
ACTA IMEKO
ISSN: 2221-870X
February 2015, Volume 4, Number 1, 5 - 10

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|1

An advanced GCode analyzer to predict build-time in AM
components
Luca Di Angelo, Paolo Di Stefano and Emanuele Guardiani.

University of L’Aquila, Department of Industrial and Information Engineering and Economics, Monteluco di Roio, 67100 L’Aquila, Italy.

Section: RESEARCH PAPER

Keywords: Journal; template; IMEKO; Microsoft Word

Citation:Thomas Bruns, Dirk Röske, Paul P.L. Regtien, Francisco Alegria, Template for an IMEKO event paper, Acta IMEKO, vol. 3, no. 1, article 1,
January 2014, identifier: IMEKO-ACTA-03 (2014)-01-01

Editor: Paolo Carbone, University of Perugia, Italy

Receivedmonthday, year; In final formmonth day, year; PublishedJanuary2014

Copyright: © 2014IMEKO. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Funding: This work was supported by Measurement Science Consultancy, The Netherlands

Corresponding author: Emanuele Guardiani, e-mail: emanuele.guardiani@graduate.univaq.it

1. INTRODUCTION

AM technologies are growing day by day, thanks to the
several vantages which characterize them [1]. They allow to
create designed objects using new and innovative shapes, which
could not be obtained by the traditional manufacturing process
[2]. Is this the case of shape optimization of structural
component in which the unstressed material could be removed
to reduce the component weight [3], [4]. Moreover, since the
AM processes are well-integrated with CAD instruments, the
pre-processing for the physical creation of a part requires a
shorter time compared with classical subtractive technologies.
This property represents a key-feature for companies that work
in a competitive business, for which the reduction of the Time
to Market determines the competitivity of the company itself.
Nevertheless, AM technologies are still expensive and the
manufacturing process requires a time significantly longer than
the classical subtractive manufacturing technologies [5]. In a
competitive market of AM services, manufacturing costs must
be estimated in a reliable way [6]–[8]. That’s the reason why an
accurate estimation of build-time is mandatory. Reliable
quantification of the build-time serves also to implement a
method devoted to finding the deposition direction which
minimizes manufacturing costs [9]–[23].

In this aim, several research activities were conducted during

the last years. These efforts have led to two different strategies
for estimating the build-time.

A first strategy performs a detailed–analysis of the
manufacturing activity and should be also the most reliable.

A second approach performs the build-time estimation by
properly-defined parametric functions in which the
independent variables are few build-time driving factors.

The detailed-analysis based methods use complete
information related to the geometry of the object and to the
manufacturing process. By this method, a very accurate
estimation of the build-time could be potentially obtained. On
the other side, the complete information is necessary for that
evaluation and a detailed analysis of the manufacturing activity
is required. For these reasons, detailed-analysis is
computationally expensive and more time is required for build-
time estimation.

Instead the parametric methods are less accurate than the
first one but, on the other hand, they require few data as input
and they are computationally less expensive. The parametric-
based methods make use of some driving build-time factors,
which are the independent parameters used in the functions to
evaluate the build-time, which is the dependent variable. These
parameters can be computed by analysing the geometric model

ABSTRACT
Additive Manufacturing (AM) is a technology for quickly fabricating physical models, functional prototypes and small batches of parts,
by stacking two-dimensional layered features, directly from computer-aided design (CAD) data.
One of the most important challenges in this sector is represented by the capability to predict in advance the build-time because it’s
crucial to evaluate production cost. In this paper, an accurate method for obtaining build-time is proposed. This method is based on an
advanced GCode analyzer written in Python following an Object-Oriented paradigm for scalability and maintainability. Some examples
were used to demonstrate the reliability of the algorithm and possible use-cases of it are illustrated.

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|2

of the object to be manufactured (volume, bounding box, etc.).
The most challenging aspect of this typology of methods
consists in identifying these factors. The set of parameters used
should take into account all the elements which affect build-
time and they must be independent each other so that any
cross-correlation is avoided. The parametric methods appear
more promising for many practical applications such as in those
contexts where an accurate prediction of the build-time is
required but a limited set of data describing the object is
available. It is the case of the budgeting process, where the
customer may not have the intention of providing the full
geometrical model of the object to the seller, in order to protect
its intellectual property, but can provide just some parameters
that affect cost [24]. Moreover, the build-time estimation is a
mandatory step for any optimization method devoted to search
the best build direction. It is for these reasons that parametric
approaches have been proposed generally as a component of
much more articulated methods devoted to search the optimal
manufacturing build direction. [25] suggests a very simplified
model in which the build-time is proportional to the number of
layers in the sliced model. [21], [23], [24], [26]–[28] propose
more complex formulations of the build-time, which is
dependent on the volume of the object, of the supports and
other geometrical features of the object. Although they use
many more parameters, the limitation of these methods is in the
function describing the build-time, which is linear. The
relationship between build-time and its driving factors is very
complex and unknown. In order to take into account this
problem, [29] suggests using an adaptive model based on the
Grey Modelling, while [30] proposes an Artificial Neural
Network (ANN) for identifying the relationship between the
driving factors and the build-time. The authors demonstrate
that in this way a very accurate estimation of the build-time can
be obtained. The limit of both these approaches is they need a
large set of model samples. In order to provide a set of training
samples, a lot of driving build-time factors and related real
build-time should be examined. The accuracy of estimation
performed by the neural network, for example, increases with
the number of test samples, so that a large number of real
build-time evaluations is required. Obviously it would not be
economically and temporally feasible.

In order to define a significative set of samples, an accurate
detailed-analysis based method could be used, which performs a
less expansive evaluation of the build-time with respect to a real
experiment. A detailed-analysis can be operated by using
specialized CAE programs such as those supplied with the AM
machine. It is the case of Simplify 3D, which is a 3D printing
slicing software that controls every aspect of the printing
process and performs also build-time evaluation. Some
alternatives to this tool are Cura by Ultimaker and
MatterControl by MatterHackers, both freeware. Nevertheless
the build-time estimations provided by these software is
different from those performed with the FDM machine
(German RepRap X350). In Table 1 the comparison of the
estimated build-time with the real one is reported, using three
test cases shown in Figure 1.

Table 1. Comparison between real build-time and an estimation
provided by professional CAE software for the models reported in Figure 1.

Model Software Real Estimated Error

A Simplify3D 1532 min 1344 min -14 %
B Cura 374 min 242 min -54 %
C MatterControl 326 min 286 min -14 %

The estimation performed is not accurate enough to be used
for obtaining qualified training data for a neural network. The
main reason which led to the mismatch evidenced in the
previously mentioned programs do not consider some process-
related parameters of the machine in use, which are acceleration
and jerk.

The control strategy performed by some machine firmware,

such as the open-source RepRap, uses acceleration strategies,
defined by two parameters “jerk” and “acceleration” that widely
affect build-time and object quality. This is shown in Figure 2,
where two cubes of the same dimension are manufactured, by a
German RepRap X350, using different acceleration parameters.
In Figure 2(a) a module of 300 mm/s2 was selected for the x-y
axis, while in Figure 2(b) twice of the value than the previous
one is used.

Figure 2. Comparison between two cubes, based on the same nominal

geometry and manufactured using a different acceleration value.

A comparison between the two objects shows that the
quality of the corners of the model (a) is significantly better
than the model (b). This is due to the different inertia forces,
which affect the accuracy of the material deposition
performances, especially on the corners.

In order to overcome all the previously discussed limitations
of the implemented detailed-analysis based methods, in this
paper, a new method for build-time evaluation has been
developed. The followed approach has been quite a general-
purpose one, so that this method can be used in several AM
applications. The method performs the GCode analysis, taking
into account the most important process-related parameters. In
this way, a very accurate estimation of the real build-time can be
performed. In the next sections, the method will be explained

Figure 1. Reference models used for time comparison.

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|3

in detail. Some test cases will be used to test the proposed
approach and the results will be critically discussed.

1.1. GCode
The GCode is the most widespread programming language

used for giving instructions to Computer Numerical Control
(CNC) machine. It consists of a series of textual instructions
(word address), in accordance with the standard ISO 6983, that
regulate the behavior of the machine during the manufacturing
process. For example, defining the speed of the axis, regulating
the temperature of the extruder and much more. This set of
commands is generally called Part Program. During the “first”
era of the automatic machines, a manual approach was adopted
for generating the Part Program. An high-skilled operator was
able to write the Part Program by itself or, at the best, with the
aid of visual programming software. Today, instead, the
preferred solution consists of an automatic approach based on
the integration between the CAD and CAM systems (Figure 3).
After the design of the object, the geometry is imported into
the CAM, where many of the process-related parameters are
defined. With reference to AM technologies, these parameters
could be represented by the layer thickness, the typology of
hatching, the speeds of the motors and much more. Then, if
required by the technology in use, the supports are generated
too into the CAM, typically using a graphical procedure. At the
end of these steps, the CAM generates the tool path and the
Post Processor transforms all the previous information in a set
of instructions, readable by the machine in use, which is the
Part Program, saved into a textual file that is finally sent to the
machine.

Figure 3. Automatic programming for generating the Part Program.

Consequently, the Part Program defines many characteristics

of the manufacturing process that will be followed by the
machine. But an analysis limited to the Part Program is
generally not sufficient to establish the kinematic behavior of
the machine. Many decisions about that are taken in real-time
by the controller of the machine. This is the case for
acceleration ramps, which are tightly dependent on the machine
in use. Any CNC machine, due to the axis inertia and/or torque
availability of the motors, is subject to magnitude constraints on

accelerations. Three different control strategies may be adopted.
Supposing that the deposition tool has to follow the path
reported in blue in Figure 4, where p1, p2, and p3 are three
control points interpolated linearly. A first option consists of
maintaining a fixed speed along the entire path. This condition
represents the optimal solution in terms of time-saving but, on
the other side, a similar behavior can be realized only
theoretically due to the infinite acceleration module required to
realize that. Actually, when a fixed speed is adopted (Figure 5),
a diverted path (green line of Figure 4) is generated due to the
impossibility of realizing an infinite module acceleration. In
order to avoid a similar behavior that causes aleatory
geometrical errors on the finite piece, another strategy, which is
characterized by having a zero speed in correspondence of
control points (blue-dotted line in Figure 5), can be used. In
this case, linear acceleration ramps are generally adopted. This
allows obtaining the optimal positioning accuracy, being the
theoretic path and the real path the same.

Figure 4. Comparison of tool paths using different acceleration

strategies.

The drawback of this strategy is given by the increase of the
build-time. This trouble has led to formulate a third approach,
which represents a compromise solution between geometrical
accuracy and build-time. In this case, the control unit of the
machine in use does not limit itself to execute the instructions
provided by the GCode but it performs a “clever” evaluation.
In addition to the command in execution, some next
instructions are read and cached. Then, through a vectoral
comparison of the velocities, the acceleration ramps are
computed in order to maintain the maximum feedrate possible
(red-dotted line Figure 5). This control strategy is typically
known as “look-ahead” and it can be regarded as a multi-
objective optimization problem, where the geometrical accuracy
conflicts with the reduction of the build-time.
Many researchers have worked on this topic during the last
years. Since the related literature is wide and voluminous, in the
following some of the most important and recent methods are
analyzed. [31] proposes that each corner is smoothed by
replacing a subset of the path that contains it with a conic
"splice" segment, deviating from the exact corner by no more
than a prescribed tolerance. [32] suggests using a fine-
interpolation parametric method in which the corners are
replaced by arc curves, while in [33], [34] the B-splines are used
to approximate the corners.

 CAD system

GEOMETRY IMPORT

PROCESS-RELATED
PARAMETERS

SUPPORT
GENERATION

PATH GENERATION

CA
M

 sy
st

em

PART PROGRAM

.STL

.GCODE

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|4

Figure 5. Speed comparison between constant speed, zero-velocity, and

look-ahead strategies.

In [35] a different kind of approach is used: the control acts

on the acceleration ramps instead of the tool paths. The
presence of so many different approaches to the “look-ahead”
optimization can generate some confusion. That’s the case of
FDM machines for which, as we verified in the previous section
for the case of a German RepRap X350, also professional tools
are not able to reconstruct the real kinematic behavior of the
machine, leading to a very rough estimation of the build-time.

In this paper, a deep investigation of the behavior of
RepRap devices is computed. The kinematic laws are
reconstructed and, lastly, a script for estimating very accurately
the build-time, written in Python following an Object-Oriented
Paradigm for scalability and maintainability, is provided.

2. PROPOSED METHOD

The proposed method is based on the analysis of the
GCode, whose role was previously described. In particular, all
the instructions which are referred to movement command are
considered, being these the main responsible for defining the
build-time. Other instructions that may contribute to the build-
time are the temperature commands that, for example, define
the temperature of the printing bed. But for this category of
instructions, an exact evaluation of how they contribute to the
build-time is hard to provide because they are closely depended
on environmental conditions. Moreover, their influence is
generally negligible with respect to movement commands and
so they will not be considered.

The GCode movement commands are described in Annex E
of ISO 6983, therefore they will not be discussed in detail here.
As already illustrated in Figure 3, being the GCode, used for
AM applications, generated starting from a triangular mesh (.stl)
that is afterward sliced, most of the analytical information
which defines the original geometry is lost during the data
exchange. Consequently, the simplest and most efficient way
for generating the Part Program is to define many geometrical
control points that belong to the model and interpolate them
linearly. Therefore, most of the movement instructions used for
AM applications are linear interpolations, introduced by the
code G01. The algorithm evaluates each interpolation line using
a regular expression matching. Each movement is associated
with its relative velocity and length. In Figure 6, as a sample, the
interpolation lines i and i+1 of a generic GCode file are
reported.

Figure 6. Sample of two linear interpolation's GCode instructions.

The length 𝑙" of path i-th, the nominal speed 𝑣1" that should

be reached and the length of extruded filament 𝑒" during the i-th
step can be formulated as follows.

𝑙" = $(𝑒𝑒𝑒. 𝑒𝑒𝑒 − 𝑎𝑎𝑎. 𝑎𝑎𝑎)+ + (𝑓𝑓𝑓. 𝑓𝑓𝑓 − 𝑏𝑏𝑏. 𝑏𝑏𝑏)+

𝑣1" = 𝑑𝑑𝑑𝑑

𝑒" = 𝑔. 𝑔𝑔

For each step i-th the build-time is provided by the

contribution of four terms:	

𝑡" = 𝑡5678" + 𝑡9" + 𝑡:" + 𝑡+" (1)

Where:

𝑡5678": jerk phase time during i-th step
𝑡9" : acceleration phase time during i-th step
𝑡:" : cruise phase time during i-th step
𝑡+" : deceleration phase time during i-th step

To evaluate these terms, the acceleration phase and the jerk

phase need to be here discussed and illustrated.
The jerk phase, in particular, is referred to the “look-ahead”

strategy in use by RepRap machines. During that phase, an
“instantaneous” change of speed Δ𝑣 is applied. This particular
behavior is made possible by using of stepper motors.
Obviously, “instantaneous” change of velocity implies high
values of acceleration, so the value of Δ𝑣 must be limited to
avoid both vibrations and a loss of steps from the motors.
Being the contribution of 𝑡5678" generally very small compared
to the other three terms of formula (1), it is assumed to be
negligible.

𝑡5678" ≅ 0 (2)

In order to proceed, for each step, a generic j-th degree of

freedom, which satisfies the condition (3), is taken as reference.

𝑎"
= ≠ 0								𝑗 = 1, 2, … ,𝑁 (3)

𝑎"
= : acceleration module of i-th step referred to the j-th degree of

freedom

where 𝑁 identifies the number of degrees of freedom of the

machine. That assumption is justified by the synchronous
behavior which should be carried out by the axis: the axis
should start and stop to execute the command of a certain
instruction line at the same moment. The following condition is
then evaluated.

D𝑣2"
= − 𝑣0"E:

= D > Δ𝑣"
= (4)

𝑣2"

=: end speed of step i-th refereed to the j-th degree of freedom

 i) G1 Xaaa.aaa Ybbb.bbb Ec.cc Fdddd
 i+1) G1 Xeee.eee Yfff.fff Eg.gg

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|5

𝑣0"E:
= : start speed of step (i+1)-th refereed to the j-th degree of

freedom

𝑣2!

" and 𝑣0!#$
" are initially computed taking as reference the

feedrate value reported into the GCode instructions and they
are generally different each other. This is due to the fact that
from step i-th to step (i+1)-th the vector 𝒗𝟏 could change in
direction and/or magnitude. If the condition (4) it’s true, end
speed 𝑣2!

" or/and start speed 𝑣0!#$
" need to be revaluated. In this

case, two possibilities are defined. If

𝑣2"
= ∙ 𝑣0"E:

= > 0 (5)

then just one of the two velocities requires to be updated.

⎩
⎪
⎨

⎪
⎧𝒗𝟐𝒊∗ =

𝑣0"E:
= + Δ𝑣"

=

𝑣2"
= 𝒗𝟐𝒊														|𝑣2"

=| > |𝑣0"E:
= |

𝒗𝟎𝒊E𝟏∗ =
𝑣2"

= + Δ𝑣"
=

𝑣0"E:
= 𝒗𝟎𝒊E𝟏										|𝑣2"

=| < |𝑣0"E:
= |

 (6)

Otherwise, both velocities are recalculated in the following

way.

⎩
⎪
⎨

⎪
⎧𝒗𝟐𝒊∗ =

Δ𝑣"
=

𝑣2"
= + 𝑣0"E:

= 𝒗𝟐𝒊										

𝒗𝟎𝒊E𝟏∗ =
Δ𝑣"

=

𝑣2"
= + 𝑣0"E:

= 𝒗𝟎𝒊E𝟏		
 (7)

The physical significance of the jerk phase can be better
understood considering Figure 7. By assuming that the
deposition tool is moving from point A to point B, then to C’
or C’’, maintaining a constant feedrate. In the case of point C’,
the variation in direction of the velocity vector is small.
Therefore, instead of reducing the speed in point B to zero, just
a limited deceleration is applied until a certain speed value,
whose entity depends on the chosen jerk module (equation (6)).
Otherwise, when the deposition tool has to follow the path
ABC’’ the vectorial variation of the velocity is significant,
consequently both the end speed of path i-th 𝒗𝟐𝒊 then the start
speed of the path (i+1)-th 𝒗𝟎𝒊E𝟏 are down-scaled (equation (7)).
Anyway, it is interesting to notice that in both cases the speed
in point B is never equal to zero. This affects the manufacturing
process in terms of vibrations, quality of deposition and
accuracy that, by limiting the jerk parameter, can be contained
into acceptable values. On the other side, this compromise
allows to obtain a drastic reduction of the build-time.

After that the jerk phase has defined the start speed 𝒗𝟎𝒊 and
the end speed 𝒗𝟐𝒊 of the i-th step, the acceleration ramps can be
computed. This kind of machine generally makes use of linear
acceleration ramps, which are the most simple to handle when a
digital electronic is utilized. Assuming to be at step i-th, four
different kinds of situations may occur from GCode’s reading.
The first one, reported in Figure 8, represents the condition for
which nominal speed 𝑣1!

" is reached along the j-th degree of
freedom. The following quantities are defined.

Figure 7. During the jerk phase, the start speed and end speed of the

paths are "overwritten" cleverly.

⎩
⎪
⎨

⎪
⎧𝑡9" =

|𝑣1"
=| − |𝑣0"

=|
𝑎"
= 										

𝑠9"
= = D𝑣0"

=D	𝑡9"	 +
1
2𝑎"

=	𝑡9"+
 (8)

⎩
⎪
⎨

⎪
⎧𝑡+" = −

|𝑣2"
=| − |𝑣0"

=|
𝑎"
= 											

𝑠+"
= = D𝑣1"

=D	𝑡+"	 −
1
2𝑎"

=	𝑡+"+ 				

 (9)

If the next condition (10) becomes true, the behavior

illustrated in Figure 8 is performed during i-th step.

𝑠9"
= + 𝑠+"

= > 𝑠"
=			 (10)

In that case 𝑡:" and 𝑠:

= can be computed as

V
𝑡:" =

𝑠:
=

𝑣1"
=																														

𝑠:
= = 𝑠"

= − 𝑠9"
= − 𝑠+"

= 												

 (11)

𝑠"
= : total distance during i-th step along the j-th degree of freedom
𝑠9"
= : acceleration distance during i-th step along the j-th degree of

freedom
𝑠:"
= : cruise distance during i-th step along the j-th degree of freedom
𝑠9"
= : deceleration distance during i-th step along the j-th degree of

freedom

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|6

Figure 8. Nominal speed reached during step i-th.

Other cases can happen when the nominal speed 𝑣1!

" along
the j-th degree of freedom can’t be reached due to an
insufficient path length 𝑠!

". In such a case we can distinguish
three different possibilities. The first one is illustrated in and
occurs when the conditions (12) become true.

W
𝑠9"
= > 𝑠"

=							
𝑣0"

= < 𝑣2"
=			

 (12)

⎩
⎪
⎨

⎪
⎧ 𝑡9" =

D𝑣2"
=D − |𝑣0"

=|
𝑎"
= 												

𝑠9"
= = D𝑣0=XD𝑡9" 	+

1
2	𝑎"

=𝑡9"	+ 		

 (13)

In this case a new end speed 𝑣2!

" is necessary and,
consequently, condition (4) must be re-evaluated between step
i-th and step (i+1)-th. This particular behavior requires to use a
“closed-loop” control. For each i-th step, updated evaluations
are performed for the (i-1)-th and (i+1)-th steps too, if required.
For this reason, the step elaborated by the “look-ahead”
algorithm is a little ahead respect to the step which the machine
is being realizing. New end speed 𝑣2!"∗ and acceleration time 𝑡&!∗
are evaluated in the following way.

⎩
⎪
⎪
⎨

⎪
⎪
⎧	𝑣2"

=∗ = Y2	𝑎"
=𝑠"

= + |𝑣0"
=|	

𝒗𝟐𝒊∗ =
𝑣2"

=∗

𝑣1"
= 𝒗𝟐𝒊																		

𝑡9"∗ =
D𝑣2"

=∗D − |𝑣0"
=|

𝑎"
= 									

 (14)

Figure 9. Not enough distance to accelerate, new end speed.

An opposite situation is illustrated in Figure 10. In this case,
there is not enough space for decelerating and, consequently,
the start speed 𝑣0!

" needs to be updated. That occurs when the
conditions (15) are verified.

W
𝑠+"
= > 𝑠"

=											
𝑣0"

= > 𝑣2"
=						

 (15)

⎩
⎪
⎨

⎪
⎧𝑡+" =

D𝑣2"
=D − |𝑣0"

=|
−𝑎"

= 												

𝑠+
= = D𝑣0=XD𝑡+" −

1
2	𝑎"

=𝑡+"	+ 		

 (16)

So, similarly to the previous one, new start speed 𝑣0!

"∗ and
deceleration time 𝑡'!∗ can be formulated as follows.

⎩
⎪
⎪
⎨

⎪
⎪
⎧	𝑣0"

=∗ = Y2	𝑎"
=𝑠"

= + |𝑣2"
=|	

𝒗𝟎𝒊∗ =
𝑣0"

=∗

𝑣1"
= 𝒗𝟎𝒊																		

𝑡+"∗ =
D𝑣2"

=D − |𝑣0"
=∗|

𝑎"
= 									

(17)

Figure 10. Not enough space to decelerate, new start speed.

A last possible situation is identified in Figure 11. In this
case, nominal speed 𝑣1!

" is not reached but there is enough
distance for accelerating and decelerating. That behavior is
realized when the condition (18) is verified.

𝑠9"
= + 𝑠+"

= > 𝑠"
=	 (18)

⎩
⎪
⎨

⎪
⎧𝑡9" =

|𝑣1"
=| − |𝑣0"

=|
𝑎"
= 										

𝑠9"
= = D𝑣0"

=D	𝑡9"	 +
1
2𝑎"

=	𝑡9"+
			 (19)

⎩
⎪
⎨

⎪
⎧𝑡+" = −

|𝑣2"
=| − |𝑣0"

=|
𝑎"
= 											

𝑠+"
= = D𝑣1"

=D	𝑡+"	 −
1
2𝑎"

=	𝑡+"+
 (20)

!0#
$

!1#
$

 !2#
$

'(
$ ')

$

'*
$

+(+) +*

 Speed

Time STEP i-1 STEP i STEP i+1

!2#
$

!0#
$

&'
$∗

)'∗

&'
$

)'

!0#
$∗

Speed

Time STEP i-1 STEP i STEP i+1

!0#
$

!2#
$

&'
$∗

)'∗

&'
$

)'

!2#
$∗

Speed

Time STEP i-1 STEP i STEP i+1

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|7

For this case a new cruise speed 𝑣1!
"∗ is defined.

𝑣1"
=∗ = Z𝑣0"

=+ + 𝑣2"
=+

2	𝑎"
= + 𝑎"

=𝑠"
= (21)

After calculating 𝑣1!

"∗ as suggested by (21), the terms 𝑡9" and
𝑡+" can be finally evaluated.

⎩
⎪
⎨

⎪
⎧𝑡9" =

|𝑣1"
=∗| − |𝑣0"

=|
𝑎"
= 										

𝑠9"
= = D𝑣0"

=D	𝑡9"	 +
1
2𝑎"

=	𝑡9"+
			 (22)

	

⎩
⎪
⎨

⎪
⎧𝑡+" = −

|𝑣2"
=| − |𝑣1"

=∗|
𝑎"
= 											

𝑠+"
= = D𝑣2"

=D	𝑡+"	 +
1
2𝑎"

=	𝑡+"+ 						

 (23)

Figure 11. Nominal speed not reached. Enough space for accelerating

and decelerating.

The previous relations and considerations were implemented
into a python script, whose flowchart is described in Figure 12.
At the beginning the software evaluates the total number of
instructions contained into the Part Program. Then, using a
regular expression matching, the movement commands are
identified and for each of them, an associate speed and length is
pulled out and memorized. The next phases consist of applying,
for each movement command, the Jerk and Acceleration
phases, accordingly with the relationships previously illustrated.
At the end of the cycle the total build-time, estimated by the
algorithm, is provided.

3. RESULTS

In order to validate and refine the model, some comparisons
were made between theoretical build-time and real-time
required by a FDM machine (German RepRap X350). Nine
objects, represented in Figure 13, which are characterized by
different topological and geometrical features, were chosen for
the experiment. Every part was physical realized to obtain the
real value of the build-time. Different CAE software was used
for generating the Part Program and their estimation were
compared both with the real build-time and its estimation
calculated by the proposed algorithm. Because each CAE
software could implement a different slicing strategy, the Part
Program of the same part obtained using different automatic
procedures can not be compared, also if the same process
parameters are used. Therefore for each test case only one of
the three CAE software considered (Cura, MatterControl and
Simplify3D) were used. In Table 2 the parameters used for the
experiment are reported.

!0#
$

!1#
$

!2#
$

'(
$

)()*

!1#
$∗

 '*
$

Speed

Time STEP i-1 STEP i STEP i+1

Figure 12. Algorithm flow-chart.

Select and open .GCode file

Eval total number of
instructions N

1≤ i ≤ N

Config file with
process

parameters (jerk,
acceleration, …)

Parsing of Length and
Initial Speed

Eval Jerk and
Acceleration phases

Are Speeds
compatible with

Path length?
i-th step BUILD TIME

TOTAL BUILD TIME +

YES

N
O

, S
PE

ED
S

N
EE

D
TO

 B
E

U
PD

AT
ED

MOVEMENT COMMAND

NOT A
MOVEMENT
COMMAND

.GCode file

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|8

Table 2. Process related parameters used for the experiment.

Setting Value

Acceleration 300 mm/min² (slow) 1000 mm/min² (rapid)
Jerk (Δv) 18 mm/min
Layer thickness 0,1 mm
Maximum speed 100 mm/s (X-Y) 10 mm/s (Z) 100 mm/s (E)
Retract length 2 mm

Figure 13. Models used for analyzing the accuracy of the proposed

algorithm.

The results of the tests are illustrated in Table 3. It can be

noticed that, for each of the used CAE software, the error
values cannot be neglected. In particular, for the platform Cura
the average error for the three analyzed test cases amounts to
54 % of the real build-time. A better situation is found by using
Simplify 3D, which shows an average error of 15 % with
respect to the real build-time. Anyway, a similar error can not
be accepted in most of the applications. Finally, it can be
affirmed that the optimal behavior is represented by
MatterControl. The average error for that software, in fact, is 8
% of the real build-time. A similar value could be accepted in
some contests such as, for example, the budgeting process.
Anyway, two aspects should be noticed. As first, the error for

the test case F is equal to 14 % of the real build-time. This
shows that the error is not characterized by a well-known trend,
so the level of confidence of the estimations is low. Moreover, a
parametric method such as [36] is able to provide a better
estimation of the real build-time requiring, at the same time, a
significantly less amount of time for the set-up.

On the other side, the valuation obtained using the proposed
algorithm is very satisfactory, the error is negligible (≤ 1 %) in
any case of study. For parts B, E and F the estimation is even
equal to the real build-time. These results underline that the
proposed method evaluates the real behavior of RepRap
machines. Moreover all the causes which systematically affect
the build-time are identified and taken into account.

4. CONCLUSIONS

In this paper, a new method, which performs accurate
estimation of the build-time, has been proposed. This result is
possible thanks to an advanced analysis of the Part Program of
the object to be manufactured integrated with information
concerning control strategies.

The kinematic behavior of a CNC machine is defined
partially by the Part Program, since the tool movements are
determined also by the control strategies implemented in the
machine. It is the case of so-called “look-ahead” algorithm,
implemented to control the machine movements, aimed to
reduce the build-time, maintaining at the same time the
geometrical and dimensional quality of the final object.

It has been noticed that also professional CAE tools,
developed for AM applications, are not able to evaluate
accurately the build-time required for fabricating objects
realized using additive technologies. This results look so
negative because they are obtained from the software that
performs the manufacturing process from the given geometric
data (.stl file)

Therefore, with the aim of testing the procedure for
determining the build-time, the case study of RepRap was taken
as reference, since it is a very diffused controller for AM
machines. By a detailed-analysis of the RepRap machines, the
control strategies were identified and reproduced inside the
proposed method. In particular, it provides a mathematical
formulation of the “look-ahead” control strategy (“jerk
phase”).

In order to compute the build-time, a custom python
application was developed. As shown in the results section, the
method provides a very accurate estimation of the build-time.
For each of the nine test cases analyzed, the error is less than
0,2 % of the real build-time, but in some cases the estimated
and real build-time are the same.

Table 3. Results of the experiment.

Part Volume [cm³]
Real build-time

[min] Software
CAE build-time

[min] Error
Proposed method

[min] Error

A 210 1532 Simplify 3D 1344 -14 % 1535 0,2 %
B 23 374 Cura 242 -54 % 373 -0,1 %
C 14 156 Simplify 3D 146 -7 % 156 0 %
D 127 1206 Simplify 3D 976 -24 % 1205 -0,01 %
E 27 402 MatterControl 388 -4 % 402 0 %
F 21 326 MatterControl 286 -14 % 326 0 %
G 245 2177 MatterControl 2040 -7 % 2173 -0,2 %
H 7 101 Cura 64 -58 % 101 0 %
I 25 257 Cura 170 -51 % 257 0 %

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|9

A limit of this method is it needs the Part Program which is
obtained at the end of several steps (Figure 3). Therefore, this
approach is quite time-consuming and could not represent the
optimal solution when the evaluation should be provided
quickly and some information is still missing. For example,
some specific parameters of the machinery in use, such as
acceleration and jerk. In these cases, the optimal solution is still
represented by the parametric methods, for which the proposed
method can represent a powerful instrument for the set-up.

Further work is required to test the proposed methodology
for other typologies of AM machines that does not implement
RepRap controller and use other control strategies.

REFERENCES

[1] K. V. Wong and A. Hernandez, “A Review of Additive
Manufacturing,” ISRN Mech. Eng., 2012.

[2] S. S. Babu and R. Goodridge, “Additive
manufacturing,” Materials Science and Technology (United
Kingdom), vol. 31, no. 8. Maney Publishing, pp. 881–
883, 01-Jun-2015.

[3] D. Brackett, I. Ashcroft, and R. Hague, “Topology
optimization for additive manufacturing,” in 22nd
Annual International Solid Freeform Fabrication Symposium -
An Additive Manufacturing Conference, SFF 2011, 2011.

[4] F. Cucinotta, M. Raffaele, and F. Salmeri, “A stress-
based topology optimization method by a Voronoi
tessellation Additive Manufacturing oriented,” Int. J.
Adv. Manuf. Technol., vol. 103, Aug. 2019.

[5] D. S. Thomas and S. W. Gilbert, “Costs and cost
effectiveness of additive manufacturing: A literature
review and discussion,” in Additive Manufacturing:
Costs, Cost Effectiveness and Industry Economics,
2015.

[6] P. Alexander, S. Allen, and D. Dutta, “Part orientation
and build cost determination in layered
manufacturing,” CAD Comput. Aided Des., 1998.

[7] G. Costabile, M. Fera, F. Fruggiero, A. Lambiase, and
D. Pham, “Cost models of additive manufacturing: A
literature review,” Int. J. Ind. Eng. Comput., 2016.

[8] S. L. Chan, Y. Lu, and Y. Wang, “Data-driven cost
estimation for additive manufacturing in
cybermanufacturing,” J. Manuf. Syst., 2018.

[9] E. Asadollahiyazdi, J. Gardan, and P. Lafon, “Multi-
Objective Optimization of Additive Manufacturing
Process,” IFAC-PapersOnLine, vol. 51, pp. 152–157,
Jan. 2018.

[10] K. Thrimurthulu, P. M. Pandey, and N. V. Reddy,
“Optimum part deposition orientation in fused
deposition modeling,” Int. J. Mach. Tools Manuf.,
2004.

[11] Y. Zhang, A. Bernard, R. K. Gupta, and R. Harik,
“Feature based building orientation optimization for
additive manufacturing,” Rapid Prototyp. J., 2016.

[12] Y. Zhang, A. Bernard, R. Harik, and K. P.
Karunakaran, “Build orientation optimization for
multi-part production in additive manufacturing,” J.
Intell. Manuf., 2017.

[13] P. Das, R. Chandran, R. Samant, and S. Anand,
“Optimum Part Build Orientation in Additive
Manufacturing for Minimizing Part Errors and Support
Structures,” in Procedia Manufacturing, 2015.

[14] S. Chowdhury, K. Mhapsekar, and S. Anand, “Part
Build Orientation Optimization and Neural Network-
Based Geometry Compensation for Additive
Manufacturing Process,” J. Manuf. Sci. Eng. Trans.
ASME, 2018.

[15] G. Strano, L. Hao, R. M. Everson, and K. E. Evans,
“Multi-objective optimization of selective laser
sintering processes for surface quality and energy
saving,” in Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 2011.

[16] V. Canellidis, J. Giannatsis, and V. Dedoussis,
“Genetic-algorithm-based multi-objective optimization
of the build orientation in stereolithography,” Int. J.
Adv. Manuf. Technol., 2009.

[17] S. K. Singhal, P. K. Jain, P. M. Pandey, and A. K.
Nagpal, “Optimum part deposition orientation for
multiple objectives in SL and SLS prototyping,” Int. J.
Prod. Res., 2009.

[18] A. Li, Z. Zhang, D. Wang, and J. Yang, “Optimization
method to fabrication orientation of parts in fused
deposition modeling rapid prototyping,” in 2010
International Conference on Mechanic Automation and Control
Engineering, MACE2010, 2010.

[19] P. Jaiswal, J. Patel, and R. Rai, “Build orientation
optimization for additive manufacturing of functionally
graded material objects,” Int. J. Adv. Manuf. Technol.,
2018.

[20] N. Padhye and K. Deb, “Multi-objective optimisation
and multi-criteria decision making in SLS using
evolutionary approaches,” Rapid Prototyp. J., 2011.

[21] S. Khodaygan and A. H. Golmohammadi, “Multi-
criteria optimization of the part build orientation
(PBO) through a combined meta-
modeling/NSGAII/TOPSIS method for additive
manufacturing processes,” Int. J. Interact. Des. Manuf.,
2018.

[22] A. M. Phatak and S. S. Pande, “Optimum part
orientation in rapid prototyping using genetic
algorithm,” in Transactions of the North American
Manufacturing Research Institution of SME, 2012.

[23] S. E. Brika, Y. F. Zhao, M. Brochu, and J. Mezzetta,
“Multi-Objective Build Orientation Optimization for
Powder Bed Fusion by Laser,” J. Manuf. Sci. Eng.
Trans. ASME, 2017.

[24] L. Di Angelo and P. Di Stefano, “Parametric cost
analysis for web-based e-commerce of layer
manufactured objects,” Int. J. Prod. Res., 2010.

[25] P. T. Lan, S. Y. Chou, L. L. Chen, and D. Gemmill,
“Determining fabrication orientations for rapid
prototyping with stereolithography apparatus,” CAD
Comput. Aided Des., 1997.

[26] H. S. Byun and K. H. Lee, “Determination of the
optimal build direction for different rapid prototyping
processes using multi-criterion decision making,”
Robot. Comput. Integr. Manuf., 2006.

[27] D. T. Pham, S. S. Dimov, and R. S. Gault, “Part
orientation in stereolithography,” Int. J. Adv. Manuf.
Technol., 1999.

[28] I. Campbell, J. Combrinck, D. De Beer, and L.
Barnard, “Stereolithography build time estimation
based on volumetric calculations,” Rapid Prototyp. J.,
2008.

[29] Z. Yicha, A. Bernard, J. Munguia, and K. K.P., “Fast

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|10

adaptive modeling method for build time estimation in
Additive Manufacturing,” CIRP J. Manuf. Sci.
Technol., Jun. 2015.

[30] L. Di Angelo and P. Di Stefano, “A neural network-
based build time estimator for layer manufactured
objects,” Int. J. Adv. Manuf. Technol., 2011.

[31] C. A. Ernesto and R. T. Farouki, “High-speed
cornering by CNC machines under prescribed bounds
on axis accelerations and toolpath contour error,” Int.
J. Adv. Manuf. Technol., 2012.

[32] Y. A. Jin, Y. He, J. Z. Fu, Z. W. Lin, and W. F. Gan,
“A fine-interpolation-based parametric interpolation
method with a novel real-time look-ahead algorithm,”
CAD Comput. Aided Des., 2014.

[33] S. Sun, H. Lin, L. Zheng, J. Yu, and Y. Hu, “A real-
time and look-ahead interpolation methodology with
dynamic B-spline transition scheme for CNC
machining of short line segments,” Int. J. Adv. Manuf.
Technol., 2016.

[34] Y. Zhang, M. Zhao, P. Ye, J. Jiang, and H. Zhang,
“Optimal curvature-smooth transition and efficient
feedrate optimization method with axis kinematic
limitations for linear toolpath,” Int. J. Adv. Manuf.
Technol., 2018.

[35] L. Wang and J. Cao, “A look-ahead and adaptive speed
control algorithm for high-speed CNC equipment,”
Int. J. Adv. Manuf. Technol., 2012.

[36] L. Di Angelo, P. Di Stefano, and E. Guardiani, “A
Build-Time Estimator for Additive Manufactured
Objects BT - Design Tools and Methods in Industrial
Engineering,” 2020, pp. 925–935.

