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Abstract— Many women with early breast cancer undergo 

mastectomy as a consequence of an unfavorable tumor/breast 
ratio or because they prefer this option to breast conservation. 
As reported, breast reconstruction offers significant 
psychological advantages. Several techniques are currently 
available for the breast oncoplastic surgeon and offer interesting 
results in terms of aesthetic and patient-reported outcomes, 
using both breast implants and autologous tissues. On the other 
hand, advanced methodologies and technologies, such as reverse 
engineering and additive manufacturing, allow the development 
of customized porous scaffolds with tailored architectures, 
biological, mechanical and mass transport properties. 
Accordingly, the current research dealt with challenges, design 
methods and principles to develop 3D additively manufactured 
structures in breast reconstructive surgery. 

Keywords— additive manufacturing, breast reconstructive 
surgery, design, fat grafting, reverse engineering, scaffold design. 

I. INTRODUCTION 

Breast reconstruction offers significant psychological 
advantages for women who undergo mastectomy for the 
treatment of breast cancer [1].  

Immediate reconstruction does not affect oncological 
outcomes without significantly delaying adjuvant therapies 
and impairing the effectiveness of oncological surveillance 
[2,3]. 

New mastectomy techniques, the so-called conservative 
mastectomies, allow the surgeon to completely preserve the 
breast envelope in patients without involvement of the nipple 
areola complex [4-6].  

Many techniques for breast reconstruction are actually 
available for the breast oncoplastic surgeon to offer the 

woman the best results in terms of aesthetic and patient-
reported outcomes, both using alloplastic materials (i.e. breast 
implants) and autologous tissues [7]. 

Nowadays breast reconstructive surgery should derive 
from a shared decision with the patient with the duty for the 
surgeon of tailoring the surgical treatment on each single 
woman, never forgetting patients’ wishes [8,9]. 

Implant-based techniques remain the most widely used 
form of breast reconstruction, even though they are not 
exempted from complications and the aesthetic results could 
not always be long lasting [7,10]. 

The silicone implant will be considered as a foreign object 
and a tissue reaction will be mounted, resulting in a scar-like 
tissue around it, known as a capsule. The capsule could 
thicken and contract, leading to the so-called capsular 
contracture.  

Other complications have been described in association 
with the use of breast implants, as late seromas and the 
development of an extremely rare form of lymphoma, the 
Anaplastic Large Cell Lymphoma [11]. 

Recently, several doubts about the safety of silicone breast 
implants have been highlighted considering the extremely rare 
development of Breast Implant-Associated Anaplastic Large 
Cell Lymphoma (BIA-ALCL). 

Many surgeons are looking for alternatives to implants for 
breast reconstruction, myocutaneous pedicled and muscle-
sparing free flaps being the first considered alternatives to 
silicone implants. 

However, according to several studies, breast 
reconstruction with autologous tissue flaps is not free from 

38



  

complications and high rates of re-interventions and the flap 
surgical procedures are time consuming and expensive (when 
compared to implant-based reconstruction). 

The Mastectomy Reconstruction Outcomes Consortium 
Study, a prospective multi-center  trial, recruited patients 
undergoing breast reconstruction (implant based and 
autologous-tissue based) following mastectomy from 11 
centers across North America from February 2012 to July 
2015.  

The results of this trial in terms of patient-reported 
outcomes and post-post-operative complications have been 
presented in several reports [12,13]. 

Reported 2-year complications rate following autologous 
tissue based reconstruction is 47% versus 26.6% with implant-
based techniques, reported re-operations rates are 27.4% with 
autologous tissues versus 15.5% with implants.  

These data must be taken into account when considering 
autologous flaps as alternatives to silicone implants for breast 
reconstruction. 

With the aim of reducing surgical aggressiveness, 
improving cosmetic outcomes and achieving long-lasting 
results, we developed a new reconstructive technique, 
involving tissue regeneration supported by 3D 
morphologically controlled scaffolds obtained through 
additive manufacturing methods. 

This method could represent a further evolution of the so-
called “hybrid reconstructive” option, we already presented 
with the combined rationalized use of silicone implants and 
autologous fat tissue transplantation [14,15]. 

3D-printed bioresorbable scaffolds will be positioned 
subcutaneously following a conservative mastectomy and 
filled with autologous fat tissue in 2-3 sessions achieving a 
natural-shaped breast mound with soft consistency and long-
lasting aesthetic results. 

This reconstructive option could also be offered to women 
undergoing post-mastectomy radiotherapy (PMRT), as the 
material will not be influenced by irradiation, representing a 
significant advantage when compared to silicone implants in 
the radiotherapy setting [16]. 

Future clinical application of the 3D-engineered breast 
reconstruction will validate this innovative technique, that will 
probably become a standard for the next generation breast 
surgeon. 

II. DESIGN METHODS AND PRINCIPLES TO DEVELOP 

3D ADDITIVELY MANUFACTURED STRUCTURES IN 

BREAST RECONSTRUCTIVE SURGERY 

The employed gel-filled breast implants were generally 
based on a gel-like core consisting of a polydimethylsiloxane  
(PDMS) with a lower cross-linking degree and a shell made 
of an elastomeric material (i.e ., PDMS).  

The nonlinear and large-deformation behavior together 
with the complex viscoelastic properties can be reproduced to 
develop innovative breast devices, taking into account the 
knowledge of the structure-property relationship of the 
materials and advanced technologies. 

Different strategies can be considered for breast tissue 
repair/reconstruction and regeneration, combining additive 
manufacturing techniques with an appropriate selection of 

materials currently employed in tissue engineering and 
prosthetic fields [17-19].  

In particular, over the past years great efforts have been 
devoted to the design of devices in the form of gels/hydrogels 
and 3D additively manufactured scaffolds [17-19].  

The use of non-degradable polymers and the design of 
advanced customized prostheses should represent a first 
approach.  

A suitable material-geometry design must be used to 
properly reproduce the mechanical properties of the native 
tissue and the exact shape and size of the defect. 

Shell-core or multilayer devices may be developed, using 
rubber-like and gel-like materials as well as the combination 
of additive manufacturing with conventional techniques. 

A second route would involve the use of synthetic or 
natural biodegradable polymers to design customized porous 
scaffolds with tailored architectures, biological, mechanical 
and mass transport properties. 

With regard to tissue engineering applications, aliphatic 
polyesters such as poly(ε-caprolactone) (PCL) have been 
widely investigated.  

In this context, the design of an innovative breast device 
would also involve reverse engineering and additively 
manufactured scaffolds combined with autologous fat 
grafting.  

3D additively manufactured scaffolds with autologous 
adipose derived stem cells have been taken into account for 
breast tissue engineering.  

The devices should be properly placed and filled with 
autologous fat tissue in some sessions. 

The custom-made scaffold filled with autologous fat tissue 
should allow to maintain the breast shape and natural 
consistency.  

Adequate technical improvements (i.e., Stromal Vascular 
Fraction derived growth factors) will be also considered.  

For this reason, to design an advanced 3D scaffold with 
tailored architectural features and properties for breast tissue 
regeneration, a combination of the basic principles of 
regenerative medicine with reverse engineering and additive 
manufacturing is needed.  

3D virtual models of breast can be generated through 
image capture and analysis techniques, using medical scans 
(i.e., magnetic resonance imaging – MRI, computed 
tomography - CT).  

The physical structures can be then fabricated by additive 
manufacturing techniques based on injection/extrusion 
methods  (i.e., fused deposition modelling – FDM/3D fiber 
deposition).  

Specifically, 3D porous structures can be manufactured 
layer-by-layer according to specific lay-down patterns. 

In the field of additive manufacturing, 3D fiber deposition 
(Figures 1 and 2), which represents a modified technique of 
3D plotting for the extrusion of highly viscous polymers, is a 
fused deposition technique where the materials are 
injected/extruded through a nozzle and then properly 
deposited [17-19]. 
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Fig. 1. Additive manufacturing technique: 3D fiber deposition and key 

elements. 

 

Fig. 2. 3D fiber deposition technique: an image of cartridge unit and 

needle/nozzle (Bioplotter - EnvisionTEC GmbH, Germany). 

Unlike the conventional fabrication methods, the higher 
control of the architectural features allows for the 
improvement of the mass transport properties [17-19].  

Using fabrication methods based on CAD/CAM systems, 
3D customized porous scaffolds with a defined structure and 
architecture were manufactured.  

Such scaffolds may be considered as the basis for a novel 
breast reconstruction approach. 

The mechanical and mass transport properties, as well as 
all the functional features of the 3D scaffolds, were properly 
tailored by varying the sequence of stacking (i.e., lay down 
patter) and porosity (Figures 3 and 4).  

 

Fig. 3.  Typical results from micro-CT analysis performed on 3D scaffolds 

with specific lay-down pattern and geometric features.  

 
 

 
 

Fig. 4.  Results from micro-CT analysis performed on 3D scaffolds. 3D 
reconstruction showing the architectural features and the interconnected pore 

network. 

In general, results from compression tests on 3D additively 
manufactured scaffolds provided stress-strain curves where an 
initial linear region was evident. Beyond this region, the slope 
of the curve first decreased and then increased. 

With regard to the effect of the architecture on the 
properties of the developed structures, as an example, Table 1 
reports the compressive modulus (E), which was evaluated 
from the slope of the initial linear region of the stress–strain 
curve, for poly(ε-caprolactone) (PCL) scaffolds with fixed 
fiber diameter, fiber distance and layer thickness.   

TABLE I.  TYPICAL RESULTS FROM COMPRESSION TESTS. EFFECT OF 

THE SEQUENCE OF STACKING ON COMPRESSIVE MODULUS OF 3D 

ADDITIVELY MANUFACTURED PCL SCAFFOLDS WITH FIXED FIBER 

DIAMETER, FIBER DISTANCE AND LAYER THICKNESS. RESULTS ARE 

REPORTED AS MEAN VALUE ± STANDARD DEVIATION.   

Sequence of stacking 
E 

(MPa) 
0/90° 62.3 ± 6.5 

0/60/120° 42.3 ± 4.2 

0/45/90/135° 31.1 ± 3.2 

 

Thus, the sequence of stacking influences the mechanical 
performances of the designed scaffolds.  

At fixed fiber diameter, fiber distance and layer thickness, 
structures with a 0/90° pattern showed a compressive modulus 
which was higher than those found for 0/60/120° and 
0/45/90/135° lay-down patterns.  
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In many cases, according to the material compositions and 
the morphological and architectural features, the designed 3D 
structures were able to reproduce the tissue properties and the 
complex anatomical shape, also benefiting from the advances 
in the design of high performance materials and innovative 
methodologies, which have led to the development of 
multifunctional devices for different applications [20-30].  

The 3D additively manufactured scaffolds were also 
loaded with gel-like materials to develop a complex hybrid 
structure which would be able to guide the regeneration 
process. 

Considering hybrid devices, the properties of the gel-like 
materials were clearly assessed through appropriate 
rheological analyses (i.e., steady shear measurements, 
dynamic-mechanical tests) and confined compression stress-
relaxation tests.  

As for the uniaxial confined compression tests, the 
experimental stress relaxation data, the constitutive law for the 
extra-stress, the governing equations for finite deformation, 
together with initial and boundary conditions, were considered 
to evaluate important properties for biphasic materials, such 
as aggregate modulus and permeability.  

III. CONCLUSIONS 

Design methods and principles in the development of 3D 
additively manufactured structures in breast reconstructive 
surgery were proposed, starting from a critical analysis on the 
breast reconstruction techniques and the current scenario.  

The possibility to manufacture 3D morphologically 
controlled  scaffolds with a fully interconnected pore network, 
tailored functional and structural features, by varying material, 
porosity and sequence of stacking, was stressed  

The reported experimental findings together with the 
reverse engineering approach suggested the feasibility to 
develop new strategies and customized structures in breast 
reconstructive surgery. 
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