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1. INTRODUCTION 

Unfortunately, the list of past incidents involving bad random 
number generation is not too modest. Bad randomness has been 
with us for as long as random number generation has been in 
use. Perhaps the oldest catastrophe is RANDU, from IBM’s 
System/370, used in the 60s. “[Its] very name RANDU is enough 
to bring dismay into the eyes and stomachs of many computer 
scientists! [...] [It] fails most three-dimensional criteria for 
randomness, and it should never have been used.” [1, section 
3.3.4, page 105]. 

In 1996, Netscape Communications failed to properly seed 
their random number generator during SSL handshaking: they 
used the current timestamp and the browser’s PID and PPID1. 

The seed per se was computed by the MD5 hash function, but, 

 
1 PID means process identifier and PPID is the PID of the parent 

process in UNIX systems. In the Linux kernel version 2.5.68 every PID 

since an adversary could have a precise measurement of the 
current timestamp and the universe of possible PID numbers 
was not large, it was possible to considerably reduce the set of 
possible seeds available to the generator. While Netscape 
thought they had 128 bits of security, it was 47 bits [2]. 

In 2003, Taiwan launched a project offering its citizens a 
smart card with which they could authenticate themselves with 
the government, file taxes et cetera. RSA keys were generated by 
the cards using built-in hardware random number generators 
advertised as having passed FIPS 140-2 Level 2 certification [17]. 
“On some of these smart cards, unfortunately, the random-
number generators used for key generation are fatally flawed and 
have generated real certificates containing keys that provide no 
security whatsoever.” As a result, a total of 184 distinct certificate 
secret keys were found out of more than two million 1024-bit 

is a natural number between 1 and 32767 in a 32-bit system. In 64-bit 

systems, the value can get up to 222, approximately 4.2 million [25]. 

ABSTRACT 
Computer sampling and simulation requires fast random number generators; true random number generators are often too slow for 
the purpose, so pseudorandom number generators are usually the suitable ones. But choosing and using a pseudorandom number 
generator is no simple task; most pseudorandom number generators fail statistical tests. Default pseudorandom number generators 
offered by programming languages usually don’t offer sufficient statistical properties. Testing random number generators so as to 
choose one for a project is essential to know its limitations and decide whether the choice fits the project’s objective.  The popular NIST 
SP 800-22 statistical test suite as implemented in the software package is inadequate for testing generators: we show a reproducible 
experiment whose conclusion asserts the NIST SP 800-22 statistical test suite, as implemented in the software package, cannot be trusted 
for the task.  
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RSA keys downloaded from Taiwan’s national key repository [3, 
page 342]. 

In 2008, a vulnerability in OpenSSL on Debian-based 
operating systems was caused by “a random number generator 
that [produced] predictable numbers, [making] it easier for 
remote attackers to conduct brute force guessing attacks against 
cryptographic keys” [7]. 

In 2012, a survey of TLS and SSH servers was performed [4]. 
The entire IPv4 space was scanned, giving us a macroscopic view 
of the universe of keys on the Internet. Unfortunately, many 
servers were powered by malfunctioning random number 
generators. About 5.8 million distinct TLS certificates, 6.2 
million SSH distinct keys were analysed from about 10.2 million 
hosts. It was found that 5.57% of the TLS servers and 9.60% of 
the SSH servers shared keys with at least one other server. For 
TLS, at least 5.23% were using default keys generated by the 
manufacturer and had never been changed by the user. It seems 
some 0.34% generated the same keys as one or more hosts due 
to malfunctioning random number generators. As a result, about 
64,000 (0.50%) TLS private RSA keys and about 108,000 (1.06%) 
SSH private RSA keys were factored by exploiting the fact that 
some of these keys shared a common factor with at least one 
other host due to entropy problems in random number 
generation. 

As technology adoption advances, incidents become more 
frequent. In 2013, a bitcoin theft was related to the 
implementation of the pseudorandom number generator used in 
Android [6][9], later replaced by Google Inc. In 2015, a flaw in 
FreeBSD’s kernel turned SSH keys and keys generated by 
OpenSSL vulnerable due to a possible predictability of a random 
number generator [8]. 

We do not think it is absurd to assume that, in the same way 
smart phones use the same libraries used in server and desktop 
systems, embedded systems and others will use the same or slim 
versions of these software due to their often-low resource 
demands, generating more security concerns as stable 
implementations of verified software might be changed to fit in 
with the requirements of more constrained systems. 

2. TERMINOLOGY 

There are at least two types of random number generators, 
those called true random number generators and those called 
pseudorandom number generators. The former is usually 
associated with a physical mechanism which produces 
randomness by way of a physical process “such as the timing 
between successive events in atomic decay” [11, section 2.2.1, 
page 38]. The acronym TRNG stands for true random number 
generator and is usually used to represent them. PRNG stands 
for pseudorandom number generator and is the acronym used to 
refer to them. A pseudorandom number generator is often an 
arithmetical procedure performed by a machine given by an 

 
2 Such view of pure mathematics is often rejected in various informal 

ways, but we restrict ourselves to the context in which the question 
belongs. In the context of formal logic, it doesn’t seem easy to object to 
such view of axiomatic systems. We do recognize that formal logic is 
not able to capture the whole of mathematics, as it has been clear since 
the advent of Gödel’s Theorems. A through discussion of the 
implications of the incompleteness theorems and the relationship 
between mathematics and logic would take us too far afield. For a 
precise definition of “capture”, see section 4.6, page 35 of Peter Smith’s 
“An Introduction to Gödel’s Theorems”, Cambridge University Press, 
2007, ISBN: 978-0-521-85784-0. 

initial, hopefully random, information called seed. If a 
pseudorandom number generator has enough desirable 
properties to the point of being advised for cryptographic 
applications, then the acronym CSPRNG is often used, meaning 
computationally secure pseudorandom number generator. 

3. WHAT IS A RANDOM SEQUENCE? 

If we look at probability theory textbooks, we can see they 
require the concept of randomness, but most expositions 
carefully dodge the difficulty of precisely defining what is a 
random sequence, which is required for the definition of the term 
“probability”. Instead of making absolute assertions, the theory 
concerns itself with telling how much probability should be 
attached to statements involving events. In other words, the 
objective is to quantify, measure, compute, not to give meaning 
[1, section 3.5, page 142]. From the perspective of a formalist, 
this is not unusual, for pure mathematics is mostly concerned 
with the form of statements, not with their content. This view2 
has been remarkably described [36, page 75] by Bertrand Russell. 

 
Pure mathematics consists entirely of assertions to the 
effect that, if such and such a proposition is true of 
anything, then such and such another proposition is true of 
that thing. It is essential not to discuss whether the first 
proposition is really true, and not to mention what the 
anything is, of which it is supposed to be true. [...] Thus 
mathematics may be defined as the subject in which we 
never know what we are talking about, nor whether what 
we are saying is true. 

 

So, in the context of probability theory, if you have a random 
sequence, it can be used to instruct you on how to draw samples 
from a population. Given these truly random samples, then 
“such and such” deductions can be made. “It is essential” not to 
discuss whether the sequence with which we began is really 
random. It is by hypothesis. And, finally, it is essential not to 
discuss what probability really is, since that would prompt us to 
discuss what randomness is3. However, if a probability is 
measured as a number, it can then be compared. For example, 

we can assert a probability 𝑥 is greater than a probability 𝑦, which 
is astoundingly useful. 

The definition of a sequence ∞-distributed has been given 
serious consideration as a candidate for a definition of random 

sequence. To explain what is ∞-distributivity, it will help us to 
consider the particular case of binary sequences. A binary 

sequence is considered ∞-distributed if it is 𝑘-distributed for all 

natural numbers 𝑘. Intuitively, a 𝑘-distributed binary sequence is 

one in which the probability of a certain 𝑘-digit binary string 
appearing in the sequence is the same as any other. In other 

words, the sequence’s probability distribution is uniform for 𝑘-
digit binary strings. 

3 See “Probability, Truth and Statistics.” Richard von Mises, 1957. 
Dover Publications, Inc., 2nd edition, 1981. ISBN: 0-486-24214-5. On 
page 24, von Mises writes that “[t]he term ‘probability’ will be reserved 
for the limiting value of the relative frequency in a true collective which 
satisfies the condition of randomness. The only question is how to 
describe this condition exactly enough to be able to give a sufficiently 
precise definition of a collective.” On page 12, he defines collective as 
“a sequence of uniform events or processes which differ by certain 
observable attributes [...]” For example, “all the throws of dice made in 
the course of a game form a collective wherein the attribute of the single 
event is the number of points thrown.” 
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In more precise terms, a binary sequence 𝑋𝑛 is 𝑘-distributed 

for a certain 𝑘 if  
 

Pr(𝑋𝑛𝑋𝑛+1 … 𝑋𝑛+𝑘−1 = 𝑥1𝑥2 … 𝑥𝑘) = 1/2𝑘 
 

for all binary 𝑘-digit numbers 𝑥1𝑥2 … 𝑥𝑘. For example, a binary 

1-distributed sequence must satisfy Pr(𝑋𝑛 = 0) = 1/2 as well 

as Pr(𝑋1 = 1) = 1/2. One such sequence would be 

0, 1, 0, 1, …, since Pr(𝑋𝑛 = 0) is the limit of the sequence 

1, 1/2, 2/3, 2/4, …, which converges [1, exercise 1, chapter 3] to 

1/2. Another example is 0, 0, 1, 1, 0, 0, 1, 1, … For a binary 

sequence to be 2-distributed, it would have to satisfy  
 

Pr(𝑋𝑛𝑋𝑛+1 = 00) = 1/4, 
Pr(𝑋𝑛𝑋𝑛+1 = 01) = 1/4, 
Pr(𝑋𝑛𝑋𝑛+1 = 10) = 1/4, 
Pr(𝑋𝑛𝑋𝑛+1 = 11) = 1/4. 

 

One can check that the sequence 0, 0, 1, 1, 0, 0, 1, 1, … is also 2-

distributed, but it is not 3-distributed. It is not 3-distributed 

because Pr(𝑋𝑛𝑋𝑛+1𝑋𝑛+2 = 000) = 0 when it should be 1/8. 
This suggests that to every periodic sequence there is a natural 

number 𝑘 associated such that the sequence is not 𝑘-distributed. 

Indeed, every periodic sequence of period 𝑝 is not 𝑝-distributed 

[37, page 248]. A periodic 3-distributed binary sequence is not 
easily guessed, but one can check that the sequence 
 

0,0,0,1,   0,0,0,1,   1,1,0,1,   1,1,0,1,   0,0,0,1, … 
 

is in indeed 3-distributed [1, section 3.5, equation 11, page 148]. 
An algorithm is not limited to producing periodic sequences 

— for example, an algorithm that produces the digits of 𝜋 does 
not produce a periodic sequence —, so the limitation of periodic 

sequences is no challenge to the idea that ∞-distributivity defines 

randomness. In fact, one of the formidable results of ∞-
distributed sequences is that they can be produced by algorithms: 
in 1965 one such algorithm was given [37]. 

The weakness in taking the notion of ∞-distributivity alone 
as a definition for a random sequence appears when we consider 

subsequences of an ∞-distributed sequence. If such sequences 
were random, we would expect that any subsequence of a 
random sequence would also be random, but this doesn’t always 

happen with ∞-distributed sequences. Given an ∞-distributed 

binary sequence 𝑋𝑛, we can construct a new sequence 𝑌𝑛 = 𝑋𝑛 

except that 𝑌𝑛2 = 0 for every index 𝑛. Clearly, 𝑌𝑛 isn’t random 

because we know that 𝑌0,  𝑌1,  𝑌4, 𝑌9, … , 𝑌𝑛2 = 0, but 𝑌𝑛 is still 

∞-distributed [1, section 3.5, page 160] because setting squared 
elements to zero does not significantly change the probabilities 

required in the definition of 𝑘-distributivity [1, section 3.5, page 

160]. That is, ∞-distributivity alone is too weak of a definition.  
An apparently adequate definition is reached [1, definitions R4, 
R5, R6, pages 161–163] by making suitable restrictions to the 

rules governing which subsequences must be ∞-distributed, that 

is, not all subsequences, of an ∞-distributed sequence 𝑋𝑛, must 

be ∞-distributed for 𝑋𝑛 to be qualified as random.  “The secret 
is to restrict the subsequences so that they could be defined by a 

 
4 This pseudorandom number generator is typically used in the 

method of integer factorization known as Pollard’s rho. One interesting 

fact about the method is that while polynomials like 𝑓 don’t have good 

person who does not look at” 𝑋𝑛 “before deciding whether or 
not it is to be in the subsequence” [1, section 3,5, page 161]. We 
are not aware of any objection made to this strategy. 

4. WHAT IS A PSEUDORANDOM NUMBER GENERATOR? 

Since algorithms cannot compute random sequences [38, 
section 6.4], they’re left with at most producing pseudorandom 
number sequences displaying the desired statistical properties. A 
pseudorandom number generator, therefore, is an arithmetical 
procedure that produces a sequence of numbers that one hopes 
will pass sufficient statistical tests and thus appear random. It can 

be as simple as a function4 𝑓(𝑥𝑛) = 𝑥𝑛−1
2 + 1 mod 𝑁, for some 

fixed natural number 𝑁, and as complex as Donald Knuth’s 
“super-random” number generator [1, section 3.1, page 5], 
shown as an extreme example of how complicated algorithms 
don’t necessarily provide any more randomness. For illustration 
purposes, here’s what a simple pseudorandom number generator 
looks like in the C programming language. 

 
uint32_t y = 2463534242U; /* the seed */ 

uint32_t xorshift(void) { 

  y = y ^ (y << 13); 

  y = y ^ (y >> 17); 

  y = y ^ (y << 5); 

  return y; 

} 
 

This is George Marsaglia’s Xorshift generator of 32 bits [20]. The 
variable y is a global variable to the xorshift procedure. The 
letter U at the end of the seed is just an indicator that that number 
is an unsigned integer. What this procedure does is multiply 
the arbitrarily set initial value 2463534242, the seed, to the 

number 213 and adds the result to y, that is, it adds the product 
to the initial value. The multiplication is done in fast computer 
arithmetic: that’s the effect of shifting y by 13 bits to the left 
because, in base 2 arithmetic, shifting a number to the left means 
adding zeros to the right of this number, which is the same as 
multiplying it by a power of 2. For example, if we have the 
number five, which is 101 in base 2, and we multiply it by 2, we 
get ten, which is 1010 in base 2. The second step divides y by 

217 and adds it to y. The last step is similar. Assume all 

computations are reduced modulo 232, although the C 
programming language does not define what machines must do 
when a computation overflows an integer. When we look at the 
numbers produced by this generator, they appear random to us, 
but the sequence doesn’t pass even a modest contemporary 
battery of statistical tests. 

5. DESIRABLE PROPERTIES OF GENERATORS 

True random number generators have several disadvantages 
compared to a good pseudorandom number generator. For 
example, they are more cumbersome to install and run, more 
costly, slower and cannot reproduce the same sequence twice. 
(Reproducing the same sequence is important for repeating 
simulations and testing applications.) But a pseudorandom 
number generator does need a good seed, which true random 
number generators can provide [11, section 2.2.1, page 38]. 

statistical properties, it would considerably increase, on average, the 
number of steps taken by the procedure if it would be replaced by, for 
example, a truly random sequence [39, section 2.3, pages 27–28]. 
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When choosing a pseudorandom number generator, we must 
know what to look for. Some of the properties one can find in 
pseudorandom number generators, to name a few, is good 
statistical properties, good mathematical foundations, lack of 
predictability, cryptographic security, efficient time and space 
performance, small code size, a sufficiently long period and 
uniformity [10, section 2]. 

In the context of computer-generated randomness, good 
statistical properties are effectively what is meant by “random” 
[10, section 2.1]. Mathematical foundations allow us to be sure a 
pseudorandom number generator has some desirable property 
such as its period, which is defined as the length of the sequence 
of random numbers the generator can produce, at the end of 
which the generator must repeat itself, so having a long period is 
surely desirable. Uniformity is a property closely related to the 
period. After the generator has output all its period, each number 
produced should occur the same number of times, otherwise it 
is not uniform. If it is not uniform, it is biased. Uniformity alone, 
without a long period, is certainly not desirable. Consider what 
happens as we consume a uniform generator. As we draw near 
the end of its period, its uniformity effectively allows us to 
predict more and more its output, since all output must occur the 
same number of times [10, section 2.1.1]. 

 
For example, let us consider a case where we can 
show that a generator must lack uniformity in its 

output. Consider a generator with 𝑏 bits of state, but 

where one of the 2𝑏 possible states is never used, 
(perhaps because the implementation must avoid an 
all-bits-are-zero state). The missing state would leave 

the generator with a period of 2𝑏 − 1. By the 
pigeonhole principle, we can immediately know that 

it cannot uniformly output 2𝑏 unique 𝑏-bit values. 
 

A period of a generator cannot be too short, lest it repeat itself 
while in use, which makes it statistically unsound. A large internal 
state implies the possibility of a longer period because it allows 
for more distinct states to be represented. Yet, in terms of period 
size, more is not always better. For example, if we are to choose 

between generators with period sizes of 2128 and 2256, we 
should notice that it would take billions of years to exhaust the 

period of the 2128 generator, so picking the generator with 

period 2256 does not bring a relevant advantage. “Even a period 

as ‘small’ as 256 would take a single CPU core more than two 
years to iterate through at one number per nanosecond.” [10, 
section 2.4.2] 

Another valuable property is unpredictability. “A die would 
hardly seem random if, when I’ve rolled a five, a six, and a three, 
you can tell me that my next roll will be a one.” [10, section 2.2]. 
Still, pseudorandom number generators are deterministic and 
their behavior is completely determined by their input. They 
produce the same sequence given the same input. So, their 
randomness is only apparent to an observer who doesn’t know 
their initial conditions. Though the deterministic nature of 
pseudorandom number generators might seem more like a 
weakness than a strength, it is valuable for reproducing the same 
sequence multiple times, which is required in a number of 
applications, from simulations and games to the mere testing of 
programs. To repeat a sequence generated by a pseudorandom 
number generator, we need only save its initial conditions, usually 
just the seed for that sequence produced. To repeat a sequence 

from a true random number generator, we would have to save 
the entire sequence produced. 

It’s not immediately obvious that a procedure computed by a 
machine can be unpredictable, but some pseudorandom number 
generators output a number while keeping another one hidden 
from the user. The hidden information is called the 
pseudorandom number generator’s internal state. Predicting the 
pseudorandom number generator entails knowing such internal 
state. 

Unpredictability is very important for applications concerned 
with security because predicting a pseudorandom number 
generator allows for various types of attacks, including denial of 
service [22]. If a pseudorandom number generator leaks internal 
state information at each output, an adversary is able to little by 
little infer the complete internal state, when the generator 
becomes completely predictable, at least from that point in the 
sequence on, which is a flaw of Mersenne Twister [21]. 

Predictability can be considered in two directions: forwards 
and backwards. A generator is said to be invertible if, once we 
know its internal state, we can discover the random numbers it 
generated previously. So being non-invertible is vital for 
applications that generate cryptographic keys: if the generator is 
invertible and its internal state is exposed at some point in time, 
adversaries will be able to recover all previously generated keys. 
So cryptographically secure pseudorandom number generators 
are not invertible. Although some applications may not be 
designed with cryptography in mind, it’s prudent to pick the 
safest generator affordable by your project [10, section 2.2]. 

 
[...] [Because] we cannot always know the future 
contexts in which our code will be used, it seems wise 
for all applications to avoid generators that make 
discovering their entire internal state completely 
trivial. 

 

Speed is another important property, particularly considering low 
resource systems. An application that is too dependent on a 
random number generator will be as slow as the random number 
generator used. Applications running in low resource hardware 
will likely trade other properties for speed and space. Many 
generators with good statistical properties are slow, but there are 
some generators that have relatively good time performance 
while showing acceptable statistical properties. For example, 
XorShift* 64/32 [10][20, section 2.3] has good performance 
and good statistical properties, but it’s not safe for cryptographic 
applications. 

Most generator implementations will take just a constant 
amount of memory to store their state, but considering the strict 
constraints some applications face, the size of these constants 
should also lead programmers to choose one over another. Space 
is also related to speed: considering all other things equal, a 
generator that’s able to keep its internal state completely in a 
processor’s register should outperform a competitor which needs 
many more bytes of internal state to be kept in main memory [10, 
section 2.4]. 

There are also the space constraints of code size. Such space 
is most likely a constant, but constants do matter for applications 
running in low resource hardware. The longer the code, the more 
likely it will include programming errors. Such errors can be 
particularly difficult to detect in the context of random number 
generators [10, section 2.4.3]. 
 

From […] experience, I can say that implementation 
errors in a random number generator are challenging 
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because they can be subtle, causing a drop in overall 
quality of the generator without entirely breaking it. 

 

Another desirable property is seekability, the ability of a generator 
to skip ahead or jump back in the sequence. Since pseudorandom 
number generators are cyclic, if we skip a sufficient number of 
elements, we are back to its starting number, implying that the 
ability to seek ahead also gives us the ability to seek backwards. 
Computationally secure pseudorandom number generators are 
designed not to be seekable as it is not desirable to let an adversary 
read the sequence backwards, discovering which numbers might 
have been used in the past. 

6. STATISTICAL HYPOTHESIS TESTING 

Statistical theory allows us to posit a hypothesis 𝐻0 about a 
random number generator and devise tests to provide empirical 

evidence of the validity of 𝐻0. These tests, in turn, either give us 

more confidence in the hypothesis 𝐻0 or leads us to reject it. A 
statistical test for a random number generator is defined by a 

random variable 𝑋 whose distribution under 𝐻0 can be well 

approximated. When 𝑋 takes the value 𝑥, define 

𝑝𝑅 = Pr(𝑋 ≥ 𝑥 | 𝐻0) and 𝑝𝐿 = Pr(𝑋 ≤ 𝑥 | 𝐻0) as the left and 

right 𝑝-value, respectively. Such 𝑝-values measure how likely it is 
to find a certain sample of the random number generator given 

𝐻0 is true. If it turns out we get very unlikely samples from the 
random number generator, then we’re getting strong evidence 

the hypothesis 𝐻0 is not true. In fact, when testing random 

number generators, if any of the right or left 𝑝-value is extremely 

close to zero, then 𝐻0 should be rejected [11, section 2.6, page 

56]. If any of the 𝑝-value is equal to 1, then the sequence appears 
to have perfect statistical randomness [13, section 1.1.5]. If a 

suspicious 𝑝-value is obtained, say near 10−2 or 10−3, we can 
repeat the particular test a few more times, perhaps with a larger 
sample size in the hope that more tests will clarify the result [11, 
section 2.6, page 56]. 

In the context of testing for randomness, 𝐻0 is usually taken 
to mean that the sequence is random. For each specific test, a 

rule must be derived that allows us to accept or reject 𝐻0. Taking 

𝐻0 to mean that the sequence generated is random, the test 
produces a statistic with a certain probability distribution of 
possible values. This probability distribution must be determined 
by mathematical methods. From this distribution, a critical value 
is chosen such that a critical region in the set of possible values 
is determined. The statistic is then computed from the sample 
and compared to the critical value. If the statistic falls in the 

critical region, we reject 𝐻0, that is, we conclude the sequence 
produced by the generator is not random. Otherwise, we accept 

𝐻0. If the generator produces a random sequence, then the 
computed statistic will have a very low probability of falling in 
the critical region and, if such event occurs, it provides us with 

evidence that the sequence is not random as assumed in  𝐻0.  
Although the probability for such event may be very low, it is 

not null. Incorrectly classifying a sequence produced by a 
generator as not random is called a type I error. Much worse 

would be if we accept  𝐻0 when the sequence produced by the 
generator is not random, an error that’s called type II.  

The probability of type I error is usually denoted by 𝛼 and is 
called the level of significance of the test. The type II error is 

usually denoted by 𝛽. The value of 𝛼 can be arbitrarily chosen, 
that is, if we would like to specify the probability of type I error 

to 1%, we can set 𝛼 =  0.01 for the specific test. Doing the 

same for type II error is not so easy. Recall that the probability 
distribution for the statistic produced by the test was determined 
assuming the generator does indeed produce a random sequence, 

that is, assuming 𝐻0 is true. In the type II error, 𝐻0 is not true, 
so the probability distribution of the statistic test is not known. 

Unless this probability distribution is known, 𝛽 is not a fixed 
value because there is an infinite number of ways that a sequence 
can be non-random. Each different way determines a different 

𝛽. It is possible, however, to minimize the type II error of a 

certain test. The probabilities 𝛼 and 𝛽 are related to each other 

and also to the size 𝑛 of the sample. If two of them are specified, 

the third value can be computed. Usually, a sample size 𝑛 is 

chosen along with a probability 𝛼 and a critical value is chosen 

such that 𝛽 is smallest [13, section 1.1.5]. 

7. THE STATE-OF-THE-ART IN STATISTICAL TESTS 

Under the framework of hypothesis testing, a series of tests 
can be devised to analyse samples of the random number 
generator. There is no maximum number of tests we can apply 
to a random number generator and there is no maximum number 
of tests a random number generator can pass that will prove it to 
be truly random. It’s also not possible to build a random number 
generator that passes all statistical tests [11, section 2.2.4, page 
41]. Nonetheless, the more tests we apply to a random number 
generator the more confident we get of its quality. 

Perhaps the first battery of tests was devised by Donald 
Knuth in 1969 [1, section 3.3, page 38]. In 1996, George 
Marsaglia published DIEHARD [12] given the insufficiency of 
Knuth’s. NIST, in the United States, published its own battery 
[13], in the year 2000, being last revised in 2010, to supersede 
Marsaglia’s. Robert Brown published DieHarder in 2004. In 
2007, Pierre L’Ecuyer and Richard Simard published TestU01, a 
C library with which C programmers can implement and test 
random number generators [14]: 

 
[...] empirical testing of random number generators is very 
important, and yet no comprehensive, flexible, state-of-the-
art software is available for that, aside from the one we are 
now introducing. The aim of the TestU01 library is to 
provide a general and extensive set of software tools for 
statistical testing of random number generators. It 
implements a larger variety of tests than any other available 
competing library we know. [...] TestU01 was developed 
and refined during the past 15 years and beta versions have 
been available over the Internet for a few years already. It 
will be maintained and updated on a regular basis in the 
future. 

 

TestU01 showed a “sobering result” [14, table I, section 7] for 
many well-known random number generators which were 
“respectable” [10, section 2.1.2]: 
 

[Pierre L’Ecuyer and Richard Simard] made a very 
significant contribution to the world of random-number–
generator testing when they created the TestU01 statistical 
test suite. Other suites, such as [DIEHARD], had existed 
previously, but TestU01 (which included a large number of 
previously independently published tests, and applied them 
at scale) vastly increased the scope and thoroughness of the 
testing process. 

 

The library comes with three predefined battery of tests: 
SmallCrush, the small one, Crush, the medium-sized one and 
BigCrush. SmallCrush is the quickest and it should finish 



 

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 6 

under a minute on most modern desktop computers. Crush can 
take a few hours and BigCrush takes various hours or perhaps 
a day. 

How about alternatives to TestU01? Two other packages 
compete with TestU01: PractRand 0.94 [15] and gjrand 4.2.1 
[16], but neither has been formally published. 

8. A NOTE ON USING THE TESTU01 LIBRARY 

An inconvenience of TestU01 is that it’s restricted to the C 
programming language. It is a C library, after all: it won’t just run 
without a programmer to write a program that takes advantage 
of the library. Besides, given that TestU01 is written in C, it 
wouldn’t be straightforward to use it from another programming 
language: one would have to know how to access a C library from 
within the chosen programming language. 

We have mitigated this inconvenience by publishing crush 

[27], a program capable of testing your random number 
generator against any of the three TestU01 batteries, given the 
data is available at a file on disk or the data can be produced at 
run time. For example, suppose we would like to test our local 
/dev/urandom against the largest TestU01 battery. It suffices 
to say to the shell: 

 
%crush --battery big --name xyz < /dev/urandom 

... 

% 
 
Similarly, if we have a program p that can produce its allegedly 

random data to the standard output in binary format, then 
crush can test such data against the small TestU01 library with 
a command such as: 

 
%./p | crush --battery small --name my-prng 

... 

% 

 
Due to the facilities of a UNIX-like system5, crush 

eliminates the need to use the C programming language to take 
advantage of TestU01’s default batteries. 

9. A NOTE ON DEFAULT RANDOM NUMBER GENERATORS 

If one is writing a new application that needs a random 
number generator, one should not just use random number 
generators offered by the system or by the programming 
language adopted. Most programming languages have adopted 
flawed generators. Java, for example, offers the package 
java.Util.Random which is based on the pseudorandom 
number generator drand48. It failed 5 tests in SmallCrush in 
less than a minute. 

The default pseudorandom number generator in both Python 
and PHP is mt19937, Mersenne Twister [21]. It passes 
SmallCrush, but actually fails the linear complexity test, not 
included in TestU01’s small battery. The linear complexity test is 
a rather quick test to run and could have been included in the 
small battery. The number 19937 in its name is due to is huge 

period of size 219937 − 1. Despite having been a promising 
pseudorandom number generator, mt19937 can be totally 
predicted after collecting a sample of size 624 [10, section 2.2]. 

 
5 Notice Windows is sufficiently a UNIX-like system for the 

purposes of running crush and a Win32 binary is available on crush’s 

homepage at https://bit.ly/319bg0H. 

In C++, besides mt19937, the standard library also offers 
minstd and ranlux, two well-known generators, but minstd 
fails 9 tests out of 15 of the small battery and ranlux is not 
much better [14, section 7]. 

Exceptionally, some programming languages offer good 
alternatives. For example, the default pseudorandom number 
generator in the Racket programming language, from the Lisp 
family, is Pierre L’Ecuyer’s mrg32k3a [19], which did pass 
SmallCrush when we tested it, but also passes BigCrush [14, 
section 7, table I]. 

If an application requires cryptography, a well-known 
computationally secure pseudorandom number generator is 
based on the stream cipher ChaCha20 [18]. ChaCha20 has 
replaced RC4 in OpenBSD starting at version 5.4, in NetBSD in 
version 7.0 and replaced SHA-1 in the Linux kernel since version 
4.8. These events present evidence that ChaCha20 is currently 
well regarded. 

10. ON THE INSUFFICIENCY OF THE NIST SP 800-22 SUITE 

Notwithstanding the “sobering results” of TestU01 [14, table 
I, section 7][10, section 2.1.2], published in 2007, it’s not hard to 
find publications ignoring it [32][34][35, section 4, page 304] 
while giving attention to the software package provided by NIST 
SP 800-22. Enough flaws of the NIST SP 800-22 statistical test 
suite have been previously reported [29, 33]. We present now one 
more result regarding the insufficiency of the NIST SP 800-22 
statistical test suite implementation. 

It’s known that the Fibonacci sequence, taken as a random 
number generator, is not satisfactorily random, but a “much 
better” variation, though never published, was proposed in 1958 
by G. J. Mitchell and D. P. Moore [1, section 3.2.2, page 26]. 
Using an output of 32-bit integers, let us call mm32 this 
pseudorandom number generator defined by the sequence 

 

𝑋𝑛 = (𝑋𝑛−24 + 𝑋𝑛−55) mod 𝑚 
 

where 𝑛 ≥ 55, 𝑚 is even, and 𝑋0, 𝑋1, … , 𝑋54 are arbitrary 
integers not all even. The constants 24 and 55 were chosen so 
that the least significant bits of the sequence, that is the sequence 

𝑋𝑛 mod 2, will have period of length 255 − 1, implying the 

sequence 𝑋𝑛 must also have a period of the same length [1, 
section 3.2.2, page 27]. 

Despite mm32 having provably a period of a certain length, 
“it is difficult to recommend [it] wholeheartedly [because] there 
is still very little theory to prove that [it does or does not] have 
desirable randomness properties; essentially all we know for sure 
is that the period is very long, and this is not enough” [1, section 
3.2.2, page 28]. That is, from a theoretical perspective, very little 
is known about mm32, but, assuming TestU01 has a correct 
implementation of the statistical tests included in its batteries and 
PractRand implements mm32 correctly6, statistical evidence 
suggests mm32 does not have desirable randomness properties. 

Setting mm32 with an initial value of 0 in PractRand’s 
implementation and submitting it to the battery SmallCrush in 
TestU01, the battery reports that mm32 fails the gap test [1, 
section 3.3.2, page 60] and the weight distribution test [28, 
section 4.4, page 188], after consuming approximately 6.7 
gibibits7 from the generator in less than 10 seconds on a certain 

6 In PractRand version 0.94, the implementation is found in 

src/RNGs/other/fibonacci.cpp. 
7 One gibibit is 230 bits. 
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system. PractRand reports that mm32 fails the binary rank test 
[31], among other failures, after consuming 2 gibibits from the 
generator in less than 5 seconds, and gjrand reports mm32 also 
fails the binary rank test consistently, among other failures, after 
testing 8 gibibits from the generator in less than 15 seconds. 
Nevertheless, the NIST SP 800-22 statistical test suite approves 
mm32 after consuming a total of 8 gibibits from the generator, 
that is, after consuming 32 samples of 256 mebibits8 each, in over 
15 hours9. 

Could NIST SP 800-22 statistical test suite reject mm32 by 
considering larger samples? We found that 32 gibibytes of 
memory are not enough to give NIST SP 800-22 statistical test 
suite a sample size of 2 gibibits. When we reduced the size to 1 
gibibit, the software received a recurrent UNIX SIGSEGV signal. 
In other words, it crashes at this sample length. The same crash 
can be reproduced with various small sequence lengths such as 
1031 and many smaller values. Also, on sample lengths of sizes 
such as 256 mebibits, NIST SP 800-22 statistical test suite is not 

able to properly calculate a 𝑝-value for all of its tests with its 

default parameters: we could not make sense of the 𝑝-values 
produced by the overlapping template matchings test on sample 
lengths such as 256 mebibits, for any generator we tested. 

Regarding comparisons, notice each battery in each software 
package uses a different strategy, configurable in different ways, 
which makes comparison rather difficult. For example, despite 
the fact that SmallCrush consumed a total of approximately 
6.7 gibibits from mm32, each test individually consumed far less. 
For example, the weight distribution test used a sample length of 
200,000 and took less than a second to run. With a generator 
producing random numbers at run time, the library by default 
decides not to restart the generator as it moves from one test to 
another. 

11. CONCLUSIONS 

Choosing a random number generator is no simple task. It 
should not be underestimated. Default pseudorandom number 
generators offered by popular programming languages usually 
don’t offer enough statistical properties. We have argued that the 
NIST SP 800-22 statistical test suite, as implemented in the 
software package, last revised in 2010, is inadequate for testing 
random number generators. With the tool we have developed, 
testing a random number generator against the state-of-the-art in 
statistical tests is a trivial matter. 
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