more than two
years to iterate through at one number per nanosecond.” [11,
section 2.4.2]

Another valuable property is unpredictability. “A die would
hardly seem random if, when I’ve rolled a five, a six, and a
three, you can tell me that my next roll will be a one.” [11,
section 2.2]. Still, PRNGs are deterministic and their behavior
is completely determined by their input. They produce the
same sequence given the same input. So their randomness is
only apparent to an observer who doesn’t know their initial
conditions. Although the deterministic nature of PRNGs might
seem more like a weakness than a strength, it is valuable
for reproducing the same sequence multiple times, which is
required in a number of applications, from simulations and
games to the mere testing of programs. To repeat a sequence
generated by a PRNG, we need only save its initial conditions,
usually just the seed for that sequence produced. To repeat a
sequence from a TRNG, we would have to save the entire
sequence produced.

It’s not immediately obvious that a procedure computed
by a machine can be unpredictable, but some PRNGs output
a number while keeping another one hidden from the user.
The hidden information is called the PRNG’s internal state.
Predicting the PRNG entails knowing such internal state.

Unpredictability is very important for applications con-
cerned with security because predicting a PRNG allows for
various types of attacks, including denial of service [24]. If
a PRNG leaks internal state information at each output, an
adversary is able to little by little infer the complete internal
state, when the generator becomes completely predictable, at
least from that point in the sequence on, which is a flaw that
the generator Mersenne Twister [23] suffers — see Section
VL

Predictability can be considered in two directions: forwards
and backwards. A generator is said to be invertible if, once we
know its internal state, we can discover the random numbers
it generated previously. So being non-invertible is vital for
applications that generate cryptographic keys: if the generator
is invertible and its internal state is exposed at some point
in time, adversaries will be able to recover all previously
generated keys. So CSPRNGs are not invertible. Although
some applications may not be designed with cryptography in
mind, it’s a good idea anyhow to pick the safest generator for
which your project allows [11, section 2.2].

[...] [Because] we cannot always know the future contexts
in which our code will be used, it seems wise for all
applications to avoid generators that make discovering
their entire internal state completely trivial.

Speed is another important property, particularly consider-
ing IoT applications. An application that is too dependent on
an RNG will be as slow as the RNG used. IoT applications
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will often run on very low resource hardware, so we can an-
ticipate that programmers will trade other properties for speed
and space. Many generators with good statistical properties
are slow, but there are some generators that have relatively
good time performance while showing acceptable statistical
properties. For example, XorShift* 64/32 [11, section 2.3] has
good performance and good statistical properties, but it’s not
safe for cryptographic applications.

Most generator implementations will take just a constant
amount of memory to store their state, but considering the
strict constraints some IoT applications face, the size of
these constants should also lead programmers to choose one
over another. Space is also related to speed: considering all
other things equal, a generator that’s able to keep its internal
state completely in a processor’s register should outperform a
competitor which needs many more bytes of internal state to
be kept in main memory [11, section 2.4].

There is also the space constraints of code size. Such space
is most likely a constant, but constants do matter for IoT
applications. The longer the code, the more likely it will
include programming errors. Such errors can be particularly
difficult to detect in the context of RNGs [11, section 2.4.3].

From personal experience, I can say that implementation
errors in a random number generator are challenging
because they can be subtle, causing a drop in overall
quality of the generator without entirely breaking it.

Another desirable property is seekability. A generator that’s
seekable is one in which we can skip an arbitrary number of
elements of the sequence. Since PRNGs are cyclic, if we skip
a sufficient number of elements, we are back to its starting
number, implying that the ability to seek ahead can also give
us the ability to seek backwards. CSPRNGs are designed not to
allow seekability as it is not desirable to let an adversary read
the sequence backwards, discovering which numbers were
produced in the past.

IV. STATISTICAL TESTS

Statistical theory allows us to posit a hypothesis Hy about
an RNG and devise tests to provide empirical evidence of
the validity of Hj. These tests, in turn, either give us more
confidence in the hypothesis Hy or leads us to reject it. A
statistical test for an RNG is defined by a random variable
X whose distribution under H, can be well approximated.
When X takes the value z, define pgr = P[X > x| Hp] and
pr, = P[X < x| Hp] as the left and right p-value, respectively.
Such p-values measure how likely it is to find a certain sample
of the RNG given Hj is true. If it turns out we get very
unlikely samples from the RNG, then we’re getting strong
evidence the hypothesis Hy is not true. In fact, when testing
RNGs, if any of the right or left p-value is extremely close to
zero, then H should be rejected [12, section 2.6, page 56].
If any of the p-value is equal to 1, then the sequence appears
to have perfect statistical randomness [14, section 1.1.5]. If
a suspicious p-value is obtained, say near 10~2 or 1073, we
can repeat the particular test a few more times, perhaps with
a larger sample size in the hope that more tests will clarify
the result [12, section 2.6, page 56].
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In the context of testing for randomness, Hy is usually
taken to mean that the sequence is random. For each specific
test, a rule must be derived that allows us to accept or
reject Hy. Taking H, to mean that the sequence generated is
random, the test produces a statistic with a certain probability
distribution of possible values. This probability distribution
must be determined by mathematical methods. From this
distribution, a critical value is chosen such that a critical region
in the set of possible values is determined. The statistic is then
computed from the sample and compared to the critical value.
If the statistic falls in the critical region, we reject Hy, that
is, we conclude the sequence produced by the generator is not
random. Otherwise, we accept Hj.

If the generator produces a random sequence, then the
computed statistic will have a very low probability of falling
in the critical region and, if such event occurs, it provides us
with evidence that the sequence is not random as assumed in
Hy, prompting us to reject Hy.

Although the probability for such event may be very low, it
is not null. Incorrectly classifying a sequence produced by a
generator as not random is called a type I error. Much worse
would be if we accept Hy when the sequence produced by the
generator is not random, an error that’s called type II.

The probability of type I error is usually denoted by « and
is called the level of significance of the test. The type II error
is usually denoted by (3. The value of « can be arbitrarily
chosen, that is, if we would like to specify the probability of
type I error to 1%, we can set o = 0.01 for the specific test.
Doing the same for type II error is not so easy. Recall that the
probability distribution for the statistic produced by the test
was determined assuming the generator does indeed produce
a random sequence, that is, assuming H is true. In the type
IT error, Hy is not true, so the probability distribution of the
statistic test is not known. Unless this probability distribution
is known, (3 is not a fixed value because there is an infinite
number of ways that a sequence can be non-random. Each
different way determines a different (3. It is possible, however,
to minimize the type II error of a certain test. The probabilities
« and [ are related to each other and also to the size n of
the sample. If two of them are specified, the third value can
be computed. Usually, a sample size n is chosen along with
a probability « and a critical value is chosen such that 3 is
smallest [14, section 1.1.5].

V. THE STATE-OF-THE-ART IN TESTING

Under the framework of hypothesis testing, a series of tests
can be devised to analyze samples of the RNG. There is no
maximum number of tests we can apply to an RNG and there
is no maximum number of tests an RNG can pass that will
prove it to be truly random. It’s also not possible to build
an RNG that passes all statistical tests [12, section 2.2.4,
page 41]. However, the more tests we apply to an RNG the
more confident we get of its quality.

Perhaps the first battery of tests was devised by Donald
Knuth in 1969 [1, section 3.3, page 38]. In 1996, George
Marsaglia published DIEHARD [13] given the insufficiency



of Knuth’s. NIST, in the United States, published in the year
2000, being last revised in 2010, its own battery [14] to
supersede Marsaglia’s. Robert Brown published DieHarder in
2004. In 2007, Pierre L’Ecuyer and Robert Simard published
TestUO1, a C library with which C programmers can imple-
ment and test RNGs [15]:

[...] empirical testing of RNGs is very important, and

yet no comprehensive, flexible, state-of-the-art software

is available for that, aside from the one we are now

introducing. The aim of the TestUO1 library is to provide

a general and extensive set of software tools for statistical

testing of RNGs. It implements a larger variety of tests

than any other available competing library we know. [...]

TestUO1 was developed and refined during the past 15

years and beta versions have been available over the

Internet for a few years already. It will be maintained and

updated on a regular basis in the future.

TestUO1 showed a “sobering result” [15, table I, section 7]
for many well-known RNGs which were “respectable” [11,
section 2.1.2]:

[L’Ecuyer and Simard] made a very significant contri-
bution to the world of random-number—generator testing
when they created the TestUO1 statistical test suite. Other
suites, such as [DIEHARD], had existed previously, but
TestUO1 (which included a large number of previously
independently published tests, and applied them at scale)
vastly increased the scope and thoroughness of the testing
process.

The library comes with three predefined battery of tests:
SmallCrush, the small one, Crush, the medium-sized one
and BigCrush. SmallCrush is the quickest and it should
finish under a minute on most modern desktop computers.
Crush can take a few hours and BigCrush takes various
hours or perhaps a day.

How about alternatives to TestU01? Two other packages
compete with TestUO1: PractRand [16] and gjrand [17], but
neither has been formally published.

VI. THE STATUS QUO

If one is writing a new application that needs an RNG,
one should not just use RNGs offered by the system or
programming language adopted. Most programming languages
have adopted flawed generators. Java, for example, offers the
package java.Util.Random which is based on the PRNG
drand48. It failed 5 tests in SmallCrush in less than a
minute.

The default PRNG in both Python and PHP is mt 19937,
Mersenne Twister [23]. It passes SmallCrush, but actually
fails the linear complexity test, not included in TestUO1’s small
battery. The linear complexity test is a rather quick test to run
and could have been included in the small battery. The number
19937 in its name is due to is huge period of size 219937 — 1.
Despite having been a promising PRNG, mt 19937 can be
totally predicted after collecting of sample of size 624 [11,
section 2.2].

In C++, besides mt 19937, the standard library also of-
fers minstd and ranlux, two well-known generators, but
minstd fails 9 tests out of 15 of the small battery and
ranlux is not much better [15, section 7].

Exceptionally, some programming languages offer good
alternatives. For example, in Racket, from the Lisp family, its
default PRNG is Pierre L'Ecuyer’s mrg32k3a [21], which
did pass SmallCrush when we tested it, but also passes
BigCrush [15, section 7, table IJ.

If an application needs cryptographic security, a well-known
CSPRNG is based on the stream cipher ChaCha20 [20].
ChaCha20 has replaced RC4 in OpenBSD starting at version
5.4, in NetBSD in version 7.0 and replaced SHA-1 in the
Linux kernel since version 4.8. These events show some
evidence that ChaCha20 is currently well regarded.

VII. A NEW EASY-TO-USE TOOL

An inconvenience of TestUOI is that it’s restricted to the
C programming language. It is a C library, after all: we can’t
just run it. In addition, how would we test an RNG provided
by, say, another programming language? The typical way to
test an RNG against TestUO1 batteries is to implement it in C
by using TestUO1’s C interfaces.

With the aim of bringing TestUOI to every developer, we
wrote a program that tests any RNG at all that can run in the
system as a standalone program.

Our strategy is to implement an RNG in C whose source of
randomness is not an arithmetical procedure, but the standard
input of the process. In other words, when our program starts,
it reads its standard input and uses the data it reads as the
source of randomness for the generator. This way it can take
random data from any source at all, so long as the source
writes its random data in little-endian binary form to the
standard output.

This way we effectively separate the RNG from TestUOI.
Testing any RNG is a matter of telling the system’s shell to
run the RNG piping its output to the standard input of our
program. For example, to test Xorshift [22], represented below
by the program xs32, against the SmallCrush battery of tests
from the TestUO1 library, we just need to say to the shell:

%./xs32 | crush —--battery small \

——name xs32

o
°

TRNGs should be tested too. If a TRNG produces a file
containing the data, testing that data is analogous to the last
command. For example,

crush —--battery big \
—-—-name trng.bin

%$cat trng.bin |

%

runs the BigCrush battery of tests against the data saved in
file trng.bin.
VIII. FUTURE WORK

TestUO1 is intrinsically 32-bit based, making it inconvenient
to test generators whose output size is not 32 bits. For example,
an RNG with an output size of 31 bits will have a zero in its
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most significant bit, stored in an integer of 32 bits, which will
definitely be noticed by TestUO1. To understand this difficulty,
let’s consider an example. Suppose an RNG has output size of
29 bits. Each number produced by the RNG misses 3 bits to fill
an integer data type of 32 bits. How can we get 3 new random
bits? One trivial solution is to consume the next number from
the generator and reduce it modulo 23, creating the 3 new bits
we need. However, many statistical tests in TestUO1 are more
sensitive to the most significant bits (also called high bits) than
to the least significant bits (also called low bits), so we are
currently considering whether this is an interesting solution.

Also, if the RNG has more than 32 bits, similar incon-
veniences arise. For example, to test an RNG whose output
size is of 64 bits, we could write a generator that makes two
random numbers from each number produced by the 64-bit
generator. However, because many tests tend to care more for
high bits than low bits, a 64-bit generator should be tested at
least twice, once with the numbers without any modification
and a second time with the numbers’ bits reversed [19,
section 3]. Would that be enough? We could, after all, shuffle
the bits in other ways too. Writing programs to make all these
adjustments is a major inconvenience. We are also currently
considering these difficulties.
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