
ACTA IMEKO
ISSN: 2221-870X
January 2014, Volume 03, Number 01, 1 - 8

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 1

On pseudorandom number generators

Daniel Chicayban Bastos1,*, Luis Antonio Brasil Kowada1,*, Raphael C. S. Machado1,2,*

1 Instituto de Computação, Universidade Federal Fluminense, Brasil
2 Inmetro --- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brasil
* Authors in alphabetical order. See https://goo.gl/rzBAq9.

Section: RESEARCH PAPER

Keywords: randomness; random number generator; true random number generator; pseudorandom number generator; statistical tests; TestU01; NIST SP
800-22; random sequence; state-of-the-art; crush.

Citation: Daniel Chicayban Bastos, Luis Antonio Brasil Kowada, Raphael C. S. Machado, On randomness and random number generators, Acta IMEKO, vol. A,
no. B, article N, month year, identifier: IMEKO-ACTA-A (year)-B-N

Section Editor: name, affiliation

Received month day, year; In final form month day, year; Published month year

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was partially funded by the SHCDCiber project.

Corresponding author: Daniel Chicayban Bastos, Luis Antonio Brasil Kowada, Raphael C. S. Machado.

1. INTRODUCTION

Unfortunately, the list of past incidents involving bad random
number generation is not too modest. Bad randomness has been
with us for as long as random number generation has been in
use. Perhaps the oldest catastrophe is RANDU, from IBM’s
System/370, used in the 60s. “[Its] very name RANDU is enough
to bring dismay into the eyes and stomachs of many computer
scientists! [...] [It] fails most three-dimensional criteria for
randomness, and it should never have been used.” [1, section
3.3.4, page 105].

In 1996, Netscape Communications failed to properly seed
their random number generator during SSL handshaking: they
used the current timestamp and the browser’s PID and PPID1.

The seed per se was computed by the MD5 hash function, but,

1 PID means process identifier and PPID is the PID of the parent

process in UNIX systems. In the Linux kernel version 2.5.68 every PID

since an adversary could have a precise measurement of the
current timestamp and the universe of possible PID numbers
was not large, it was possible to considerably reduce the set of
possible seeds available to the generator. While Netscape
thought they had 128 bits of security, it was 47 bits [2].

In 2003, Taiwan launched a project offering its citizens a
smart card with which they could authenticate themselves with
the government, file taxes et cetera. RSA keys were generated by
the cards using built-in hardware random number generators
advertised as having passed FIPS 140-2 Level 2 certification [17].
“On some of these smart cards, unfortunately, the random-
number generators used for key generation are fatally flawed and
have generated real certificates containing keys that provide no
security whatsoever.” As a result, a total of 184 distinct certificate
secret keys were found out of more than two million 1024-bit

is a natural number between 1 and 32767 in a 32-bit system. In 64-bit

systems, the value can get up to 222, approximately 4.2 million [25].

ABSTRACT
Computer sampling and simulation requires fast random number generators; true random number generators are often too slow for
the purpose, so pseudorandom number generators are usually the suitable ones. But choosing and using a pseudorandom number
generator is no simple task; most pseudorandom number generators fail statistical tests. Default pseudorandom number generators
offered by programming languages usually don’t offer sufficient statistical properties. Testing random number generators so as to
choose one for a project is essential to know its limitations and decide whether the choice fits the project’s objective. The popular NIST
SP 800-22 statistical test suite as implemented in the software package is inadequate for testing generators: we show a reproducible
experiment whose conclusion asserts the NIST SP 800-22 statistical test suite, as implemented in the software package, cannot be trusted
for the task.

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 2

RSA keys downloaded from Taiwan’s national key repository [3,
page 342].

In 2008, a vulnerability in OpenSSL on Debian-based
operating systems was caused by “a random number generator
that [produced] predictable numbers, [making] it easier for
remote attackers to conduct brute force guessing attacks against
cryptographic keys” [7].

In 2012, a survey of TLS and SSH servers was performed [4].
The entire IPv4 space was scanned, giving us a macroscopic view
of the universe of keys on the Internet. Unfortunately, many
servers were powered by malfunctioning random number
generators. About 5.8 million distinct TLS certificates, 6.2
million SSH distinct keys were analysed from about 10.2 million
hosts. It was found that 5.57% of the TLS servers and 9.60% of
the SSH servers shared keys with at least one other server. For
TLS, at least 5.23% were using default keys generated by the
manufacturer and had never been changed by the user. It seems
some 0.34% generated the same keys as one or more hosts due
to malfunctioning random number generators. As a result, about
64,000 (0.50%) TLS private RSA keys and about 108,000 (1.06%)
SSH private RSA keys were factored by exploiting the fact that
some of these keys shared a common factor with at least one
other host due to entropy problems in random number
generation.

As technology adoption advances, incidents become more
frequent. In 2013, a bitcoin theft was related to the
implementation of the pseudorandom number generator used in
Android [6][9], later replaced by Google Inc. In 2015, a flaw in
FreeBSD’s kernel turned SSH keys and keys generated by
OpenSSL vulnerable due to a possible predictability of a random
number generator [8].

We do not think it is absurd to assume that, in the same way
smart phones use the same libraries used in server and desktop
systems, embedded systems and others will use the same or slim
versions of these software due to their often-low resource
demands, generating more security concerns as stable
implementations of verified software might be changed to fit in
with the requirements of more constrained systems.

2. TERMINOLOGY

There are at least two types of random number generators,
those called true random number generators and those called
pseudorandom number generators. The former is usually
associated with a physical mechanism which produces
randomness by way of a physical process “such as the timing
between successive events in atomic decay” [11, section 2.2.1,
page 38]. The acronym TRNG stands for true random number
generator and is usually used to represent them. PRNG stands
for pseudorandom number generator and is the acronym used to
refer to them. A pseudorandom number generator is often an
arithmetical procedure performed by a machine given by an

2 Such view of pure mathematics is often rejected in various informal

ways, but we restrict ourselves to the context in which the question
belongs. In the context of formal logic, it doesn’t seem easy to object to
such view of axiomatic systems. We do recognize that formal logic is
not able to capture the whole of mathematics, as it has been clear since
the advent of Gödel’s Theorems. A through discussion of the
implications of the incompleteness theorems and the relationship
between mathematics and logic would take us too far afield. For a
precise definition of “capture”, see section 4.6, page 35 of Peter Smith’s
“An Introduction to Gödel’s Theorems”, Cambridge University Press,
2007, ISBN: 978-0-521-85784-0.

initial, hopefully random, information called seed. If a
pseudorandom number generator has enough desirable
properties to the point of being advised for cryptographic
applications, then the acronym CSPRNG is often used, meaning
computationally secure pseudorandom number generator.

3. WHAT IS A RANDOM SEQUENCE?

If we look at probability theory textbooks, we can see they
require the concept of randomness, but most expositions
carefully dodge the difficulty of precisely defining what is a
random sequence, which is required for the definition of the term
“probability”. Instead of making absolute assertions, the theory
concerns itself with telling how much probability should be
attached to statements involving events. In other words, the
objective is to quantify, measure, compute, not to give meaning
[1, section 3.5, page 142]. From the perspective of a formalist,
this is not unusual, for pure mathematics is mostly concerned
with the form of statements, not with their content. This view2
has been remarkably described [36, page 75] by Bertrand Russell.

Pure mathematics consists entirely of assertions to the
effect that, if such and such a proposition is true of
anything, then such and such another proposition is true of
that thing. It is essential not to discuss whether the first
proposition is really true, and not to mention what the
anything is, of which it is supposed to be true. [...] Thus
mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what
we are saying is true.

So, in the context of probability theory, if you have a random
sequence, it can be used to instruct you on how to draw samples
from a population. Given these truly random samples, then
“such and such” deductions can be made. “It is essential” not to
discuss whether the sequence with which we began is really
random. It is by hypothesis. And, finally, it is essential not to
discuss what probability really is, since that would prompt us to
discuss what randomness is3. However, if a probability is
measured as a number, it can then be compared. For example,

we can assert a probability 𝑥 is greater than a probability 𝑦, which
is astoundingly useful.

The definition of a sequence ∞-distributed has been given
serious consideration as a candidate for a definition of random

sequence. To explain what is ∞-distributivity, it will help us to
consider the particular case of binary sequences. A binary

sequence is considered ∞-distributed if it is 𝑘-distributed for all

natural numbers 𝑘. Intuitively, a 𝑘-distributed binary sequence is

one in which the probability of a certain 𝑘-digit binary string
appearing in the sequence is the same as any other. In other

words, the sequence’s probability distribution is uniform for 𝑘-
digit binary strings.

3 See “Probability, Truth and Statistics.” Richard von Mises, 1957.
Dover Publications, Inc., 2nd edition, 1981. ISBN: 0-486-24214-5. On
page 24, von Mises writes that “[t]he term ‘probability’ will be reserved
for the limiting value of the relative frequency in a true collective which
satisfies the condition of randomness. The only question is how to
describe this condition exactly enough to be able to give a sufficiently
precise definition of a collective.” On page 12, he defines collective as
“a sequence of uniform events or processes which differ by certain
observable attributes [...]” For example, “all the throws of dice made in
the course of a game form a collective wherein the attribute of the single
event is the number of points thrown.”

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 3

In more precise terms, a binary sequence 𝑋𝑛 is 𝑘-distributed

for a certain 𝑘 if

Pr(𝑋𝑛𝑋𝑛+1 … 𝑋𝑛+𝑘−1 = 𝑥1𝑥2 … 𝑥𝑘) = 1/2𝑘

for all binary 𝑘-digit numbers 𝑥1𝑥2 … 𝑥𝑘. For example, a binary

1-distributed sequence must satisfy Pr(𝑋𝑛 = 0) = 1/2 as well

as Pr(𝑋1 = 1) = 1/2. One such sequence would be

0, 1, 0, 1, …, since Pr(𝑋𝑛 = 0) is the limit of the sequence

1, 1/2, 2/3, 2/4, …, which converges [1, exercise 1, chapter 3] to

1/2. Another example is 0, 0, 1, 1, 0, 0, 1, 1, … For a binary

sequence to be 2-distributed, it would have to satisfy

Pr(𝑋𝑛𝑋𝑛+1 = 00) = 1/4,
Pr(𝑋𝑛𝑋𝑛+1 = 01) = 1/4,
Pr(𝑋𝑛𝑋𝑛+1 = 10) = 1/4,
Pr(𝑋𝑛𝑋𝑛+1 = 11) = 1/4.

One can check that the sequence 0, 0, 1, 1, 0, 0, 1, 1, … is also 2-

distributed, but it is not 3-distributed. It is not 3-distributed

because Pr(𝑋𝑛𝑋𝑛+1𝑋𝑛+2 = 000) = 0 when it should be 1/8.
This suggests that to every periodic sequence there is a natural

number 𝑘 associated such that the sequence is not 𝑘-distributed.

Indeed, every periodic sequence of period 𝑝 is not 𝑝-distributed

[37, page 248]. A periodic 3-distributed binary sequence is not
easily guessed, but one can check that the sequence

0,0,0,1, 0,0,0,1, 1,1,0,1, 1,1,0,1, 0,0,0,1, …

is in indeed 3-distributed [1, section 3.5, equation 11, page 148].
An algorithm is not limited to producing periodic sequences

— for example, an algorithm that produces the digits of 𝜋 does
not produce a periodic sequence —, so the limitation of periodic

sequences is no challenge to the idea that ∞-distributivity defines

randomness. In fact, one of the formidable results of ∞-
distributed sequences is that they can be produced by algorithms:
in 1965 one such algorithm was given [37].

The weakness in taking the notion of ∞-distributivity alone
as a definition for a random sequence appears when we consider

subsequences of an ∞-distributed sequence. If such sequences
were random, we would expect that any subsequence of a
random sequence would also be random, but this doesn’t always

happen with ∞-distributed sequences. Given an ∞-distributed

binary sequence 𝑋𝑛, we can construct a new sequence 𝑌𝑛 = 𝑋𝑛

except that 𝑌𝑛2 = 0 for every index 𝑛. Clearly, 𝑌𝑛 isn’t random

because we know that 𝑌0, 𝑌1, 𝑌4, 𝑌9, … , 𝑌𝑛2 = 0, but 𝑌𝑛 is still

∞-distributed [1, section 3.5, page 160] because setting squared
elements to zero does not significantly change the probabilities

required in the definition of 𝑘-distributivity [1, section 3.5, page

160]. That is, ∞-distributivity alone is too weak of a definition.
An apparently adequate definition is reached [1, definitions R4,
R5, R6, pages 161–163] by making suitable restrictions to the

rules governing which subsequences must be ∞-distributed, that

is, not all subsequences, of an ∞-distributed sequence 𝑋𝑛, must

be ∞-distributed for 𝑋𝑛 to be qualified as random. “The secret
is to restrict the subsequences so that they could be defined by a

4 This pseudorandom number generator is typically used in the

method of integer factorization known as Pollard’s rho. One interesting

fact about the method is that while polynomials like 𝑓 don’t have good

person who does not look at” 𝑋𝑛 “before deciding whether or
not it is to be in the subsequence” [1, section 3,5, page 161]. We
are not aware of any objection made to this strategy.

4. WHAT IS A PSEUDORANDOM NUMBER GENERATOR?

Since algorithms cannot compute random sequences [38,
section 6.4], they’re left with at most producing pseudorandom
number sequences displaying the desired statistical properties. A
pseudorandom number generator, therefore, is an arithmetical
procedure that produces a sequence of numbers that one hopes
will pass sufficient statistical tests and thus appear random. It can

be as simple as a function4 𝑓(𝑥𝑛) = 𝑥𝑛−1
2 + 1 mod 𝑁, for some

fixed natural number 𝑁, and as complex as Donald Knuth’s
“super-random” number generator [1, section 3.1, page 5],
shown as an extreme example of how complicated algorithms
don’t necessarily provide any more randomness. For illustration
purposes, here’s what a simple pseudorandom number generator
looks like in the C programming language.

uint32_t y = 2463534242U; /* the seed */

uint32_t xorshift(void) {

 y = y ^ (y << 13);

 y = y ^ (y >> 17);

 y = y ^ (y << 5);

 return y;

}

This is George Marsaglia’s Xorshift generator of 32 bits [20]. The
variable y is a global variable to the xorshift procedure. The
letter U at the end of the seed is just an indicator that that number
is an unsigned integer. What this procedure does is multiply
the arbitrarily set initial value 2463534242, the seed, to the

number 213 and adds the result to y, that is, it adds the product
to the initial value. The multiplication is done in fast computer
arithmetic: that’s the effect of shifting y by 13 bits to the left
because, in base 2 arithmetic, shifting a number to the left means
adding zeros to the right of this number, which is the same as
multiplying it by a power of 2. For example, if we have the
number five, which is 101 in base 2, and we multiply it by 2, we
get ten, which is 1010 in base 2. The second step divides y by

217 and adds it to y. The last step is similar. Assume all

computations are reduced modulo 232, although the C
programming language does not define what machines must do
when a computation overflows an integer. When we look at the
numbers produced by this generator, they appear random to us,
but the sequence doesn’t pass even a modest contemporary
battery of statistical tests.

5. DESIRABLE PROPERTIES OF GENERATORS

True random number generators have several disadvantages
compared to a good pseudorandom number generator. For
example, they are more cumbersome to install and run, more
costly, slower and cannot reproduce the same sequence twice.
(Reproducing the same sequence is important for repeating
simulations and testing applications.) But a pseudorandom
number generator does need a good seed, which true random
number generators can provide [11, section 2.2.1, page 38].

statistical properties, it would considerably increase, on average, the
number of steps taken by the procedure if it would be replaced by, for
example, a truly random sequence [39, section 2.3, pages 27–28].

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 4

When choosing a pseudorandom number generator, we must
know what to look for. Some of the properties one can find in
pseudorandom number generators, to name a few, is good
statistical properties, good mathematical foundations, lack of
predictability, cryptographic security, efficient time and space
performance, small code size, a sufficiently long period and
uniformity [10, section 2].

In the context of computer-generated randomness, good
statistical properties are effectively what is meant by “random”
[10, section 2.1]. Mathematical foundations allow us to be sure a
pseudorandom number generator has some desirable property
such as its period, which is defined as the length of the sequence
of random numbers the generator can produce, at the end of
which the generator must repeat itself, so having a long period is
surely desirable. Uniformity is a property closely related to the
period. After the generator has output all its period, each number
produced should occur the same number of times, otherwise it
is not uniform. If it is not uniform, it is biased. Uniformity alone,
without a long period, is certainly not desirable. Consider what
happens as we consume a uniform generator. As we draw near
the end of its period, its uniformity effectively allows us to
predict more and more its output, since all output must occur the
same number of times [10, section 2.1.1].

For example, let us consider a case where we can
show that a generator must lack uniformity in its

output. Consider a generator with 𝑏 bits of state, but

where one of the 2𝑏 possible states is never used,
(perhaps because the implementation must avoid an
all-bits-are-zero state). The missing state would leave

the generator with a period of 2𝑏 − 1. By the
pigeonhole principle, we can immediately know that

it cannot uniformly output 2𝑏 unique 𝑏-bit values.

A period of a generator cannot be too short, lest it repeat itself
while in use, which makes it statistically unsound. A large internal
state implies the possibility of a longer period because it allows
for more distinct states to be represented. Yet, in terms of period
size, more is not always better. For example, if we are to choose

between generators with period sizes of 2128 and 2256, we
should notice that it would take billions of years to exhaust the

period of the 2128 generator, so picking the generator with

period 2256 does not bring a relevant advantage. “Even a period

as ‘small’ as 256 would take a single CPU core more than two
years to iterate through at one number per nanosecond.” [10,
section 2.4.2]

Another valuable property is unpredictability. “A die would
hardly seem random if, when I’ve rolled a five, a six, and a three,
you can tell me that my next roll will be a one.” [10, section 2.2].
Still, pseudorandom number generators are deterministic and
their behavior is completely determined by their input. They
produce the same sequence given the same input. So, their
randomness is only apparent to an observer who doesn’t know
their initial conditions. Though the deterministic nature of
pseudorandom number generators might seem more like a
weakness than a strength, it is valuable for reproducing the same
sequence multiple times, which is required in a number of
applications, from simulations and games to the mere testing of
programs. To repeat a sequence generated by a pseudorandom
number generator, we need only save its initial conditions, usually
just the seed for that sequence produced. To repeat a sequence

from a true random number generator, we would have to save
the entire sequence produced.

It’s not immediately obvious that a procedure computed by a
machine can be unpredictable, but some pseudorandom number
generators output a number while keeping another one hidden
from the user. The hidden information is called the
pseudorandom number generator’s internal state. Predicting the
pseudorandom number generator entails knowing such internal
state.

Unpredictability is very important for applications concerned
with security because predicting a pseudorandom number
generator allows for various types of attacks, including denial of
service [22]. If a pseudorandom number generator leaks internal
state information at each output, an adversary is able to little by
little infer the complete internal state, when the generator
becomes completely predictable, at least from that point in the
sequence on, which is a flaw of Mersenne Twister [21].

Predictability can be considered in two directions: forwards
and backwards. A generator is said to be invertible if, once we
know its internal state, we can discover the random numbers it
generated previously. So being non-invertible is vital for
applications that generate cryptographic keys: if the generator is
invertible and its internal state is exposed at some point in time,
adversaries will be able to recover all previously generated keys.
So cryptographically secure pseudorandom number generators
are not invertible. Although some applications may not be
designed with cryptography in mind, it’s prudent to pick the
safest generator affordable by your project [10, section 2.2].

[...] [Because] we cannot always know the future
contexts in which our code will be used, it seems wise
for all applications to avoid generators that make
discovering their entire internal state completely
trivial.

Speed is another important property, particularly considering low
resource systems. An application that is too dependent on a
random number generator will be as slow as the random number
generator used. Applications running in low resource hardware
will likely trade other properties for speed and space. Many
generators with good statistical properties are slow, but there are
some generators that have relatively good time performance
while showing acceptable statistical properties. For example,
XorShift* 64/32 [10][20, section 2.3] has good performance
and good statistical properties, but it’s not safe for cryptographic
applications.

Most generator implementations will take just a constant
amount of memory to store their state, but considering the strict
constraints some applications face, the size of these constants
should also lead programmers to choose one over another. Space
is also related to speed: considering all other things equal, a
generator that’s able to keep its internal state completely in a
processor’s register should outperform a competitor which needs
many more bytes of internal state to be kept in main memory [10,
section 2.4].

There are also the space constraints of code size. Such space
is most likely a constant, but constants do matter for applications
running in low resource hardware. The longer the code, the more
likely it will include programming errors. Such errors can be
particularly difficult to detect in the context of random number
generators [10, section 2.4.3].

From […] experience, I can say that implementation
errors in a random number generator are challenging

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 5

because they can be subtle, causing a drop in overall
quality of the generator without entirely breaking it.

Another desirable property is seekability, the ability of a generator
to skip ahead or jump back in the sequence. Since pseudorandom
number generators are cyclic, if we skip a sufficient number of
elements, we are back to its starting number, implying that the
ability to seek ahead also gives us the ability to seek backwards.
Computationally secure pseudorandom number generators are
designed not to be seekable as it is not desirable to let an adversary
read the sequence backwards, discovering which numbers might
have been used in the past.

6. STATISTICAL HYPOTHESIS TESTING

Statistical theory allows us to posit a hypothesis 𝐻0 about a
random number generator and devise tests to provide empirical

evidence of the validity of 𝐻0. These tests, in turn, either give us

more confidence in the hypothesis 𝐻0 or leads us to reject it. A
statistical test for a random number generator is defined by a

random variable 𝑋 whose distribution under 𝐻0 can be well

approximated. When 𝑋 takes the value 𝑥, define

𝑝𝑅 = Pr(𝑋 ≥ 𝑥 | 𝐻0) and 𝑝𝐿 = Pr(𝑋 ≤ 𝑥 | 𝐻0) as the left and

right 𝑝-value, respectively. Such 𝑝-values measure how likely it is
to find a certain sample of the random number generator given

𝐻0 is true. If it turns out we get very unlikely samples from the
random number generator, then we’re getting strong evidence

the hypothesis 𝐻0 is not true. In fact, when testing random

number generators, if any of the right or left 𝑝-value is extremely

close to zero, then 𝐻0 should be rejected [11, section 2.6, page

56]. If any of the 𝑝-value is equal to 1, then the sequence appears
to have perfect statistical randomness [13, section 1.1.5]. If a

suspicious 𝑝-value is obtained, say near 10−2 or 10−3, we can
repeat the particular test a few more times, perhaps with a larger
sample size in the hope that more tests will clarify the result [11,
section 2.6, page 56].

In the context of testing for randomness, 𝐻0 is usually taken
to mean that the sequence is random. For each specific test, a

rule must be derived that allows us to accept or reject 𝐻0. Taking

𝐻0 to mean that the sequence generated is random, the test
produces a statistic with a certain probability distribution of
possible values. This probability distribution must be determined
by mathematical methods. From this distribution, a critical value
is chosen such that a critical region in the set of possible values
is determined. The statistic is then computed from the sample
and compared to the critical value. If the statistic falls in the

critical region, we reject 𝐻0, that is, we conclude the sequence
produced by the generator is not random. Otherwise, we accept

𝐻0. If the generator produces a random sequence, then the
computed statistic will have a very low probability of falling in
the critical region and, if such event occurs, it provides us with

evidence that the sequence is not random as assumed in 𝐻0.
Although the probability for such event may be very low, it is

not null. Incorrectly classifying a sequence produced by a
generator as not random is called a type I error. Much worse

would be if we accept 𝐻0 when the sequence produced by the
generator is not random, an error that’s called type II.

The probability of type I error is usually denoted by 𝛼 and is
called the level of significance of the test. The type II error is

usually denoted by 𝛽. The value of 𝛼 can be arbitrarily chosen,
that is, if we would like to specify the probability of type I error

to 1%, we can set 𝛼 = 0.01 for the specific test. Doing the

same for type II error is not so easy. Recall that the probability
distribution for the statistic produced by the test was determined
assuming the generator does indeed produce a random sequence,

that is, assuming 𝐻0 is true. In the type II error, 𝐻0 is not true,
so the probability distribution of the statistic test is not known.

Unless this probability distribution is known, 𝛽 is not a fixed
value because there is an infinite number of ways that a sequence
can be non-random. Each different way determines a different

𝛽. It is possible, however, to minimize the type II error of a

certain test. The probabilities 𝛼 and 𝛽 are related to each other

and also to the size 𝑛 of the sample. If two of them are specified,

the third value can be computed. Usually, a sample size 𝑛 is

chosen along with a probability 𝛼 and a critical value is chosen

such that 𝛽 is smallest [13, section 1.1.5].

7. THE STATE-OF-THE-ART IN STATISTICAL TESTS

Under the framework of hypothesis testing, a series of tests
can be devised to analyse samples of the random number
generator. There is no maximum number of tests we can apply
to a random number generator and there is no maximum number
of tests a random number generator can pass that will prove it to
be truly random. It’s also not possible to build a random number
generator that passes all statistical tests [11, section 2.2.4, page
41]. Nonetheless, the more tests we apply to a random number
generator the more confident we get of its quality.

Perhaps the first battery of tests was devised by Donald
Knuth in 1969 [1, section 3.3, page 38]. In 1996, George
Marsaglia published DIEHARD [12] given the insufficiency of
Knuth’s. NIST, in the United States, published its own battery
[13], in the year 2000, being last revised in 2010, to supersede
Marsaglia’s. Robert Brown published DieHarder in 2004. In
2007, Pierre L’Ecuyer and Richard Simard published TestU01, a
C library with which C programmers can implement and test
random number generators [14]:

[...] empirical testing of random number generators is very
important, and yet no comprehensive, flexible, state-of-the-
art software is available for that, aside from the one we are
now introducing. The aim of the TestU01 library is to
provide a general and extensive set of software tools for
statistical testing of random number generators. It
implements a larger variety of tests than any other available
competing library we know. [...] TestU01 was developed
and refined during the past 15 years and beta versions have
been available over the Internet for a few years already. It
will be maintained and updated on a regular basis in the
future.

TestU01 showed a “sobering result” [14, table I, section 7] for
many well-known random number generators which were
“respectable” [10, section 2.1.2]:

[Pierre L’Ecuyer and Richard Simard] made a very
significant contribution to the world of random-number–
generator testing when they created the TestU01 statistical
test suite. Other suites, such as [DIEHARD], had existed
previously, but TestU01 (which included a large number of
previously independently published tests, and applied them
at scale) vastly increased the scope and thoroughness of the
testing process.

The library comes with three predefined battery of tests:
SmallCrush, the small one, Crush, the medium-sized one and
BigCrush. SmallCrush is the quickest and it should finish

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 6

under a minute on most modern desktop computers. Crush can
take a few hours and BigCrush takes various hours or perhaps
a day.

How about alternatives to TestU01? Two other packages
compete with TestU01: PractRand 0.94 [15] and gjrand 4.2.1
[16], but neither has been formally published.

8. A NOTE ON USING THE TESTU01 LIBRARY

An inconvenience of TestU01 is that it’s restricted to the C
programming language. It is a C library, after all: it won’t just run
without a programmer to write a program that takes advantage
of the library. Besides, given that TestU01 is written in C, it
wouldn’t be straightforward to use it from another programming
language: one would have to know how to access a C library from
within the chosen programming language.

We have mitigated this inconvenience by publishing crush

[27], a program capable of testing your random number
generator against any of the three TestU01 batteries, given the
data is available at a file on disk or the data can be produced at
run time. For example, suppose we would like to test our local
/dev/urandom against the largest TestU01 battery. It suffices
to say to the shell:

%crush --battery big --name xyz < /dev/urandom

...

%

Similarly, if we have a program p that can produce its allegedly

random data to the standard output in binary format, then
crush can test such data against the small TestU01 library with
a command such as:

%./p | crush --battery small --name my-prng

...

%

Due to the facilities of a UNIX-like system5, crush

eliminates the need to use the C programming language to take
advantage of TestU01’s default batteries.

9. A NOTE ON DEFAULT RANDOM NUMBER GENERATORS

If one is writing a new application that needs a random
number generator, one should not just use random number
generators offered by the system or by the programming
language adopted. Most programming languages have adopted
flawed generators. Java, for example, offers the package
java.Util.Random which is based on the pseudorandom
number generator drand48. It failed 5 tests in SmallCrush in
less than a minute.

The default pseudorandom number generator in both Python
and PHP is mt19937, Mersenne Twister [21]. It passes
SmallCrush, but actually fails the linear complexity test, not
included in TestU01’s small battery. The linear complexity test is
a rather quick test to run and could have been included in the
small battery. The number 19937 in its name is due to is huge

period of size 219937 − 1. Despite having been a promising
pseudorandom number generator, mt19937 can be totally
predicted after collecting a sample of size 624 [10, section 2.2].

5 Notice Windows is sufficiently a UNIX-like system for the

purposes of running crush and a Win32 binary is available on crush’s

homepage at https://bit.ly/319bg0H.

In C++, besides mt19937, the standard library also offers
minstd and ranlux, two well-known generators, but minstd
fails 9 tests out of 15 of the small battery and ranlux is not
much better [14, section 7].

Exceptionally, some programming languages offer good
alternatives. For example, the default pseudorandom number
generator in the Racket programming language, from the Lisp
family, is Pierre L’Ecuyer’s mrg32k3a [19], which did pass
SmallCrush when we tested it, but also passes BigCrush [14,
section 7, table I].

If an application requires cryptography, a well-known
computationally secure pseudorandom number generator is
based on the stream cipher ChaCha20 [18]. ChaCha20 has
replaced RC4 in OpenBSD starting at version 5.4, in NetBSD in
version 7.0 and replaced SHA-1 in the Linux kernel since version
4.8. These events present evidence that ChaCha20 is currently
well regarded.

10. ON THE INSUFFICIENCY OF THE NIST SP 800-22 SUITE

Notwithstanding the “sobering results” of TestU01 [14, table
I, section 7][10, section 2.1.2], published in 2007, it’s not hard to
find publications ignoring it [32][34][35, section 4, page 304]
while giving attention to the software package provided by NIST
SP 800-22. Enough flaws of the NIST SP 800-22 statistical test
suite have been previously reported [29, 33]. We present now one
more result regarding the insufficiency of the NIST SP 800-22
statistical test suite implementation.

It’s known that the Fibonacci sequence, taken as a random
number generator, is not satisfactorily random, but a “much
better” variation, though never published, was proposed in 1958
by G. J. Mitchell and D. P. Moore [1, section 3.2.2, page 26].
Using an output of 32-bit integers, let us call mm32 this
pseudorandom number generator defined by the sequence

𝑋𝑛 = (𝑋𝑛−24 + 𝑋𝑛−55) mod 𝑚

where 𝑛 ≥ 55, 𝑚 is even, and 𝑋0, 𝑋1, … , 𝑋54 are arbitrary
integers not all even. The constants 24 and 55 were chosen so
that the least significant bits of the sequence, that is the sequence

𝑋𝑛 mod 2, will have period of length 255 − 1, implying the

sequence 𝑋𝑛 must also have a period of the same length [1,
section 3.2.2, page 27].

Despite mm32 having provably a period of a certain length,
“it is difficult to recommend [it] wholeheartedly [because] there
is still very little theory to prove that [it does or does not] have
desirable randomness properties; essentially all we know for sure
is that the period is very long, and this is not enough” [1, section
3.2.2, page 28]. That is, from a theoretical perspective, very little
is known about mm32, but, assuming TestU01 has a correct
implementation of the statistical tests included in its batteries and
PractRand implements mm32 correctly6, statistical evidence
suggests mm32 does not have desirable randomness properties.

Setting mm32 with an initial value of 0 in PractRand’s
implementation and submitting it to the battery SmallCrush in
TestU01, the battery reports that mm32 fails the gap test [1,
section 3.3.2, page 60] and the weight distribution test [28,
section 4.4, page 188], after consuming approximately 6.7
gibibits7 from the generator in less than 10 seconds on a certain

6 In PractRand version 0.94, the implementation is found in

src/RNGs/other/fibonacci.cpp.
7 One gibibit is 230 bits.

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 7

system. PractRand reports that mm32 fails the binary rank test
[31], among other failures, after consuming 2 gibibits from the
generator in less than 5 seconds, and gjrand reports mm32 also
fails the binary rank test consistently, among other failures, after
testing 8 gibibits from the generator in less than 15 seconds.
Nevertheless, the NIST SP 800-22 statistical test suite approves
mm32 after consuming a total of 8 gibibits from the generator,
that is, after consuming 32 samples of 256 mebibits8 each, in over
15 hours9.

Could NIST SP 800-22 statistical test suite reject mm32 by
considering larger samples? We found that 32 gibibytes of
memory are not enough to give NIST SP 800-22 statistical test
suite a sample size of 2 gibibits. When we reduced the size to 1
gibibit, the software received a recurrent UNIX SIGSEGV signal.
In other words, it crashes at this sample length. The same crash
can be reproduced with various small sequence lengths such as
1031 and many smaller values. Also, on sample lengths of sizes
such as 256 mebibits, NIST SP 800-22 statistical test suite is not

able to properly calculate a 𝑝-value for all of its tests with its

default parameters: we could not make sense of the 𝑝-values
produced by the overlapping template matchings test on sample
lengths such as 256 mebibits, for any generator we tested.

Regarding comparisons, notice each battery in each software
package uses a different strategy, configurable in different ways,
which makes comparison rather difficult. For example, despite
the fact that SmallCrush consumed a total of approximately
6.7 gibibits from mm32, each test individually consumed far less.
For example, the weight distribution test used a sample length of
200,000 and took less than a second to run. With a generator
producing random numbers at run time, the library by default
decides not to restart the generator as it moves from one test to
another.

11. CONCLUSIONS

Choosing a random number generator is no simple task. It
should not be underestimated. Default pseudorandom number
generators offered by popular programming languages usually
don’t offer enough statistical properties. We have argued that the
NIST SP 800-22 statistical test suite, as implemented in the
software package, last revised in 2010, is inadequate for testing
random number generators. With the tool we have developed,
testing a random number generator against the state-of-the-art in
statistical tests is a trivial matter.

REFERENCES

[1] Donald Knuth, “The Art of Computer Programming”, volume 2,
3rd edition, 1997. Addison-Wesley Longman Publishing Co., Inc.
ISBN: 978-0-201-89684-8.

[2] Ian Goldberg and David Wagner, “Randomness and the Netscape
browser,” Dr Dobb’s Journal-Software Tools for the Professional
Programmer, vol. 21, 1, pp. 66-71, 1996.

[3] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping
Chou, Nadia Heninger, Tanja Lange, and Nicko Van Someren.
“Factoring RSA keys from certified smart cards: Coppersmith in
the wild.” In International Conference on the Theory and
Application of Cryptology and Information Security, pp. 341-360.
Springer, Berlin, Heidelberg, 2013.

[4] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex
Halderman. “Mining your Ps and Qs: Detection of widespread

8 One mebibit is 220 bits.

weak keys in network devices.” Presented as part of the 21st
USENIX Security Symposium 2012, pp. 205-220.

[5] Bitcoin.org, Android security vulnerability Alert Notice, August
11th, 2013. See https://goo.gl/zK1Hpm.

[6] Michaelis, K., Meyer, C., Schwenk, J.: Randomly failed! the state
of randomness in current Java implementations. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 129–144. Springer,
Heidelberg (2013).

[7] A Debian weak key vulnerability. CVE-2008-0166 (2008).
[8] John-Mark Gurney: URGENT: RNG broken for the last four

months (2015). See https://goo.gl/KtQhD5.
[9] Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee.

“Predictability of Android OpenSSL’s pseudo random number
generator.” In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 659–
668. ACM, 2013.

[10] Melissa E. O’Neill. “PCG: A Family of Simple Fast Space-
Efficient Statistically Good Algorithms for Random Number
Generation.” Technical Report HMC-CS-2014-0905, 2014,
Harvey Mudd College, Claremont, CA.

[11] Pierre L’Ecuyer. “Random Number Generation.” In Handbook
of Computational Statistics, James Gentle, Wolfgang Karl Härdle,
and Yuichi Mori (Eds.), 2012. Springer Berlin Heidelberg, 35–71.

[12] George Marsaglia. “DIEHARD, a battery of tests for random
number generators.” CD-ROM, 1996.

[13] Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R.
Nechvatal, Miles E. Smid, Stefan D. Leigh, M. Levenson, M.
Vangel, Nathanael A. Heckert, and D. L. Banks. “A Statistical Test
Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications” NIST. Special Publication 800-22
Rev 1a. 2010.

[14] Pierre L’Ecuyer and Richard Simard. “TestU01: a C library for
empirical testing of random number generators.” ACM
Transactions on Mathematical Software (TOMS), 2007, 33(4):22.

[15] Chris Doty-Humphrey, 2018. See https://goo.gl/HwU9g5.
[16] Gary Johnson, 2014. See https://goo.gl/2AxRWu.
[17] National Institute of Standards and Technology (NIST). “Security

requirements for cryptographic modules.” Federal Information
Processing Standards Publication (FIPS PUB) 140-2 (May 2001).
See https://goo.gl/a0Sze.

[18] Daniel J. Bernstein. “ChaCha, a variant of Salsa20.” In Workshop
Record of SASC, 2008, volume 8, pages 3–5.

[19] Pierre L’ecuyer, Richard Simard, E. Jack Chen, and W. David
Kelton. “An object-oriented random-number package with many
long streams and substreams.” Operations research 50, no. 6
(2002): 1073-1075.

[20] George Marsaglia. “Xorshift rngs.” Journal of Statistical Software
8, no. 14 (2003): 1-6.

[21] M. Matsumoto and T. Nishimura. “Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator.” ACMT transactions on Modeling and Computer
Simulation (TOMACS), 1998, 8(1):3–30.

[22] Scott A. Crosby and Dan S. Wallach. “Denial of Service via
Algorithmic Complexity Attacks.” In USENIX Security
Symposium, 2003, pp. 29-44.

[23] Douglas R. Stinson. “Cryptography, Theory and Practice”, 3rd ed.,
2006. Chapman and Hall, CRC. ISBN: 978-1-58488-508-5.

[24] Linux Programmer’s Manual, 2017. See “man 4 random”.
[25] Linux Programmer’s Manual, 2017. See “man 5 proc”.
[26] Michael O. Rabin. “Digitalized signatures and public-key

functions as intractable as factorization.” Technical report
MIT/LCS/TR-212, 1979, Massachusetts Institute of Technology.
See https://bit.ly/2WSjSXL.

[27] Daniel Chicayban Bastos, Luis Antonio Brasil Kowada, and
Raphael C.S. Machado. "Measuring randomness in IoT products."
In 2019 II Workshop on Metrology for Industry 4.0 and IoT, pp.
466-470. IEEE, 2019.

9 A more efficient implementation of NIST SP 800-22 statistical test

suite has been reported [30], but we could not locate its implementation.

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 8

[28] M. Matsumoto, and Yoshiharu Kurita. "Twisted GFSR
generators." ACM Transactions on Modeling and Computer
Simulation (TOMACS) 2, no. 3 (1992): 179-194.

[29] Zhu S., Ma Y., Lin J., Zhuang J., Jing J. (2016) More Powerful and
Reliable Second-Level Statistical Randomness Tests for NIST SP
800-22. In Advances in Cryptology, ASIACRYPT 2016. Lecture
Notes in Computer Science, vol 10031. Springer, Berlin,
Heidelberg.

[30] Alin Suciu, Marton, K., Nagy, I., Pinca, I. (2010). Byte-oriented
efficient implementation of the NIST statistical test suite.
International Conference on Automation, Quality and Testing,
Robotics. 2. 1-6. 10.1109/AQTR.2010.5520837.

[31] George Marsaglia and L.-H. Tsay. Matrices and the structure of
random number sequences. Linear Algebra and its Applications,
67:147–156, 1985.

[32] Kunihito Hirano, Taiki Yamazaki, Shinichiro Morikatsu, Haruka
Okumura, Hiroki Aida, Atsushi Uchida, Shigeru Yoshimori,
Kazuyuki Yoshimura, Takahisa Harayama, and Peter Davis. “Fast
random bit generation with bandwidth-enhanced chaos in
semiconductor lasers.” Opt. Express 18, 5512-5524 (2010).

[33] Song-Ju Kim, Ken Umeno, and Akio Hasegawa. “Corrections of
the NIST statistical test suite for randomness.” arXiv preprint
nlin/0401040 (2004).

[34] M. A. Zidan, Radwan, A. G., and Salama, K. N. (2011). “Random
number generation based on digital differential chaos.” 2011
IEEE 54th International Midwest Symposium on Circuits and
Systems (MWSCAS). DOI:10.1109/mwscas.2011.6026266.

[35] Mario Stipcevic and Çetin Kaya Koç, chapter “True Random
Number Generators” in “Open problems in mathematics and
computational science”. Springer, 2014.

[36] Bertrand Russell. “Mysticism and logic and other essays.” George
Allen & Unwin LTD, Museum Street, London, 2nd edition, 1917.

[37] Donald Knuth. “Construction of a random sequence.” BIT 5,
246–250, 1965.

[38] Michael Sipser. “Introduction to the Theory of Computation”, 3rd
international edition, CENGAGE Learning, 2013. ISBN 978-1-
133-18781-3.

[39] Daniel Chicayban Bastos. “Uma versão quântica do algoritmo Rô
de Pollard”. (Master’s thesis). Universidade Federal Fluminense,
Niterói, 2019.

