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1. INTRODUCTION 

AM technologies are growing day by day, thanks to the 
several vantages which characterize them [1]. They allow to 
create designed objects using new and innovative shapes, which 
could not be obtained by the traditional manufacturing process  
[2]. Is this the case of shape optimization of structural 
component in which the unstressed material could be removed 
to reduce the component weight [3], [4]. Moreover, since the 
AM processes are well-integrated with CAD instruments, the 
pre-processing for the physical creation of a part requires a 
shorter time compared with classical subtractive technologies. 
This property represents a key-feature for companies that work 
in a competitive business, for which the reduction of the Time 
to Market determines the competitivity of the company itself. 
Nevertheless, AM technologies are still expensive and the 
manufacturing process requires a time significantly longer than 
the classical subtractive manufacturing technologies [5]. In a 
competitive market of AM services, manufacturing costs must 
be estimated in a reliable way [6]–[8]. That’s the reason why an 
accurate estimation of build-time is mandatory. Reliable 
quantification of the build-time serves also to implement a 
method devoted to finding the deposition direction which 
minimizes manufacturing costs [9]–[23]. 

 
In this aim, several research activities were conducted during 

the last years. These efforts have led to two different strategies 
for estimating the build-time. 

A first strategy performs a detailed–analysis of the 
manufacturing activity and should be also the most reliable.  

A second approach performs the build-time estimation by 
properly-defined parametric functions in which the 
independent variables are few build-time driving factors.  

The detailed-analysis based methods use complete 
information related to the geometry of the object and to the 
manufacturing process. By this method, a very accurate 
estimation of the build-time could be potentially obtained. On 
the other side, the complete information is necessary for that 
evaluation and a detailed analysis of the manufacturing activity 
is required. For these reasons, detailed-analysis is 
computationally expensive and more time is required for build-
time estimation.  

Instead the parametric methods are less accurate than the 
first one but, on the other hand, they require few data as input 
and they are computationally less expensive. The parametric-
based methods make use of some driving build-time factors, 
which are the independent parameters used in the functions to 
evaluate the build-time, which is the dependent variable. These 
parameters can be computed by analysing the geometric model 

ABSTRACT 
Additive Manufacturing (AM) is a technology for quickly fabricating physical models, functional prototypes and small batches of parts, 
by stacking two-dimensional layered features, directly from computer-aided design (CAD) data. 
One of the most important challenges in this sector is represented by the capability to predict in advance the build-time because it’s 
crucial to evaluate production cost. In this paper, an accurate method for obtaining build-time is proposed. This method is based on an 
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of the object to be manufactured (volume, bounding box, etc.). 
The most challenging aspect of this typology of methods 
consists in identifying these factors. The set of parameters used 
should take into account all the elements which affect build-
time and they must be independent each other so that any 
cross-correlation is avoided. The parametric methods appear 
more promising for many practical applications such as in those 
contexts where an accurate prediction of the build-time is 
required but a limited set of data describing the object is 
available. It is the case of the budgeting process, where the 
customer may not have the intention of providing the full 
geometrical model of the object to the seller, in order to protect 
its intellectual property, but can provide just some parameters 
that affect cost [24]. Moreover, the build-time estimation is a 
mandatory step for any optimization method devoted to search 
the best build direction. It is for these reasons that parametric 
approaches have been proposed generally as a component of 
much more articulated methods devoted to search the optimal 
manufacturing build direction. [25] suggests a very simplified 
model in which the build-time is proportional to the number of 
layers in the sliced model. [21], [23], [24], [26]–[28] propose 
more complex formulations of the build-time, which is 
dependent on the volume of the object, of the supports and 
other geometrical features of the object. Although they use 
many more parameters, the limitation of these methods is in the 
function describing the build-time, which is linear. The 
relationship between build-time and its driving factors is very 
complex and unknown. In order to take into account this 
problem, [29] suggests using an adaptive model based on the 
Grey Modelling, while [30] proposes an Artificial Neural 
Network (ANN) for identifying the relationship between the 
driving factors and the build-time. The authors demonstrate 
that in this way a very accurate estimation of the build-time can 
be obtained. The limit of both these approaches is they need a 
large set of model samples. In order to provide a set of training 
samples, a lot of driving build-time factors and related real 
build-time should be examined. The accuracy of estimation 
performed by the neural network, for example, increases with 
the number of test samples, so that a large number of real 
build-time evaluations is required. Obviously it would not be 
economically and temporally feasible.  

In order to define a significative set of samples, an accurate 
detailed-analysis based method could be used, which performs a 
less expansive evaluation of the build-time with respect to a real 
experiment. A detailed-analysis can be operated by using 
specialized CAE programs such as those supplied with the AM 
machine. It is the case of Simplify 3D, which is a 3D printing 
slicing software that controls every aspect of the printing 
process and performs also build-time evaluation. Some 
alternatives to this tool are Cura by Ultimaker and 
MatterControl by MatterHackers, both freeware. Nevertheless 
the build-time estimations provided by these software is 
different from those performed with the FDM machine 
(German RepRap X350). In Table 1 the comparison of the 
estimated build-time with the real one is reported, using three 
test cases shown in Figure 1. 

Table 1. Comparison between real build-time and an estimation 
provided by  professional CAE software for the models reported in Figure 1. 

Model Software Real Estimated Error 

A Simplify3D 1532 min 1344 min -14 % 
B Cura 374 min 242 min -54 % 
C MatterControl 326 min 286 min -14 % 

The estimation performed is not accurate enough to be used 
for obtaining qualified training data for a neural network. The 
main reason which led to the mismatch evidenced in the 
previously mentioned programs do not consider some process-
related parameters of the machine in use, which are acceleration 
and jerk. 

 

 
The control strategy performed by some machine firmware, 

such as the open-source RepRap, uses acceleration strategies, 
defined by two parameters “jerk” and “acceleration” that widely 
affect build-time and object quality. This is shown in Figure 2, 
where two cubes of the same dimension are manufactured, by a 
German RepRap X350, using different acceleration parameters. 
In Figure 2(a)  a module of 300 mm/s2 was selected for the x-y 
axis, while in Figure 2(b) twice of the value than the previous 
one is used.  

 

 
Figure 2. Comparison between two cubes, based on the same nominal 

geometry and manufactured using a different acceleration value. 
 

A comparison between the two objects shows that the 
quality of the corners of the model (a) is significantly better 
than the model (b). This is due to the different inertia forces, 
which affect the accuracy of the material deposition 
performances, especially on the corners.  

In order to overcome all the previously discussed limitations 
of the implemented detailed-analysis based methods, in this 
paper, a new method for build-time evaluation has been 
developed. The followed approach has been quite a general-
purpose one, so that this method can be used in several AM 
applications. The method performs the GCode analysis, taking 
into account the most important process-related parameters. In 
this way, a very accurate estimation of the real build-time can be 
performed. In the next sections, the method will be explained 

Figure 1. Reference models used for time comparison. 
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in detail. Some test cases will be used to test the proposed 
approach and the results will be critically discussed. 
 

1.1. GCode 
The GCode is the most widespread programming language 

used for giving instructions to Computer Numerical Control 
(CNC) machine. It consists of a series of textual instructions 
(word address), in accordance with the standard ISO 6983, that 
regulate the behavior of the machine during the manufacturing 
process. For example, defining the speed of the axis, regulating 
the temperature of the extruder and much more. This set of 
commands is generally called Part Program. During the “first” 
era of the automatic machines, a manual approach was adopted 
for generating the Part Program. An high-skilled operator was 
able to write the Part Program by itself or, at the best, with the 
aid of visual programming software. Today, instead, the 
preferred solution consists of an automatic approach based on 
the integration between the CAD and CAM systems (Figure 3). 
After the design of the object, the geometry is imported into 
the CAM, where many of the process-related parameters are 
defined. With reference to AM technologies, these parameters 
could be represented by the layer thickness, the typology of 
hatching, the speeds of the motors and much more. Then, if 
required by the technology in use, the supports are generated 
too into the CAM, typically using a graphical procedure. At the 
end of these steps, the CAM generates the tool path and the 
Post Processor transforms all the previous information in a set 
of instructions, readable by the machine in use, which is the 
Part Program, saved into a textual file that is finally sent to the 
machine.   

 
Figure 3. Automatic programming for generating the Part Program. 
 
Consequently, the Part Program defines many characteristics 

of the manufacturing process that will be followed by the 
machine. But an analysis limited to the Part Program is 
generally not sufficient to establish the kinematic behavior of 
the machine. Many decisions about that are taken in real-time 
by the controller of the machine. This is the case for 
acceleration ramps, which are tightly dependent on the machine 
in use. Any CNC machine, due to the axis inertia and/or torque 
availability of the motors, is subject to magnitude constraints on 

accelerations. Three different control strategies may be adopted.  
Supposing that the deposition tool has to follow the path 
reported in blue in Figure 4, where p1, p2, and p3 are three 
control points interpolated linearly. A first option consists of 
maintaining a fixed speed along the entire path. This condition 
represents the optimal solution in terms of time-saving but, on 
the other side, a similar behavior can be realized only 
theoretically due to the infinite acceleration module required to 
realize that. Actually, when a fixed speed is adopted (Figure 5), 
a diverted path (green line of Figure 4) is generated due to the 
impossibility of realizing an infinite module acceleration. In 
order to avoid a similar behavior that causes aleatory 
geometrical errors on the finite piece, another strategy, which is 
characterized by having a zero speed in correspondence of 
control points (blue-dotted line in Figure 5), can be used. In 
this case, linear acceleration ramps are generally adopted. This 
allows obtaining the optimal positioning accuracy, being the 
theoretic path and the real path the same.  

 
Figure 4. Comparison of tool paths using different acceleration 

strategies. 
 

The drawback of this strategy is given by the increase of the 
build-time. This trouble has led to formulate a third approach, 
which represents a compromise solution between geometrical 
accuracy and build-time. In this case, the control unit of the 
machine in use does not limit itself to execute the instructions 
provided by the GCode but it performs a “clever” evaluation. 
In addition to the command in execution, some next 
instructions are read and cached. Then, through a vectoral 
comparison of the velocities, the acceleration ramps are 
computed in order to maintain the maximum feedrate possible 
(red-dotted line Figure 5). This control strategy is typically 
known as “look-ahead” and it can be regarded as a multi-
objective optimization problem, where the geometrical accuracy 
conflicts with the reduction of the build-time. 
Many researchers have worked on this topic during the last 
years. Since the related literature is wide and voluminous, in the 
following some of the most important and recent methods are 
analyzed. [31] proposes that each corner is smoothed by 
replacing a subset of the path that contains it with a conic 
"splice" segment, deviating from the exact corner by no more 
than a prescribed tolerance. [32] suggests using a fine-
interpolation parametric method in which the corners are 
replaced by arc curves, while in [33], [34] the B-splines are used 
to approximate the corners. 

 
 CAD system 
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Figure 5. Speed comparison between constant speed, zero-velocity, and 

look-ahead strategies. 
 
In [35] a different kind of approach is used: the control acts 

on the acceleration ramps instead of the tool paths. The 
presence of so many different approaches to the “look-ahead” 
optimization can generate some confusion. That’s the case of 
FDM machines for which, as we verified in the previous section 
for the case of a German RepRap X350, also professional tools 
are not able to reconstruct the real kinematic behavior of the 
machine, leading to a very rough estimation of the build-time.  

In this paper, a deep investigation of the behavior of 
RepRap devices is computed. The kinematic laws are 
reconstructed and, lastly, a script for estimating very accurately 
the build-time, written in Python following an Object-Oriented 
Paradigm for scalability and maintainability, is provided.  

 

2. PROPOSED METHOD 

The proposed method is based on the analysis of the 
GCode, whose role was previously described. In particular, all 
the instructions which are referred to movement command are 
considered, being these the main responsible for defining the 
build-time. Other instructions that may contribute to the build-
time are the temperature commands that, for example, define 
the temperature of the printing bed. But for this category of 
instructions, an exact evaluation of how they contribute to the 
build-time is hard to provide because they are closely depended 
on environmental conditions. Moreover, their influence is 
generally negligible with respect to movement commands and 
so they will not be considered. 

The GCode movement commands are described in Annex E 
of ISO 6983, therefore they will not be discussed in detail here. 
As already illustrated in Figure 3, being the GCode, used for 
AM applications, generated starting from a triangular mesh (.stl) 
that is afterward sliced, most of the analytical information 
which defines the original geometry is lost during the data 
exchange. Consequently, the simplest and most efficient way 
for generating the Part Program is to define many geometrical 
control points that belong to the model and interpolate them 
linearly. Therefore, most of the movement instructions used for 
AM applications are linear interpolations, introduced by the 
code G01. The algorithm evaluates each interpolation line using 
a regular expression matching. Each movement is associated 
with its relative velocity and length. In Figure 6, as a sample, the 
interpolation lines i and i+1 of a generic GCode file are 
reported. 

 

 
Figure 6. Sample of two linear interpolation's GCode instructions. 
 
The length 𝑙" of path i-th, the nominal speed 𝑣1" that should 

be reached and the length of extruded filament 𝑒" during the i-th 
step can be formulated as follows. 

 
𝑙" = $(𝑒𝑒𝑒. 𝑒𝑒𝑒 − 𝑎𝑎𝑎. 𝑎𝑎𝑎)+ + (𝑓𝑓𝑓. 𝑓𝑓𝑓 − 𝑏𝑏𝑏. 𝑏𝑏𝑏)+ 
 

𝑣1" = 𝑑𝑑𝑑𝑑 
 

𝑒" = 𝑔. 𝑔𝑔 
 
For each step i-th the build-time is provided by the 

contribution of four terms:	 
 
𝑡" = 𝑡5678" + 𝑡9" + 𝑡:" + 𝑡+" (1) 

 
Where: 
 
𝑡5678": jerk phase time during i-th step 
𝑡9" : acceleration phase time during i-th step  
𝑡:" : cruise phase time during i-th step  
𝑡+" : deceleration phase time during i-th step  
 
To evaluate these terms, the acceleration phase and the jerk 

phase need to be here discussed and illustrated. 
The jerk phase, in particular, is referred to the “look-ahead” 

strategy in use by RepRap machines. During that phase, an 
“instantaneous” change of speed Δ𝑣 is applied. This particular 
behavior is made possible by using of stepper motors. 
Obviously, “instantaneous” change of velocity implies high 
values of acceleration, so the value of Δ𝑣 must be limited to 
avoid both vibrations and a loss of steps from the motors. 
Being the contribution of 𝑡5678" generally very small compared 
to the other three terms of formula (1), it is assumed to be 
negligible. 
 
𝑡5678" ≅ 0 (2) 

 
In order to proceed, for each step, a generic j-th degree of 

freedom, which satisfies the condition (3), is taken as reference.  
 
𝑎"
= ≠ 0								𝑗 = 1, 2, … ,𝑁 (3) 

 
𝑎"
= : acceleration module of i-th step referred to the j-th degree of 

freedom 
 
where 𝑁 identifies the number of degrees of freedom of the 

machine. That assumption is justified by the synchronous 
behavior which should be carried out by the axis: the axis 
should start and stop to execute the command of a certain 
instruction line at the same moment. The following condition is 
then evaluated. 

 

D𝑣2"
= − 𝑣0"E:

= D > Δ𝑣"
= (4) 

 
𝑣2"

=: end speed of step i-th refereed to the j-th degree of freedom 

 i)          G1 Xaaa.aaa Ybbb.bbb Ec.cc Fdddd 
 i+1)      G1 Xeee.eee Yfff.fff Eg.gg 
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𝑣0"E:
= : start speed of step (i+1)-th refereed to the j-th degree of 

freedom 
 
𝑣2!

" and 𝑣0!#$
"  are initially computed taking as reference the 

feedrate value reported into the GCode instructions and they 
are generally different each other. This is due to the fact that 
from step i-th to step (i+1)-th the vector 𝒗𝟏 could change in 
direction and/or magnitude. If the condition (4) it’s true, end 
speed 𝑣2!

" or/and start speed 𝑣0!#$
"  need to be revaluated. In this 

case, two possibilities are defined. If 
 

𝑣2"
= ∙ 𝑣0"E:

= > 0 (5) 

 
then just one of the two velocities requires to be updated.  

⎩
⎪
⎨

⎪
⎧𝒗𝟐𝒊∗ =

𝑣0"E:
= + Δ𝑣"

=

𝑣2"
= 𝒗𝟐𝒊														|𝑣2"

=| > |𝑣0"E:
= |

𝒗𝟎𝒊E𝟏∗ =
𝑣2"

= + Δ𝑣"
=

𝑣0"E:
= 𝒗𝟎𝒊E𝟏										|𝑣2"

=| < |𝑣0"E:
= |

 (6) 

 
Otherwise, both velocities are recalculated in the following 

way. 
 

⎩
⎪
⎨

⎪
⎧𝒗𝟐𝒊∗ =

Δ𝑣"
=

𝑣2"
= + 𝑣0"E:

= 𝒗𝟐𝒊										

𝒗𝟎𝒊E𝟏∗ =
Δ𝑣"

=

𝑣2"
= + 𝑣0"E:

= 𝒗𝟎𝒊E𝟏		
 (7) 

 
The physical significance of the jerk phase can be better 
understood considering Figure 7. By assuming that the 
deposition tool is moving from point A to point B, then to C’ 
or C’’, maintaining a constant feedrate. In the case of point C’, 
the variation in direction of the velocity vector is small. 
Therefore, instead of reducing the speed in point B to zero, just 
a limited deceleration is applied until a certain speed value, 
whose entity depends on the chosen jerk module (equation (6)). 
Otherwise, when the deposition tool has to follow the path 
ABC’’ the vectorial variation of the velocity is significant, 
consequently both the end speed of path i-th 𝒗𝟐𝒊 then the start 
speed of the path (i+1)-th 𝒗𝟎𝒊E𝟏 are down-scaled (equation (7)). 
Anyway, it is interesting to notice that in both cases the speed 
in point B is never equal to zero. This affects the manufacturing 
process in terms of vibrations, quality of deposition and 
accuracy that, by limiting the jerk parameter, can be contained 
into acceptable values. On the other side, this compromise 
allows to obtain a drastic reduction of the build-time. 

After that the jerk phase has defined the start speed 𝒗𝟎𝒊 and 
the end speed 𝒗𝟐𝒊 of the i-th step, the acceleration ramps can be 
computed. This kind of machine generally makes use of linear 
acceleration ramps, which are the most simple to handle when a 
digital electronic is utilized. Assuming to be at step i-th, four 
different kinds of situations may occur from GCode’s reading. 
The first one, reported in Figure 8, represents the condition for 
which nominal speed 𝑣1!

" is reached along the j-th degree of 
freedom. The following quantities are defined. 

 
Figure 7. During the jerk phase, the start speed and end speed of the 

paths are "overwritten" cleverly. 

⎩
⎪
⎨

⎪
⎧𝑡9" =

|𝑣1"
=| − |𝑣0"

=|
𝑎"
= 										

𝑠9"
= = D𝑣0"

=D	𝑡9"	 +
1
2𝑎"

=	𝑡9"+
 (8) 

⎩
⎪
⎨

⎪
⎧𝑡+" = −

|𝑣2"
=| − |𝑣0"

=|
𝑎"
= 											

𝑠+"
= = D𝑣1"

=D	𝑡+"	 −
1
2𝑎"

=	𝑡+"+ 				

 (9) 

 
If the next condition (10) becomes true, the behavior 

illustrated in Figure 8 is performed during i-th step. 
 

𝑠9"
= + 𝑠+"

= > 𝑠"
=			 (10) 

 
In that case 𝑡:" and 𝑠:

= can be computed as 
 

V
𝑡:" =

𝑠:
=

𝑣1"
=																														

𝑠:
= = 𝑠"

= − 𝑠9"
= − 𝑠+"

= 												

 (11) 

 
𝑠"
= : total distance during i-th step along  the j-th degree of freedom 
𝑠9"
= : acceleration distance during i-th step along  the j-th degree of 

freedom 
𝑠:"
= : cruise distance during i-th step along  the j-th degree of freedom 
𝑠9"
= : deceleration distance during i-th step along  the j-th degree of 

freedom 



 

ACTA IMEKO | www.imeko.org January2014 | Volume 3 | Number 1|6 

 
Figure 8. Nominal speed reached during step i-th. 
 
Other cases can happen when the nominal speed 𝑣1!

" along 
the j-th degree of freedom can’t be reached due to an 
insufficient path length 𝑠!

". In such a case we can distinguish 
three different possibilities. The first one is illustrated in  and 
occurs when the conditions (12) become true. 

 

W
𝑠9"
= > 𝑠"

=							
𝑣0"

= < 𝑣2"
=			

 (12) 

 

⎩
⎪
⎨

⎪
⎧ 𝑡9" =

D𝑣2"
=D − |𝑣0"

=|
𝑎"
= 												

𝑠9"
= = D𝑣0=XD𝑡9" 	+

1
2	𝑎"

=𝑡9"	+ 		

 (13) 

 
In this case a new end speed 𝑣2!

" is necessary and, 
consequently, condition (4) must be re-evaluated between step 
i-th and step (i+1)-th. This particular behavior requires to use a 
“closed-loop” control. For each i-th step, updated evaluations 
are performed for  the (i-1)-th and (i+1)-th steps too, if required. 
For this reason, the step elaborated by the “look-ahead” 
algorithm is a little ahead respect to the step which the machine 
is being realizing. New end speed 𝑣2!"∗ and acceleration time 𝑡&!∗  
are evaluated in the following way. 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧	𝑣2"

=∗ = Y2	𝑎"
=𝑠"

= + |𝑣0"
=|	

𝒗𝟐𝒊∗ =
𝑣2"

=∗

𝑣1"
= 𝒗𝟐𝒊																		

𝑡9"∗ =
D𝑣2"

=∗D − |𝑣0"
=|

𝑎"
= 									

 (14) 

  

Figure 9. Not enough distance to accelerate, new end speed. 
 
 

An opposite situation is illustrated in Figure 10. In this case, 
there is not enough space for decelerating and, consequently, 
the start speed 𝑣0!

" needs to be updated. That occurs when the 
conditions (15) are verified. 

 

W
𝑠+"
= > 𝑠"

=											
𝑣0"

= > 𝑣2"
=						

 (15) 

 

⎩
⎪
⎨

⎪
⎧𝑡+" =

D𝑣2"
=D − |𝑣0"

=|
−𝑎"

= 												

𝑠+
= = D𝑣0=XD𝑡+" −

1
2	𝑎"

=𝑡+"	+ 		

 (16) 

 
So, similarly to the previous one, new start speed 𝑣0!

"∗ and 
deceleration time 𝑡'!∗  can be formulated as follows. 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧	𝑣0"

=∗ = Y2	𝑎"
=𝑠"

= + |𝑣2"
=|	

𝒗𝟎𝒊∗ =
𝑣0"

=∗

𝑣1"
= 𝒗𝟎𝒊																		

𝑡+"∗ =
D𝑣2"

=D − |𝑣0"
=∗|

𝑎"
= 									

 

 

(17) 

 
Figure 10. Not enough space to decelerate, new start speed. 
 

A last possible situation is identified in Figure 11. In this 
case, nominal speed 𝑣1!

" is not reached but there is enough 
distance for accelerating and decelerating. That behavior is 
realized when the condition (18) is verified. 
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For this case a new cruise speed 𝑣1!
"∗ is defined. 

 

𝑣1"
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2	𝑎"
= + 𝑎"

=𝑠"
= (21) 

 
After calculating 𝑣1!

"∗ as suggested by (21), the terms 𝑡9" and 
𝑡+" can be finally evaluated. 
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Figure 11. Nominal speed not reached. Enough space for accelerating 

and decelerating. 

 

The previous relations and considerations were implemented 
into a python script, whose flowchart is described in Figure 12. 
At the beginning the software evaluates the total number of 
instructions contained into the Part Program. Then, using a 
regular expression matching, the movement commands are 
identified and for each of them, an associate speed and length is 
pulled out and memorized. The next phases consist of applying, 
for each movement command, the Jerk and Acceleration 
phases, accordingly with the relationships previously illustrated. 
At the end of the cycle the total build-time, estimated by the 
algorithm, is provided. 
 

3. RESULTS 

In order to validate and refine the model, some comparisons 
were made between theoretical build-time and real-time 
required by a FDM machine (German RepRap X350). Nine 
objects, represented in Figure 13, which are characterized by 
different topological and geometrical features, were chosen for 
the experiment. Every part was physical realized to obtain the 
real value of the build-time. Different CAE software was used 
for generating the Part Program and their estimation were 
compared both with the real build-time and its estimation 
calculated by the proposed algorithm. Because each CAE 
software could implement a different slicing strategy, the Part 
Program of the same part obtained using different automatic 
procedures can not be compared, also if the same process 
parameters are used. Therefore for each test case only one of 
the three CAE software considered (Cura, MatterControl and 
Simplify3D) were used. In Table 2 the parameters used for the 
experiment are reported. 
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Figure 12. Algorithm flow-chart. 
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Table 2. Process related parameters used for the experiment. 

Setting Value 

Acceleration 300 mm/min² (slow) 1000 mm/min² (rapid) 
Jerk (Δv) 18 mm/min 
Layer thickness 0,1 mm 
Maximum speed 100 mm/s (X-Y)   10 mm/s (Z)   100 mm/s (E) 
Retract length 2 mm 

 
 

 
Figure 13. Models used for analyzing the accuracy of the proposed 

algorithm. 
 
The results of the tests are illustrated in Table 3. It can be 

noticed that, for each of the used CAE software, the error 
values cannot be neglected. In particular, for the platform Cura 
the average error for the three analyzed test cases amounts to 
54 % of the real build-time. A better situation is found by using 
Simplify 3D, which shows an average error of 15 % with 
respect to the real build-time. Anyway, a similar error can not 
be accepted in most of the applications. Finally, it can be 
affirmed that the optimal behavior is represented by 
MatterControl. The average error for that software, in fact, is 8 
% of the real build-time. A similar value could be accepted in 
some contests such as, for example, the budgeting process. 
Anyway, two aspects should be noticed. As first, the error for 

the test case F is equal to 14 % of the real build-time. This 
shows that the error is not characterized by a well-known trend, 
so the level of confidence of the estimations is low. Moreover, a 
parametric method such as [36] is able to provide a better 
estimation of the real build-time requiring, at the same time, a 
significantly less amount of time for the set-up.  

On the other side, the valuation obtained using the proposed 
algorithm is very satisfactory, the error is negligible (≤ 1 %) in 
any case of study. For parts B, E and F the estimation is even 
equal to the real build-time. These results underline that the 
proposed method evaluates the real behavior of RepRap 
machines. Moreover all the causes which systematically affect 
the build-time are identified and taken into account. 

4. CONCLUSIONS 

In this paper, a new method, which performs accurate 
estimation of the build-time, has been proposed. This result is 
possible thanks to an advanced analysis of the Part Program of 
the object to be manufactured integrated with information 
concerning control strategies. 

The kinematic behavior of a CNC machine is defined 
partially by the Part Program, since the tool movements are 
determined also by the control strategies implemented in the 
machine. It is the case of so-called “look-ahead” algorithm, 
implemented to control the machine movements, aimed to 
reduce the build-time, maintaining at the same time the 
geometrical and dimensional quality of the final object. 

It has been noticed that also professional CAE tools, 
developed for AM applications, are not able to evaluate 
accurately the build-time required for fabricating objects 
realized using additive technologies. This results look so 
negative because they are obtained from the software that 
performs the manufacturing process from the given geometric 
data (.stl file)  

Therefore, with the aim of testing the procedure for 
determining the build-time, the case study of RepRap was taken 
as reference, since it is a very diffused controller for AM 
machines. By a detailed-analysis of the RepRap machines, the 
control strategies were identified and reproduced inside the 
proposed method. In particular, it provides a mathematical 
formulation of the “look-ahead” control strategy  (“jerk 
phase”).  

In order to compute the build-time, a custom python 
application was developed. As shown in the results section, the 
method provides a very accurate estimation of the build-time. 
For each of the nine test cases analyzed, the error is less than 
0,2 % of the real build-time, but in some cases the estimated 
and real build-time are the same.  

Table 3. Results of the experiment. 

Part Volume [cm³] 
Real build-time 

[min] Software 
CAE build-time 

[min] Error 
Proposed method 

[min] Error 

A 210 1532 Simplify 3D 1344 -14 %       1535 0,2 % 
B 23 374 Cura 242 -54 %        373 -0,1 % 
C 14 156 Simplify 3D 146 -7 %        156 0 % 
D 127 1206 Simplify 3D 976 -24 %       1205 -0,01 % 
E 27 402 MatterControl 388 -4 %        402 0 % 
F 21 326 MatterControl 286 -14 %        326 0 % 
G 245 2177 MatterControl 2040 -7 %       2173 -0,2 % 
H 7 101 Cura 64 -58 %        101 0 % 
I 25 257 Cura 170 -51 %        257 0 % 
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A limit of this method is it needs the Part Program which is 
obtained at the end of several steps (Figure 3). Therefore, this 
approach is quite time-consuming and could not represent the 
optimal solution when the evaluation should be provided 
quickly and some information is still missing. For example, 
some specific parameters of the machinery in use, such as 
acceleration and jerk. In these cases, the optimal solution is still 
represented by the parametric methods, for which the proposed 
method can represent a powerful instrument for the set-up. 

Further work is required to test the proposed methodology 
for other typologies of AM machines that does not implement 
RepRap controller and use other control strategies. 
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