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ABSTRACT
The LLong Rrange (LoRa) transmission technology enables energy-constrained devices such as , likethe tiny sensor systems used in internet- of- things (IoT) applications, that are to be distributed over wide areas while and still being able to establish appropriateaffordable  connectivity. This has resulted in the development of  motivated an exponentially increasing numberamount of different solutions and services based on LoRa, be they either dedicated to the long-term monitoring of distributed plants and infrastructures or , and to human-centeredcentred applications such as , like safety-oriented sensor systems to be ufor used in the workplace. In dense LoRa networks, predicting the number of supported nodes in relation to their position and the propagation environment is essential to for ensuring e a reliable and stable communication and to minimising limit costs. In this paper, after comparing different path loss models based on a field measurement campaign ofor LoRa received signal strength indicator (RSSI) values within a Uuniversity campus, two main modifications of the LoRa Ssimulator tool awerere implemented. These were y are aimed at improving the its accuracy ofin the prediction of the number of sustainable nodes in relation to , according to the target Ddata Eextraction Rrate set. The Ssimulations based on field measurements demonstrated show that through by an improved path loss evaluation, and the usinge of three gateways,, the number of nodes could be increased theoretically from around bout 100 to aroundbout 6,000.
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Introduction
Industry 4.0 encompasses several key technological components and substantiates in the so-called smart factory, where computer-driven systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions based on self-organisation mechanisms. The Iinternet of Tthings (IoT) is considered an essential element of Industry 4.0, providing the connection among of tthe different sub-systems and enabling both human-to-machine and machine-to-machine communications. As such, large-scale IoT deployments are expected to become widespread, not only within smart industrial plants, but also in similar scenarios, likesuch as multi-site production districts [1], smart construction sites and even mines [2]. 
[bookmark: _Hlk22030828]Among the communication technologies enabling IoT, low power wide area networks (LPWANs) have been are established as a good trade-off between performance and deployment costs [3]. In fact, widely distributed sensor networks relying on 3G/4G cellular infrastructures benefit from reserved frequencies (thus being free from interferences), network-based synchroniszation and a pervasive and reliable connectivity; however, they  but are associated with prohibitively high costs in the case of dense networks. MeanwhileOn the other hand,, LPWANs, such as the Llong Rrange network one (known as (LoRa)) [4], provide license-free long-range communication (possibly prone to interferences) with low power demands (essential for IoT sensors),, but may require need a dense deployment of gateways (GWs) to ensure adequate data transfer performance and to minimise the limit data losses. Numerous Many examples of IoT applications relying on LoRa transmission technology can may bebe found in the recent literature. Addabbo et al. [5], [6] present a low-power IoT architecture for the monitoring of chemical emissions, to be employed to set up monitoring infrastructures in industrial plants or public buildings. WithIin the context of smart cities, the use of LoRa provides the advantage of allowing for the deployment of a large quantity of sensor nodes while keeping the structure of the acquisition network relatively simple and flexible. A LoRa-based smart bin architecture for waste management within the smart cityies’ context is presented in [7], where exploiting an ultrasonic sensor is used to check for the trash level inside the bin. Using a single-channel LoRa network, the authors it demonstrated is shown hhow a system composed of five by 5 sensor nodes was deployed in the historical centre of the city of Florence, in Italy. Another example, where dealing with the problem of covering long distances among LoRa nodes and GWsgateways in sensor networks deployed to monitor gas pipelines was addressed, was has been recently presented in [8]. Here, Iin order to overcome the limitationss of transmission coverage, the authors paper suggests a multi-hop linear topology supported by an properlyappropriately adapted synchronizisation protocol. Other examples of distributed plants and systems monitored by means of a LoRa-based solution are providedgiven in [9] and ,[10]. At the same time, LoRa has been adopted chosen to support also sensor network solutions aimed at human monitoring, as presented in [11], where a wearable system for noise assessment in the workplace is proposed, which makes it according to which it is possible to notify a subject of about a potentially dangerous exposure to high noise levels for a prolonged period of time. In [12], the capability of low-cost LoRa transceivers to schedule the transmission of frames with a standard uncertainty of less than 3 μs, and an acceptable long-term clock stability for applications such as process industry processing was demonstratedhave been proved. LoRa is also being used and evaluated in terms of mobility conditions too, as presented in [13].
LoRa is based on the chirp spread spectrum (CSS) modulation technique, with sinusoidal signals with a hose frequency that changes over the transmission time (chirp signals). This provides inherent robustness to interference, allowing the coexistence of several active nodes within the same frequency channel, with ; the communication is robust even in the presence of high noise levels [14]. When the sensor network to be deployed needs to include a huge number of tiny devices, as it could be the case may happen in industrial or construction processes monitoring, the possibility of to accurately predicting the attainable Ddata Eextraction Rrate (DER) prior to before setting up the real network can may be critical. The DER is the key criterion used to evaluate the scalability of a network: and  it is defined as the ratio of received messages to transmitted messages over a given period of time. The DER depends on the position, number and behaviour of the nodes and sinks, and takes values of between 0 and 1, where, . Iin a perfect deployment, DER = 1. Once estimated, the predicted DER value can be checked against the specific requirements, and, if the check fails, the network design can be modified (e.g. for example by adopting a specific topology, as in [15]) before carrying out the final deployment, thus avoiding additional costs and delays associated with to repeated test installations and failures.
In this paper, with reference to moving from [16] and the LoRaSim simulation tool therein presented therein, we implement various some modifications, based on real measurements, with the aimed atof  improving the capability of the tool to predict the scalability performance of LoRa networks. Such modifications will enable a more realistic modelling of the propagation losses and the positioning of the nodes, as well as a more accurate to determination e in a more accurateof  fashion the number of nodes that allows acceptably reliable and stable communications and , and the network configuration that best tter adapts to different propagation scenarios. 
The remainder of the paper is organizsed as follows:. iIn SectionSection 2, the original LoRaSim tool and the applied changes are briefly introduced before . SectionSection 3 describes the experimental tests performed and the results obtained, both by comparing the theoretical models to the field measurements and implementing different path loss models within the LoRaSim tool. Finally, SectionSection 4 concludes the paper.
the lora simulator and applied modifications
LoRaSim, a discrete-event simulator based on SimPy, iwas implemented according to the technical specification of the SX1272 LoRa module provided by Semtech [18]. The software operations also apply to later modules, such as like the recent SX1276 that features additional frequency bands of operation (169 MHz and 433 MHz, in addition to the 850 MHz– … 1 GHz already supported by the SX1272), more options for the programmable bandwidth, and a better receiver sensitivity (down to -−148 dBm versus. -−137 dBm of the SX1272 module).
The software tool can be used to model the communications between randomly placed nodes and GWs, the number of which can be selected by the user. One of the tool's main features is the possibility of to chooseing different configurations ofor the LoRa module through , by a combination of settings, such as transmission power (TP), carrier frequency (CF), spreading factor (SF), bandwidth (BW) and coding rate (CR). For each data transmission occurring over a node-to-GW link, the LoRaSim estimates the path loss using an embedded model, and simulates collisions among the data packets in terms of signal power (through the so-called ‘capture effect’), carrier frequency, spreading factor and received power.
In order to obtain a more realistic evaluation of the network scalability, first,  of all we implemented additional path loss models to allowlet LoRaSim to adapt to different environmental scenarios. Then, a function enabling the insertion of nodes and GW positions from a file was has been added, to analyse the how DER performance changess in relation , with respect to the default random node positioning assumption.
Path loss models
A path loss model is an equation describing the decrease in of signal power density due to its propagation, in different environments.
We focused on three main models, which those that reasonably apply to the scenarios noted mentioned iin SectionSection 1 and that are valid in the frequency range used by LoRa.
1) Log-Distance model. According to [16], the log-distance path loss model refers to built-up and densely populated areas, . It expressexpressing es the signal attenuation as a function of the distance  between node and GW (given in km):
	
	[bookmark: _Ref20308543](1)


where  is the path loss in dB,  is the mean path loss at the reference distance ,  is the path loss exponent and  is the normal distribution with zero mean and variance, to account for any shadowing.
2) Okumura-–Hata model. The main enhancement introduced by the Okumura-–Hata model [11] is the dependence of the path loss on the carrier frequency that which characterizses the transmission, and on the terminals’ (node and GW) height. As suchThis way, we can model in more details a wider range of nodes’ distribution in more detail while , accounting also for the height of the antennas, in four different scenarios:
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where A, B and C are frequency- and antenna- height-dependent terms. Factor A increases according to with carrier frequency and decreases with an increasincrease ingin  height of the GW and the node height. In addition,Also, the path loss exponent (proportional to B) decreases with an  increasingincrease in  height of the GW height:
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where being  is the carrier frequency in MHz,  is the distance between node and GW (in km), and  and  are the GW and node height (in m), respectively, in m. The model is only intended for large areas, with the GW placed higher than the surrounding rooftops. The Vvalues assigned to the different terms were have been obtained by interpolating the results of extensive measurement campaigns carried out in propagation scenarios corresponding to the model requirements (see [19], Appendix 7.A).
Different expressions of the term  and the  function refer to four different scenarios or propagation environments:
· Small and medium size cities:
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· Metropolitan areas:
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· Suburban environments:
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· Rural areas:
	
	(8)


The function  in suburban and rural areas is the same as with for urban (small and medium-sized cities) areas.
3) 3GPP. Both 3GPP and 3GPP2 [20] developed a path loss model to evaluate the performance of cellular systems.
Here, again, the equation considers the carrier frequency and the antennas’ height:
	
	(9)


where  and are the base station (GW) and mobile station (node) antennas’ height, respectively. Unlike in the two previous models, Tthe distance  is expressed in metres in contrast to the previous two models. According to the value of the constant term , a suburban macrocell system ( = 0 dB) or an urban macrocell systemone ( = 3 dB) is assumed. These models were have been implemented in LoRaSim, starting with the Llog-Ddistance modelone,, as the following coding lines shows:
#Log-Distance Model
Pl = Pld0+10*gamma*math.log10(distance/d0)
The variables used in the code have the same meaning as those in equation (1). The distance variable represents the distance between the GW and each node:; considering that models 2) and 3) include the antennas’ height, transforming urning the 2D spatial representation of the Llog-Ddistance model into a 3D representationone, we changed the variable definition by applying the Pythagorean theorem.
[image: ]
[bookmark: _Ref312314329]Figure 1. The LoRa node used in the experiments, which was based on an Arduino board equipped with a GPS receiver and a LoRa feather. 
The following linescoding was  are used to implement the Okumura-–Hata and the 3GPP models, respectively. The user can select them through a simple if…elif control, which was omitted  that here we left out for convenience..
#Okumura-–Hata Model
#small and medium-size cities
ahm=(1.1*(math.log10(self.freq)-math.log10(10**6))+
-0.7)*hm-(1.56*(math.log10(self.freq)+
-math.log10(10**6))-0.8)
C = 0 

#metropolitan areas
if (self.freq <= 2*10**8):
	ahm = 8.29*((math.log10(1.54*hm))**2)-1.1
elif (self.freq >= 4*10**8):
	ahm = 3.2*((math.log10(11.75*hm))**2)-4.97
C = 0

#suburban environments
ahm=(1.1*(math.log10(self.freq)-math.log10(10**6))+
[image: ]
[bookmark: _Ref55191661]Figure 2. The 37 planned LoRa RSSI measurement positions along eight 8 different directions, within the Uuniversity campus. 
-0.7)*hm-(1.56*(math.log10(self.freq)+
-math.log10(10**6))-0.8)
C = -2*((math.log10(self.freq)+
-math.log10(2.8*10**7))**2) - 5.4


#rural area
ahm=(1.1*(math.log10(self.freq)-math.log10(10**6))+
-0.7)*hm-(1.56*(math.log10(self.freq)+
-math.log10(10**6))-0.8)
C=-4.78*((math.log10(self.freq)+
-math.log10(10*6))**2)+
+18.33*(math.log10(self.freq)+
-math.log10(10*6))-40.98
 
A = 69.55+26.16*(math.log10(self.freq)+
-math.log10(10**6))-13.82*math.log(hb)-ahm
B = 44.9-6.55*math.log10(hb)

#3GPP Model
#suburban Macro
C = 0

#urban Macro
C = 3
where self.freq is the carrier frequency, and hb and hm are the base station (GW) and node height, respectively. All the equations are the same as in of SectionSection 2.1.
The result of the path loss computation iwas passed to the Pl variable by the following line of code for the Okumura-–Hata model, :
Pl=A+B*(math.log10(distance)-math.log10(1000))+C,
and by the following one for the 3GPP model:
Pl = (44.9-6.55*math.log10(hb))*math.log10(distance/1000)+45.5+(35.46-1.1*hm)*(math.log10(self.freq)+
-math.log10(10**6))-13.82*math.log10(hm)+0.7*hm+C
Nodes placement
The second relevant change applied to the LoRaSim tool allows for enables to specifying the placement of the nodes. In fact, the original tool only allows for a random distribution of the nodes, according to which the GW is positioned at the centercentre of a circular area, with and the nodes are randomly placed inside it, based on a simplified pPoisson point process (PPP) [17]. 
[bookmark: _Ref55191869]Table 1. Average RSSI value and variance measured at each position within the Uuniversity campus, over a one1-hour long data collection session.
	Position
	Avg RSSI (dBm)
	σ2 (dBm2)

	1
	-−99.7
	4.0

	2
	−-94.7
	3.6

	3
	−-92.0
	14.5

	4
	−-95.6
	6.0

	5
	−-105.9
	23.6

	6
	−-107.3
	19.2

	7
	−-98.4
	8.5

	8
	−-109.1
	12.6

	9
	−-94.7
	8.5

	10
	−-88.5
	2.9

	11
	−-90.0
	5.0

	12
	−-100.9
	18.4

	13
	−-87.0
	4.5

	14
	−-110.6
	12.3

	15
	−-93.5
	9.8

	16
	−-86.8
	4.4

	17
	−-88.9
	70.3

	18
	−-101.7
	13.4

	19
	−-89.3
	12.0

	20
	−-99.5
	14.1

	21
	−-105.5
	4.4

	22
	−-106.4
	7.7

	23
	−-83.1
	6.9

	24
	−-84.0
	2.4

	25
	−-97.2
	5.3

	26
	−-97.7
	7.1

	27
	−-92.7
	6.6

	28
	−-84.8
	3.5

	29
	−-86.5
	3.4

	30
	−-101.5
	62.5

	31
	−-99.5
	30.0

	32
	−-103.0
	13.9

	33
	−-81.2
	3.6

	34
	−-105.5
	5.1

	35
	−-108.0
	18.9

	36
	−-90.4
	10.8

	37
	−-91.4
	4.6



We modified the simulator to feed it with the positions of the ‘hot spots’ recorded as GPS coordinates in a file. Then, in order to account for any possible misplacements of the LoRa nodes around these hot spots (e.g. due for example to physical obstacles or constraints encounteredmet during the installation), each hot spot iwas assumed to be as the centre of a circular area in which an evenly distributed number of nodes iwas randomly placed, with a minimum distance between the nodes of equal to 10 m, while  and their height was between 1 m and 2 m.
experimental results
Measurements campaign
Before adding the different path loss models into the LoRaSim software tool, an extensive measurements campaign aimed at evaluating the validity of the models was has been carried out within our Uuniversity campus. LoRa received signal strength indicator (RSSI) measurement values (in dBm) were collected over one1-hour long intervals at each position,  and were subsequently GPS-referenced, by using a transmission module (LoRa node) based on the Adafruit Feather M0 with a RFM95 LoRa Radio - (900 MHz), equipped with a GPS receiver (ITEAD RoyalTek REB-4216/REB-5216 GPS Shield Breakout Board for Arduino MEGA) and connected to a laptop, as shown in Figure 1. The RSSI parameter, (i.e. the measured Rreceived Ssignal Sstrength Iindicator,) represents a measure of the signal power on a radio link. The link can be affected by several channel conditions causing variations at  of the RSSI level, such as the distance between the nodes, the radio transmission medium (e.g., air, water), physical obstacles, the geometrical orientation of the nodes and interference from with other radio transmission equipment and reflected radio waves. The RSSI is related to the path loss Pl in terms of by the following equation:
	
	(10)


where SNR is stands for the signal-to-noise ratio,  is the effective isotropic radiated power, and  is the receiver’s antenna gain. Both the RSSI and the SNR are measured by the receiving module, while ;the  is known, and the  is 5 dBi for the specific antenna installed in the GW. 
[bookmark: _Ref316057347][image: C:\Users\susanna\UNIVPM\PUBBLICAZIONI\2019\MetroInd 4.0\MetroInd19_Camera Ready\Graphics\campusMIS.png]
[bookmark: _Ref55191696]Figure 3. Heat map showing the GPS-referenced LoRa RSSI measurements in the selected real field positions selected..
[bookmark: _Hlk22030974]The multi-channel LoRa GW located on top of the campus tower was implemented by using a Raspberry Pi and an iC880A board, which that integrates two Semtech SX1257 transceivers and an SX1301 baseband processor, thus allowing for to simultaneously receiving e up to 8eight LoRa packets transmitted with different SF values, and on different channels. The single GW was positioned on top of the highest tower within the campus (200 m a.s.l.), with the 37 different outdoor measurement positions plannedand, as shown in Figure 2, 37 different outdoor measurement positions were planned, moving approximately along eight different directions, at a distance of 25 m, 50 m, 75 m, 100 m, and 125 m from the tower where the GW was positioned, along each direction. This system , and collecting ed more than 7,000 measures in total. Mainly fFor practical reasons, the measurements were collected during several days of good weather conditions (i.e. almost clear sky, no rain or fog). The measurement positions identified in this preliminary step, as based on the observation of the Uuniversity campus plan, were adhered respectedto as far much as possible during the measurement campaign. When the identified measurement position was fell indoors, the nearest possible outdoor position was actually chosen to collect the RSSI measurement values since , because we were only interested in checking the signal power distribution in outdoor conditions and referencing each measurement via by GPS coordinates. Table 1 listsreports the average RSSI values measured at in each one oof the 37 real positions selected within the campus, together with their corresponding variance. Figure 34 shows in a pictorial fashion the distribution of the RSSI values measured at each real position in graphical terms, encoded by coloured dot clouds of different gradations, and associated with to their GPS coordinates. It should be noted  is necessary to point out that while the LoRa node remained was kept fixed at each position during the one1-hour longmeasurement collection periodof measurements, but the resulting GPS coordinates provided by the on-board receiver fluctuated around such a position, slightly due to the GPS module’s horizontal position accuracy of 2.5 m [21], [22]. 
[bookmark: _Ref316057400][image: C:\Users\susanna\UNIVPM\PUBBLICAZIONI\2019\MetroInd 4.0\MetroInd19_Camera Ready\Graphics\RSSIBoxPlot.png]
[bookmark: _Ref55191678]Figure 4. Distribution of LoRa RSSI measurements at different distances from the GW.
[image: ]
[bookmark: _Ref55191708]Figure 5. Percentage of packet loss values along the eight different directions (see Figure 2) considered during the field LoRa field measurements at in the Uuniversity campus.
The positions located in the Lline-of-Ssight (LoS) to the GW returned experience tthe highest RSSI values (violet to red dots, from −from ‑97.4 dBm to - to −74 dBm) even ifwhen at a longer distance. Conversely, the positions that were located near to the GW, but were obstructed by buildings (yellow to light green dots, from −from -121 dBm to  −to ‑97.5 dBm), may exhibited the lowest RSSI values. This iswas further confirmed  evidenced by the box plots presented in Figure 4, where the measured RSSI values awere grouped based on the distance from the GW, so irrespective of from the direction along which the measurement position iwas located. It is clear possible to see that the median RSSI (horizontal red line inside each box) didoes not always decrease with an increasinge in distance, which was due to , because of the propagation effects resulting from due tothe buildings and other surrounding obstacles. As noted abovepreviously mentioned, in this study, the RSSI measurement values were collected during several days of good weather conditions and . Iit is important to notice that bad weather conditions, specifically rain, could an increase the LoRa packet loss rate, due to the stronger attenuation of the transmitted signal, as presented in [23], where the authors reported that a light rain led to caused an additional  20 % additional reduction in of the packet delivery ratio. The impact of the weather factor should be taken into account in applications that require high reliability at any given time, and some higher-layer protocols should be used to overcome the its effects by automatically adjusting the LoRa configuration parameters.
Data related aboutto the number of packets lost during transmissions was also collected through too, by setting the number of transmitted packets at each measurement position, and then checking the number of packets received at the backend server via , through the GW. In fact, each LoRa packet carries several data fields, ; among whichthem,, the Fframe Ccounter field allows for to assigning ociate a counter to each packet, which is incremented sequentially by the transmitter [4]. Once the transmission from a specific measurement site was finished, the sequence of received packets at the server was checked, to obtain the number of lost packets. Figure 5 shows the resulting percent packet loss percentage at each measurement direction. Here, : direction no. 1 is the south-west direction  onein relation to  with respect to the GW in Figure 2, while ereas direction no. 8 is the north-west direction shownone in the same imageFigure,, as identified in a clockwise fashion. 
As the shown in the graph shows, on average the percentage  number of lost packets iwas, on average, under a 7 % threshold, with the exception of  for direction no. 6, where along which the highest percent packet loss occurredwas measured, aro (around 12 %). Given that Becausethe measurements at in the 37 different positions were carried out in a randomizsed mannerfashion, during a single week, we can assume that, during a single week,  the highest loss value along direction no. 6 iwas motivated by the propagation environment, and not by occasional or sporadic conditions.
[bookmark: _Hlk22031092][bookmark: _Hlk22031179] Comparison of the path loss models in relation to the field measurements
Before implementing a modified version of the LoRaSim tool to improve the network planning performance, the results of the RSSI field measurements were processed in order to check which theoretical model, among those presented in SSection 2.1, can be considered as more reliablye in describing the LoRa signal propagation behaviour. 
To this endaim, the average RSSI values at each position, reported in Table 1, were considered, in relation to the corresponding distance  between the measurement position and the GW while , assuming a fixed LoRa node height of 1 m. Two different polynomials were used to interpolate the available values, a third-3rd degree polynomial and a sixth-6th degree polynomialone, as described by the following equations:
	
	(11)


and 
	
	(12)


[image: C:\Users\susanna\UNIVPM\PUBBLICAZIONI\2019\MetroInd 4.0\ESTENSIONE ACTA IMEKO\Grafici\Grafici\01.png]
[bookmark: _Ref55191771]Figure 6. The third-3rd and sixth-6th order polynomials interpolation models based on the measured RSSI values.
Both the models are shown in Figure 6 together with the measured average RSSI values. Equation (11) allows for is able to correctly describinge 14.6 % of the measured data, while ereas the 6th sixth-degree model given by Eequation (12) allows for is able to correctly describeing 23 % of the measured data. Following the generation of the interpolation models based on the measured RSSI values, they were compared to the theoretical models previously introduced, as shown in Figure 7. 
[image: C:\Users\susanna\UNIVPM\PUBBLICAZIONI\2019\MetroInd 4.0\ESTENSIONE ACTA IMEKO\Grafici\Grafici\00.png]
[bookmark: _Ref55191779]Figure 7. Comparison between the RSSI values estimated through different theoretical path loss models and the interpolation models based on the field measurements. The Okumura-–Hata model for small cities has been excluded as it reports the same values ofas the urban areas model.
As visible in Figure 7 shows, in general the Llog-Ddistance model generally overestimatesd the path loss, providing the lowest estimated RSSI values in relation to with respect to the measured valuesones. The sixth-6th order polynomial model iwas not applicable for distances shorter than 35 m, while ereas the third-3rd degree polynomial model appeared to seems to better represent the measured RSSI trend. Both of the 3GPP path loss models provided acceptable results, with a featuring a reasonable limited under estimation of the RSSI. Finally, all the Okumura-–Hata models overestimated the RSSI, with an average excess of 60 dB in relation to with respect to the measured values.
Based on the experimental RSSI measurements carried out, the 3GPP path loss models (urban and suburban), provided the best approximation for to predicting the propagation behaviour of the LoRa signals within the campus. However, to ensure In any case, for the sake of completeness, all the theoretical models awere implemented within the LoRaSim tool and were used to predict the performance of the network.
Simulations with the modified LoRaSim tool
The LoRaSim tool considers N LoRa end-nodes and M GWs, each of which them featuringe specific configurations of TP, CF, SF, BW and CR parameters. Together with the average rate of transmitted packets (λ) and the packet load (B), these parameters identify a so-called network setting of SN = {TP, CF, SF, BW, CR, λ, B}. Following the modifications to the LoRaSim tool, an initial  first simulation campaign was conducted aimed at evaluating how the network DER iwas affected by the selection of the path loss model. For a a better comparison with the previous studies, we used the same settings as chosen in [16]. Here, , thus assuming that: N = 1,000, each LoRa node is able to send a packet of 20 bytes every 16.7 minutes to a single GW (M = 1), with and tthe simulated transmission time = is 1one hour. The signal carrier frequency iwas 860 MHz. For each path loss model, A total of 100 simulation runs were have been executed for each path loss model. 
Path losses and collisions determine the communication behaviour of LoRa nodes. In LoRaSim, the so-called Ssimple Mmodel (S.M.) variant assumes an infinite communication range, and the collisions happeningoccurring whenever any two transmissions overlap in time at the receiver with the same CF, SF and BW, which means thus making both the transmissions are lost. 
[bookmark: _Ref55191906]Table 2. Configurations settings.
	Parameter
	SN1
	SN5

	Transmission Power (dBm)
	14
	14

	Carrier Frequency (MHz)
	860
	860

	Spreading Factor
	12
	Best of 7-12

	Bandwidth (kHz)
	125
	Best of 125/250/500

	Coding Rate
	4/8
	4/5


[bookmark: _Hlk22031366][image: C:\Users\susanna\UNIVPM\PUBBLICAZIONI\2019\MetroInd 4.0\ESTENSIONE ACTA IMEKO\Grafici\Grafici\03.png]
[bookmark: _Ref55191795]Figure 8. Comparison of the DER results obtained by setting different path loss models in the LoRaSim tool, for in the two configurations, SN1 S.M. and SNPL1, for N = 1,000.
When, during a LoRa transmission, a signal arrives at the receiver before while the previous packet has not been processed yet, the receiver is not unable to decode one or both of them. Denoting this overlap between packets x and y as O(x,y), the condition according to which the LoRaSim tool decides onabout a successful packet decoding can may be expressed as: C = O(x,y) ∧ C freq ∧ C sf ∧ C pwr ∧ C time , where the different symbols represent an overlap (leading to a collision) in frequency, spreading factor, power and timing, respectively. The use of the AND logic operators implies that a packet is suppressed at the receiver (i.e. lost) if, and only if, all the overlapping conditions occur. Each overlap is represented by an independent random variable, which meansso, according to the central limit theorem, that their sum tends toward a normal distribution. The S.M. variant allows for to establishing a baseline that which can be analytically described.
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[bookmark: _Ref55191802]Figure 9. Comparison of mean DER results obtained by setting different path loss models, for an increasing number of nodes.
In an initial  first experiment, the configuration of the SN1 parameters’ configuration detailed in Table 2 was considered, albeit but in two different simulation settings. Here, : the first settingormer, labellednamed  SN1PL , assumes the combination of selectable parameters that enables which allows the strongest transmission (i.e. the most robust to channel quality degradation), with the longest possible airtime of 1712.13 ms (SF = 12), the selection of different path loss models, and the collisions as defined above. Meanwhile, Tthe second setting, labelled latter, named SN1 S.M., assumes the same node configuration ofas the S.M. variant, but with a fixed Llog- Ddistance path loss model (default modelone).
The mean DER value obtained for N = 1,000 nodes randomly placed around a single GW was then evaluated. As visible in Figure 8 shows, the S.M. variant consistently providesd DER values of <always smaller than 4 %, due to the underestimation of the communication channel, which means making a good packets reception is highly unlikelyvery improbable. MeanwhileOn the other hand, the results ofor the SN1PL configuration indicated show a dependence on the path loss model used. The Okumura-–Hata model, which considers different terrains, providesd the highest DER in the rural scenario (as was expected), albeit that it was but still very low (around 12 %). 
Figure 9 shows the expected mean DER trend with an increasinge in the number of nodes, for different path loss models. In line with the previous experiment, the generic SN1 S.M. configuration returned provides the lowest probability chances of receiving packets, while the configuration incorporating the 3GPP model iwas the most beneficialfavourable one. When Aassuming a DER of ≥ 0.8 to be as an acceptable value for a realistic deployment, while the Llog-Ddistance model predictsed that there were a number of 64 nodes supported nodes, while the other two models predicted foresee aroundbout 100 nodes. 
In Aaccordance with ing to SectionSection 2.2, we then modelled a more realistic LoRa deployment by placing nodes in the same GPS-referenced positions used for the field RSSI field measurements (hot spots). Given the poor DER results obtained from the simulations discussed above, and in order to increase the number of nodes supported by the network, we assumed a scenario that includinged three3 GWs, one located on top of the highest tower (as with for the measurements campaign), and two additional GWs, both positioned at a height 150 m a.s.l. The new scenario is shown in Figure 10. 
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[bookmark: _Ref55191809]Figure 10. The simulated scenario with 3three GWs located in the campus area: hot spots (yellow markers) and GWs (white circled red markers) placement.
We first tested the SN1 configuration by , comparing the DER results provided by the random positioning of the nodes (default option in LoRaSim), and the GPS-based positioning, in both the singletwo cases of -1 GW network and the three-3 GWs serving the network. From Figure 11, it is clear that with the GPS-based node placing method and the single-1 GW network, a 34.6 % increase in of mean DER (0.11–0.148)  iwas obtainable, from about 0.11 to about 0.148. The network performances awere further improved by using the 3 three-GWs network. As suchThi, s way (GPS-3GW) we can obtain a 91.94 % increase in of the DER using the GPS-3GW network compared to when using a single gateway (GPS-1GW), and a global 158.4 % increase compared to when using the random placement method (Rrandom-1GW), thus increasing the mean DER value from 0.11 to 0.285. The use of the GPS-based location of the nodes improvesd the simulated performance as it allowed for s to fully exploiting the results of the field RSSI field measurements campaign, with a realistic distribution of the received signal power described by the propagation model used. 
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[bookmark: _Ref55191835]Figure 11. Comparison of mean DER results obtained with different nodes placing methods, in the SN1 configuration.
[bookmark: _Ref55191928]Table 3. DER results for a 3 GWs deployment.
	Model
	SN1 S.M.
	SN1
	SN5

	Log-Distance
	0.07
	0.21
	0.97

	Okum. small city, metropolitan
	0.03
	0.31
	0.99

	Okum. suburban 
	0.04
	0.28
	0.99

	Okum rural
	0.03
	0.29
	0.98

	3GPP urban, suburban
	0.03
	0.29
	0.99


The last simulated configuration, labelled named SN5 in Table 2, relies on dynamic parameters and allows for to minimizseing both the airtime and the TP. As shown in Table 3, this is the best option for choice to ensureing a high reception rate, since the mean DER ranges from between 0.97 to and 0.99.: According to the from simulations, a DER of ≥ 0.8 is obtainable with up to 6,000 nodes deployed.
Conclusion
In this paper, we presented two effective modifications to the LoRaSim network simulator, aimed at improving the accuracy of the software tool in predicting the number of nodes that can be sustained by a dense LoRa network, given a target mean DER, have been presented. The applied modifications consisted of introducing the possibility of testing different path loss models, previously verified through an extensive field measurements campaign ofor LoRa RSSI values and through providing a GPS-based positioning of the nodes rather than the default , instead of a random positioningone, a s natively available withiin the simulator. 
While tThe simple default Simple Mmodel configuration tendsed to underestimate the link quality, while the 3GPP path loss models were found to be are the most favourablebeneficial ones, allowing for to placing around e about 100 nodes in a metropolitan area as opposed , contrary to the 64 nodes supported by the default Llog-Ddistance model. Meanwhile, Tthe Okumura-–Hata model introducesd an 83 % increase in of DER, compared to the Llog-Ddistance modelone in rural scenarios, in rural scenarios. The GPS-based location of the nodes allowed for s to simulating e a more realistic network deployment that optimizsesd the estimation of the mean DER. As suchThis way, irrespective regardless of which the path loss model was applied, a 34.6 % increase in of the mean DER has beenwas obtained. The presented study reliesd on measurement results obtained outdoors during several days of good weather conditions,; however, it is known that rain, fog and other phenomena may impact the received signal levels and the packer delivery rate of the LoRa link. Even if the huge link budget margin ensured by the LoRa technology makes it less sensitive to weather conditions and signal attenuation than other wireless communication systems, it is important to not underestimate the weather-related effects, especially if the target application requires high reliability in packet transmission at almost any given time. To addresstackle this issue, it is importantcrucial to remain aware ind that, in addition to besides the propagation environment, the physical-level configurable settings of LoRa also determine different trade-offs among between range, consumption and data rate.
Future activities could involve foresee a more thorough analysis of the weather-related effects on the capacity of a LoRa network capacity, the deployment of an adequate number of nodes to measure the simulator performance, and the introduction of additional capabilities, such as like accounting for the imperfect orthogonality among the nodes’ transmissions and any additional attenuation due to poor weather conditions.
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