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1. INTRODUCTION 

The skull base is located between the brain and the 
extracranial compartment and consists of several anatomical 
structures.  

From an anatomical and surgical point of view, the skull base 
represents one of the most complex areas of the human body.  

It is reported that a broad variety of lesions, either neoplastic 
or not, may arise primarily from this area or, subsequently, 
involve it. The surgical management of these lesions can be 
extremely difficult, especially of deep-seated lesions, despite a 
variety of innovative craniofacial approaches that have been 
adopted to access the entire skull base in recent decades 0-[9].  

Additionally, it should be underlined that tissue disruption 
and neurovascular manipulation often characterise the access 
routes to the skull base, increasing perioperative morbidity 
and/or mortality rates.  

The surgical advances and technological innovations, together 
with the progress in diagnostic imaging techniques and the 
intraoperative neuronavigational systems, have progressively 
reduced the surgical invasiveness of the skull base approaches.  

Specifically, a trans-sphenoidal technique was developed for 
the treatment of lesions previously amenable only to a 
transcranial route. In fact, over the past few years, the endonasal 
endoscopic route has been considered as a viable corridor to 
access first the sellar region, and then the surrounding areas. 
Presently, this route represents a suitable approach for several 
skull base lesions [10]-[12].  
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These surgical refinements and technological advances, 
together with an increasing comprehension of the region’s 
anatomy, have led to a revolution in skull base surgery [13].  

In further detail, the main advantage of skull base surgery 
performed through the nose, using an endoscope, is the direct 
visualisation of the neurovascular structures of several areas of 
the skull base while minimising brain displacement and 
manipulation.  

The use of an endoscope allows for a wider and multiangled 
close-up view of the surgical field. As a result, patients treated 
with this approach may benefit in terms of early discharge, 
reduced postoperative morbidity, and a faster return to work 
[14].  

However, the main issue of this approach lies in the 
reconstruction, as a consequence of a higher risk of 
postoperative cerebrospinal fluid (CSF) leakage in comparison 
with the conventional transcranial method [15].  

The removal of a skull base lesion via the endonasal route 
requires a wider osteo-dural opening and, especially, extensive 
opening of the arachnoid cisterns and/or, sometimes, the third 
ventricle. Consequently, a large communication between the 
septic cavity (i.e. the sinonasal tract) and the sterile intradural 
compartment is created.  

An effective watertight closure is fundamental to isolating the 
intracranial cavity for restoration of the natural intra and 
extradural compartment division, to prevent postoperative CSF 
leakage and further complications (i.e. brain herniation, 
meningitis, tension pneumocephalus) [16].  

Skull base reconstruction after extended endoscopic 
endonasal surgery should be optimised taking into account some 
crucial points (i.e. isolation of the intradural compartment from 
the sinonasal tract, water and airtight closure, obliteration of 
dead spaces, promotion of the healing process, preservation of 
function and cosmesis, and management of the risk factors of 
increased intracranial pressure) [15],[17],[18].  

Accordingly, the reconstruction can be performed using 
different devices that consist of autologous grafts and non-
autologous materials, individually or combined in a multilayer 
strategy.  

The purported multilayer techniques have to deal mostly with 
the major issues of the irregular shape of both bony and dural 
defect boundaries, and the presence of optic nerves, internal 
carotid arteries, and the neurovascular structures of the 
cavernous sinus, surrounding them. Furthermore, the removal 
of the tuberculum sellae and of the posterior part of the planum 
sphenoidale, along with the floor of the sella, creates a defect 
that does not lie on a flat plane. For these reasons, especially in 
the cases with a very large skull base opening, a semisolid 
buttress – adopted to sustain the dural foil – does not adhere 
properly. 

Thus far, the recent trend is moving toward the use of 
autologous materials [19]-[21].  

Autologous grafts can interact with the surrounding 
structures of the osteo-dural defect, favouring the migration of 
fibroblasts and, consequently, a complete recovery.  

Clearly, each component plays its specific role. Cartilage and 
bone offer support, whereas the mucosa provides the matrix for 
the tissue vascularisation.  

The harvesting of a nasoseptal flap is considered to be one of 
the most effective techniques: it is able to bolster the skull base 
closure, ensuring the isolation of the surgical field, and plays an 
important role in reducing the CSF leak rate after endoscopic 
skull base surgery [22].  

Nevertheless, it should be performed only in cases of wide 
skull base defects, as it may lead to nasal morbidity [19],[23]. 

The development of novel closure techniques and the 
availability of reliable reconstructive materials may contribute to 
reducing the postoperative CSF leak, which represents one of 
the most feared complications of this type of surgical procedure 
[22],[24],[25].  

In the last few months, we have modified our reconstruction 
method according to the concept of ‘3F’, each addressing a 
different compartment of the defect to be sealed. The first ‘F’ 
stands for autologous fat, to be used as a cork stopper across the 
intra–extradural space; the second ‘F’ refers to the nasoseptal 
flap, used to cover the skull base defect – we harvest it at the 
end of the surgical procedure; and, finally, the third ‘F’ 
represents our idea of ‘flash’ patient mobilisation out of the bed 
[26].  

The major advantages arise from the possibility of moulding 
the fat inside the surgical cavity, having it pierce the entire 
diameter of the breach and, above all, fit and fill the outer shady 
areas, namely the irregular contours at the level of the 
tuberculum sellae and the optic canals [26]. 

In this context, further efforts are needed to develop novel 
strategies and devices for reducing the CSF leak rates after 
endoscopic skull base surgery, as well as the post-operative 
patient discomfort and morbidity. 

Moreover, benefiting from the development of advanced 
technologies [27] and methodologies of analysis [28]-[31] in 
different fields, innovative systems may also be designed for 
biomedical applications.  

The research has been driven toward the engineering of 
materials [32],[33] and biomedical devices with improved and 
tailored functional properties [34],[35].  

Novel and multifunctional devices may be developed in the 
form of injectable or solid systems, according to the specific 
application and the surgical approach.  

Concerning the skull base reconstruction after endoscopic 
endonasal surgery, intriguing strategies would involve advances 
in the development of injectable semi-interpenetrating polymer 
networks (semi-IPNs) and composites, computer-aided design 
(CAD), reverse engineering, and 3D additive manufactured 
devices with controlled architectures and mechanical properties 
[34],[35].  

The current research is focused on the development of novel 
approaches and devices, aiming at preventing the postoperative 
CSF leakage in skull base reconstruction after endoscopic 
endonasal surgery, which represents one of the most feared 
complications related to this procedure.  

A design strategy was proposed involving the use of an 
injectable tool as a filling system and a ‘solid’ customised device 
as a closure system for skull base defects.  

2. MATERIALS AND METHODS 

The semi-IPNs were prepared by promoting the polymer 
network formation. Natural and synthetic polymers were 
employed and also properly modified. Micro/nanoparticles were 
also used as reinforcement. 

The selection of the system components was made with the 
aim of promoting a clinical translation of the injectable devices 
as dura mater substitutes and sealant systems able to reduce the 
risk of CSF leakage.  
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A rheometer (Bohlin Gemini; Malvern Instruments, Malvern, 
UK) equipped with parallel-plate geometry was used to evaluate 
the viscoelastic properties of the materials at 37 °C. 

To determine the linear viscoelastic region, strain sweep tests 
were carried out at a fixed oscillation frequency.  

Small amplitude oscillatory shear tests were performed, and 
the frequency varied from 0.01 to 2 Hz.  

The storage modulus (G’) and the loss modulus (G”) were 
evaluated as follows: 

𝐺 ′ =
𝜏0

𝛾0

cos 𝛿 (1) 

𝐺 ′′ =
𝜏0

𝛾0

 sin 𝛿 (2) 

with δ representing the phase shift between the input and output 

signals, whereas γ0 and τ0 represent the strain and stress 
amplitudes, respectively. 

Different clinical needles were considered, and the effect of 
the injection on the viscoelastic properties was analysed, as it 
plays a crucial role in the design of injectable systems. 

Steady shear measurements were carried out, and viscosity as 
a function of shear rate was evaluated at 37 °C (Figure 1). The 
shear rate ranged from 0.01 to 10 s-1.  

To simulate clinical practice, injectability tests were also 
performed using an INSTRON 5566 testing machine.  

By contrast, image capture and analysis techniques were used 
to generate 3D virtual models of the skull base defects. 

In particular, 3D reconstruction of the skull base region and 
defects was performed using computed tomography (CT) and a 
dedicated software. 

The model of a region of the skull base and customised 
devices for the defects were manufactured by fused deposition 
modelling using a 3D printer.  

In particular, Z-Glass filament was used to manufacture 
models of a skull base region, whereas a very durable and flexible 
material certified for medical use (BioFlex, FILOALFA) was 
employed for the fabrication of customised closure devices for 
the skull base defects. 

3. RESULTS 

Starting from some basic concepts and principles, novel 
strategies may be proposed towards the design of injectable 
systems and additively manufactured devices for skull base 
reconstruction after endoscopic endonasal surgery. 

Recent literature stresses the important role of reverse 
engineering [36]-[39], computer-aided design (CAD), and finite 
element analysis [40]-[43], as well as the potential of pushing the 
research toward the development of design strategies and 
methodologies of analysis in different fields of application [44]-
[47]. 

The strategy related to the design of injectable semi-IPNs and 
composites with tailored properties has benefited from specific 
rheological/mechanical and injectability studies [48]. 

Injectable devices can also be developed through the 
combination of conventional methods and additive 
manufacturing techniques.  

Some examples of rheological results obtained from analyses 
performed on semi-IPNs consisting of different materials are 
reported below. The materials are not specified, the aim being 
only to stress the importance and the role of the viscoelastic 
properties and the flow behaviour in the design of the proposed 

systems, as it is widely reported [48] that the potential to tailor 
their rheological characteristics clearly depends on the employed 
material combinations.  

An example of one of the mechanical spectra achieved for 
the developed semi-IPNs is reported in Figure 2.  

The G’ values were always higher than the G” values in the 
analysed frequency range (Figure 2).  

Furthermore, the presence of micro/nanoparticles generally 
improved both viscoelastic moduli, until a threshold limit value 
was reached for the particle concentration. 

Figure 1 reports typical values of the viscosity as a function 
of the shear rate obtained for some engineered semi-IPNs. 

 

Figure 1. Example of viscosity as a function of shear rate for the developed 
semi-IPNs. The data are reported as the mean value; the error bar represents 
the standard deviation. 

 

Figure 2. Example of the storage modulus (G’) and the loss modulus (G’’) as a 
function of the frequency for the developed semi-IPNs. The data are reported 
as the mean value; the error bar represents the standard deviation. 
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The results showed that the viscosity decreased with the 
increasing shear rate (shear thinning behaviour), thus suggesting 
the possibility of injecting the developed materials. 

Load–displacement curves were obtained from injectability 
tests. At low displacements, the curves obtained for the semi-
IPNs showed a linear region until the load reached a maximum 
value. Successively, the load sharply dropped to a plateau value 
as the displacement further increased. At the end of the plateau-
like region, the material was completely injected.  

The obtained values for the maximum and plateau loads were 
in the range of 6.6 – 3.7 N and 2.0 – 0.9 N, respectively, 
depending on the clinical needle employed and the material 
composition. 

By contrast, additive manufacturing techniques offer the 
opportunity of developing customised devices with complex 
geometry.  

Additive manufactured devices with several architectural 
features can be fabricated by the 3D fibre deposition 
technique/fused deposition modelling (FDM) [34],[35].  

Starting from CT analysis, the surgical approach and the 
creation of a bone defect (i.e., cavity) were planned (Figure 3 and 
Figure 4).  

Virtual models of a region of the skull base without and with 
the defect (Figure 5 and Figure 6), as well as of the customised 
closure device (Figure 7) were created. 

Initially starting from the shape and size of the defect, the 
geometry of the closure device was appropriately designed to be 
fitted in the cavity to prevent CSF leakage.  

The feasibility of the proposed technical solutions was first 
assessed through virtual models (Figure 8). 

Additive manufactured models of a skull base region with the 
defect were developed using Z-Glass filament (Figure 9).  

3D customised devices with appropriate flexibility were also 
manufactured by FDM, using BioFlex filament, as a closure 
system for the created skull base defect (Figure 10). 

In comparison with conventional fabrication methods, 
additive manufacturing techniques allow strict control of the 
structural features and, consequently, of the properties of the 
devices, satisfying all the requirements [34],[35]. 

The customised closure devices were suitably developed to 
provide high flexibility and relatively high strength, according to 
the specific application. 

 

Figure 3. Results from image capture and analysis – skull base region.  

 

Figure 4. Results from the image capture and analysis: planning of the surgical 
approach and preparation of a cavity as a skull base defect.  

  

Figure 5. 3D reconstruction of a skull base region. 

  

Figure 6. 3D reconstruction of a skull base region with the created defect. 

 

Figure 7. 3D model of the customised device as a closure system for the skull 
base defect. 

  

Figure 8. 3D model of the device closing the skull base defect – different 
views. Feasibility assessment of the proposed technical solutions. 



 

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 71 

The physical models were used to simulate clinical practice, 
and the feasibility of the proposed approach was consequently 
demonstrated (Figure 11). 

4. CONCLUSIONS 

An insight into the development of novel strategies and 
devices for skull base defects was provided by integrating 
rheological/mechanical concepts, image capture and analysis 
techniques, the CAD approach, and additive manufacturing. 

Specifically, a systematic study of the design of 
multifunctional systems in the form of injectable tools and ‘solid’ 
customised devices was reported in the current research. 

The focus was set on the importance of viscoelastic 
properties and the flow behaviour of materials in the case of 
injectable systems, as well as on the potential to start from the 
geometry of skull base defects to design additive manufactured 
closure devices with tailored properties (i.e. flexibility, strength) 
for the skull base reconstruction after endoscopic endonasal 
surgery.  

3D virtual and physical models allowed the possibility of 
planning the surgery, as well as assessing the feasibility of the 
proposed technical solutions. 
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