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Abstract—The use of Long Range (LoRa) technology in Inter-
net of Things (IoT) deployments is exponentially increasing, as
it allows to form one-hop networks linking tiny nodes to one
(or more) gateways and ensuring a low power consumption.
In dense networks, predicting the number of supported nodes
in relation to their position and the propagation environment
is essential to ensure a reliable and stable communication and
limit costs. In this paper, after comparing different path loss
models based on a field measurement campaign of LoRa Received
Signal Strength Indicator (RSSI) values within our University
campus, we implement two main modifications to the LoRa
Simulator tool, in order to improve its accuracy in the prediction
of the number of sustainable nodes, according to the target
Data Extraction Rate. By an improved path loss evaluation,
and using three gateways, the number of nodes could increase
theoretically from about 100 to about 6000. Future work includes
the possibility to validate the accuracy of the tool, by designing
a dense network operating in real conditions (i.e. large industrial
plant, small/medium size city area) and testing its performances.

Index Terms—LoRa, scalability, LoRaSim, RSSI measure-
ments, data extraction rate.

I. INTRODUCTION

Industry 4.0 encompasses several key technological compo-
nents and substantiates in the so-called smart factory, where
computer-driven systems monitor physical processes, create
a virtual copy of the physical world and make decentralised
decisions based on self-organisation mechanisms. The Internet
of Things (IoT) is considered an essential element of Industry
4.0, providing the connection of the different sub-systems
and enabling both human-to-machine and machine-to-machine
communications. As such, large-scale IoT deployments are ex-
pected to become widespread, not only within smart industrial
plants, but also in similar scenarios, like multi-site production
districts [1], smart construction sites and even mines [2].

Among the communication technologies enabling IoT, Low
Power Wide Area Networks (LPWANs) are established as a
good trade-off between performance and deployment costs [3].
In fact, widely distributed sensor networks relying on 3G/4G
cellular infrastructures benefit from reserved frequencies (thus

being free from interferences), network-based synchronization
and a pervasive and reliable connectivity, but are associated
with prohibitively high costs in the case of dense networks. On
the other hand, LPWANs, such as the Long Range one (known
as LoRa) [4], provide license-free long-range communication
(possibly prone to interferences) with low power demand
(essential for IoT sensors), but may need a dense deployment
of gateways (GWs) to ensure adequate data transfer perfor-
mance and limit data losses. In [5], the capability of low-
cost LoRa transceivers to schedule the transmission of frames
with a standard uncertainty less than 3 µs, and an acceptable
long-term clock stability for applications such as process
industry have been proved. LoRa is based on the Chirp Spread
Spectrum (CSS) modulation technique, with sinusoidal signals
whose frequency changes over the transmission time (chirp
signals). This provides inherent robustness to interference,
allowing the coexistence of several active nodes within the
same frequency channel; the communication is robust even in
the presence of high noise levels [6].

When the sensor network to be deployed needs to include a
huge number of tiny devices, as it may happen in industrial or
construction processes monitoring, the possibility to accurately
predict the attainable Data Extraction Rate (DER) before
setting up the real network may be critical. DER is the key
criterion used to evaluate the scalability of a network: it
is defined as the ratio of received messages to transmitted
messages over a period of time. DER depends on position,
number and behavior of nodes and sinks, and takes values
between 0 and 1. In a perfect deployment, DER = 1. Once
estimated, the predicted DER value can be checked against
specific requirements, and, if the check fails, the network
design can be modified (for example adopting a specific topol-
ogy, as in [7]) before carrying out the final deployment, thus
avoiding additional costs and delays associated to repeated test
installations and failures.

In this paper, moving from [8] and the LoRaSim simulation
tool presented in [9], we implement some modifications, based
on real measurements, aimed at improving the capability of the



tool to predict the scalability performance of LoRa networks.
Such modifications enable a more realistic modelling of the
propagation losses and positioning of the nodes, to determine
in a more accurate fashion the number of nodes that allows
acceptably reliable and stable communications, and the net-
work configuration that better adapts to different propagation
scenarios.

The paper is organized as follows: in Section II, the original
LoRaSim tool and the applied changes are briefly introduced.
Section III describes the experimental tests performed and the
results obtained. Section IV concludes the paper.

II. THE LORA SIMULATOR AND APPLIED MODIFICATIONS

LoRaSim, a discrete-event simulator based on SimPy, is
implemented according to the technical specification of the
SX1272 LoRa module provided by Semtech [10]. The soft-
ware operations also apply to later modules, like the recent
SX1276 that features additional frequency bands of operation
(169 MHz and 433 MHz, in addition to the 850 MHz - 1
GHz already supported by SX1272), more options for the
programmable bandwidth, and a better receiver sensitivity
(down to -148 dBm versus -137 dBm of the SX1272 module).

The software tool can be used to model the communications
between randomly placed nodes and GWs, the number of
which can be selected by the user. One of the tool’s main
features is the possibility to choose different configurations
of the LoRa module, by a combination of settings such as
transmission power (TP), carrier frequency (CF), spreading
factor (SF), bandwidth (BW) and coding rate (CR). For
each data transmission occurring over a node-to-GW link,
LoRaSim estimates the path loss using an embedded model,
and simulates collisions among data packets in terms of signal
power (through the so-called capture effect), carrier frequency,
spreading factor and received power. In order to obtain a more
realistic evaluation of the network scalability, first of all we
implemented additional path loss models to let LoRaSim adapt
to different environmental scenarios. Then, a function enabling
the insertion of nodes and GW positions from a file has been
added, to analyze how DER performance changes, with respect
to the default random node positioning assumption.

A. Path loss models

A path loss model is an equation describing the decrease
of signal power density due to its propagation, in different
environments. We focused on three main models, those that
reasonably apply to the scenarios mentioned in Section I and
that are valid in the frequency range used by LoRa.

1) Log-Distance: According to [8], the log-distance path
loss model refers to built-up and densely populated areas. It
expresses the signal attenuation as a function of the distance
d between node and GW (given in km):

Pl(d) = P̄ l(d0) + 10γ log(
d

d0
) +Xσ (1)

where Pl(d) is the path loss in dB, P̄ l(d0) is the mean path
loss at the reference distance d0, γ is the path loss exponent

and Xσ ∼ N(0, σ2) is the normal distribution with zero mean
and σ2 variance, to account for shadowing.

2) Okumura-Hata: The main enhancement introduced by
the Okumura-Hata model [11] is the dependence of the path
loss on the carrier frequency which characterizes the trans-
mission, and on the terminals’ (node and GW) height. This
way, we can model in more details a wider range of nodes’
distribution, accounting also for the height of the antennas, in
four different scenarios:

Pl(d) = A+B log(d) + C (2)

where A, B and C are frequency- and antenna height-
dependent terms. Factor A increases with carrier frequency
and decreases with increasing height of the GW and the node.
Also, the path loss exponent (proportional to B) decreases with
increasing height of the GW: A = 69.55 + 26.16 log(fc) −
13.82 log(hb)−a(hm), and B = 44.9−13.82 log(hb) being fc
the carrier frequency in MHz, d the distance between node and
GW in km, hb and hm the GW and node height, respectively,
in m. The model is only intended for large areas, with the GW
placed higher than the surrounding rooftops. Values assigned
to the different terms have been obtained by interpolating
the results of extensive measurement campaigns carried out
in propagation scenarios corresponding to the model require-
ments (see [11], Appendix 7.A). Different expressions of the
term C and the a(hm) function refer to four different scenarios
or propagation environments:

• Small and medium size cities:

a(hm) = (1.1 log(fc)− 0.7)hm − (1.56 log(fc)− 0.8)

C = 0
(3)

• Metropolitan areas:

a(hm) =

{
8.29(log(1.54hm))2 − 1.1; fc ≤ 200MHz
3.2(log(11.75hm))2 − 4.97; fc ≥ 400MHz

C = 0
(4)

• Suburban environments:

C = −2[log(
fc
28

)]2 − 5.4 (5)

• Rural areas:

C = −4.78[log(fc)]
2 + 18.33 log(fc)− 40.98 (6)

The function a(hm) in suburban and rural areas is the same
as for urban (small and medium-sized cities) areas.

3) 3GPP: Both 3GPP and 3GPP2 developed a path loss
model to evaluate the performance of cellular systems. Here
again, the equation considers the carrier frequency and anten-
nas’ height:

Pl = (44.9− 6.55 log(hb)) log(d) + 45.5 + (35.46− 1.1hm)·
· log(fc)− 13.82 log(hm) + 0.7hm + C

(7)
where hb and hm are the base station (GW) and mobile
station (node) antennas’ height, respectively. The distance d



is expressed in m in contrast to the previous two models.
According to the value of the constant term C, a suburban
macrocell system (C = 0 dB) or a urban macrocell one (C =
3 dB) is assumed. These models have been implemented in
LoRaSim, starting with the Log-Distance one, as the following
lines show:

#Log-Distance Model
Pl = Pld0+10*gamma*math.log10(distance/d0)

The variables used in the code have the same meaning
as those in Eq. (1). The distance variable represents the
distance between the GW and each node: considering that
models 2) and 3) include the antennas’ height, turning the
2D spatial representation of the Log-Distance model into a
3D one, we changed the variable definition by applying the
Pythagorean theorem.

The following lines are used to implement the Okumura-
Hata and the 3GPP models, respectively. The user can select
them through a simple if...elif control that here we left
out for convenience.

#Okumura-Hata Model
#small and medium-size cities
ahm = (1.1*(math.log10(self.freq)-math.log10

(10**6))-0.7)*hm-(1.56*(math.log10(self.
freq)-math.log10(10**6))-0.8)

C = 0
#metropolitan areas
if (self.freq <= 2*10**8):

ahm = 8.29*((math.log10(1.54*hm))**2)-1.1
elif (self.freq >= 4*10**8):

ahm = 3.2*((math.log10(11.75*hm))**2)-4.97
C = 0
#suburban enviroments
ahm = (1.1*(math.log10(self.freq)-math.log10

(10**6))-0.7)*hm-(1.56*(math.log10(self.
freq)-math.log10(10**6))-0.8)

C = -2*((math.log10(self.freq)-math.log10
(2.8*10**7))**2) - 5.4

#rural area
ahm = (1.1*(math.log10(self.freq)-math.log10

(10**6))-0.7)*hm-(1.56*(math.log10(self.
freq)-math.log10(10**6))-0.8)

C = -4.78*((math.log10(self.freq)-math.log10
(10*6))**2)+18.33*(math.log10(self.freq)-
math.log10(10*6))-40.98

A = 69.55+26.16*(math.log10(self.freq)-math.
log10(10**6))-13.82*math.log(hb)-ahm

B = 44.9-6.55*math.log10(hb)

#3GPP Model
#suburban Macro
C = 0
#urban Macro
C = 3

where self.freq is the carrier frequency, hb and hm are
the base station (GW) and node height, respectively. All the
equations are the same of Section II-A. The result of the path
loss computation is passed to the Pl variable by the following
line of code for the Okumura-Hata model:

TABLE I
CONFIGURATIONS SETTINGS

Parameter SN1 SN5

Transmission Power (dBm) 14 14
Carrier Frequency (MHz) 860 860
Spreading Factor 12 best of 7-12
Bandwidth (kHz) 125 best of 125/250/500
Coding Rate 4/8 4/5

Pl = A+B*(math.log10(distance)-math.log10
(1000))+C

and by the following one for the 3GPP model:

Pl = (44.9-6.55*math.log10(hb))*math.log10(
distance/1000)+45.5+(35.46-1.1*hm)*(math.
log10(self.freq)-math.log10(10**6))-13.82*
math.log10(hm)+0.7*hm+C

B. Nodes placement

The second relevant change applied to the LoRaSim tool
enables to specify the placement of nodes. In fact, the original
tool only allows a random distribution of nodes, according to
which the GW is positioned at the center of a circular area, and
the nodes are randomly placed inside it, based on a simplified
Poisson Point Process (PPP) [12]. We modified the simulator
to feed it with the positions of hot spots recorded as GPS
coordinates in a file. Then, in order to account for possible
misplacements of the LoRa nodes around these hot spots (due
for example to physical obstacles or constraints met during
the installation), each hot spot is assumed as the center of a
circular area in which an evenly distributed number of nodes
is randomly placed, with a minimum distance between nodes
equal to 10 m and their height between 1 m and 2 m.

III. EXPERIMENTAL RESULTS

A. Measurements campaign

Before adding the different path loss models into the Lo-
RaSim software tool, an extensive measurements campaign
aimed at evaluating the validity of the models has been carried
out within our University campus. LoRa RSSI measurement
values (in dBm) were collected over 1-hour long intervals at
each position, and GPS-referenced, by using a transmission
module (LoRa node) based on the Adafruit Feather M0 with
RFM95 LoRa Radio - 900 MHz, equipped with a GPS receiver
(ITEAD RoyalTek REB-4216/REB-5216 GPS Shield Break-
out Board For Arduino MEGA) and connected to a laptop,
as shown in Fig. 1. The multi-channel LoRa GW located on
top the campus tower was implemented by using a Raspberry
Pi and an iC880A board, that integrates two Semtech SX1257
transceivers and an SX1301 baseband processor, thus allowing
to simultaneously receive up to 8 LoRa packets transmitted
with different SF values, and on different channels.

As shown in Fig. 2, the single GW was positioned on
top the highest tower in the campus (200 m a.s.l.), and
37 different outdoor measurement positions were planned,
moving approximately along eight different directions, at a



Fig. 1. The hardware used to implement the LoRa node equipped with a GPS
receiver.

Fig. 2. The 37 planned LoRa RSSI measurement positions within the
University campus.

distance of 25 m, 50 m, 75 m, 100 m, and 125 m from the
tower where the GW was positioned, along each direction, and
collecting more than 7000 measures in total. The measurement
positions identified in this preliminary step, based on the ob-
servation of the University campus planimetry, were respected
as much as possible during the measurement campaign. When
the identified measurement position fell indoor, the nearest
possible outdoor position was actually chosen to collect the
RSSI measurement values, because we were interested in
checking the signal power distribution in outdoor conditions
and referencing each measurement by GPS coordinates.

Fig. 3 shows in a pictorial fashion the distribution of RSSI
values measured at each real position, encoded by colored
dot clouds of different gradations, and associated to their GPS
coordinates. It is necessary to point out that the LoRa node was
kept fixed at each position during the 1-hour long collection
of measurements, but the resulting GPS coordinates provided
by the onboard receiver fluctuate around such a position, due
to the GPS module horizontal position accuracy of 2.5 m [13].

The positions located in Line-of-Sight (LoS) to the GW
experience the highest RSSI values (violet to red dots, from -

Fig. 3. GPS-referenced LoRa RSSI measurements in the real positions chosen.

Fig. 4. LoRa RSSI measurements at different distances from the GW.

97.4 dBm to -74 dBm) even if at a longer distance. Conversely,
positions located near to the GW, but obstructed by buildings
(yellow to light green dots, from -121 dBm to -97.5 dBm),
may exhibit the lowest RSSI values. This is further evidenced
by the box plots in Fig. 4 where the measured RSSI values are
grouped based on the distance from the GW, so irrespective
from the direction along which the measurement position is
located. It is possible to see that the median RSSI (horizontal
red line inside each box) does not always decrease with
increasing distance, because of the propagation effects due to
buildings and other surrounding obstacles.

Based on the experimental RSSI measurements carried out,
the 3GPP path loss models (urban and suburban), and the
Okumura-Hata suburban one provided the best approximation
to predict the propagation behavior of the LoRa signals within
the campus.



B. Simulations with modified LoRaSim

The LoRaSim tool considers N LoRa end-nodes and M
GWs, each of them featuring specific configurations of TP,
CF, SF, BW and CR parameters. Together with the average
rate of transmitted packets (λ) and the packet load (B),
these parameters identify a so-called network setting SN =
{TP,CF, SF,BW,CR, λ,B}. Following the modifications
to the LoRaSim tool, a first simulation campaign aimed at
evaluating how the network DER is affected by the selection
of the path loss model. For a better comparison with previous
studies we used the same settings chosen in [8], thus assuming:
N = 1000, each LoRa node is able to send a packet of 20 bytes
every 16.7 minutes to a single GW (M = 1), and the simulated
transmission time is 1 hour. The signal carrier frequency is 860
MHz. For each path loss model, 100 simulation runs have been
executed.

Path losses and collisions determine the communication
behavior of LoRa nodes. In LoRaSim, the so-called Sim-
ple Model (S.M.) variant assumes an infinite communication
range, and collisions happening whenever any two transmis-
sions overlap in time at the receiver with the same CF, SF
and BW, thus making both the transmissions lost. The S.M.
variant allows to establish a baseline which can be analytically
described.

In a first experiment, the SN1 parameters’ configuration de-
tailed in Table I was considered, but in two different simulation
settings: the former, named SNPL

1 assumes the combination of
selectable parameters which allows the strongest transmission
(i.e. the most robust to channel quality degradation), with
the longest possible airtime of 1712.13 ms (SF = 12), the
selection of different path loss models, and collisions as
defined above. The latter, named SN1 S.M., assumes the same
node configuration of the S.M. variant, but with a fixed Log-
Distance path loss model (default one).

The mean DER value obtained for N = 1000 nodes ran-
domly placed around a single GW was evaluated. As visible in
Fig. 5, the S.M. variant provides DER values always smaller
than 4%, due to the underestimation of the communication
channel, making a good packets reception very improbable. On
the other hand, the results of the SNPL

1 configuration show
a dependence on the path loss model used. The Okumura-
Hata model, which considers different terrains, provides the
highest DER in the rural scenario (as expected), but still very
low (around 12%).

Fig. 6 shows the expected mean DER trend with increasing
number of nodes, for different path loss models. In line with
the previous experiment, the generic SN1 S.M. configuration
provides the lowest chances of receiving packets, while the
configuration incorporating the 3GPP model is the most bene-
ficial one. Assuming a DER ≥ 0.8 as an acceptable value for
a realistic deployment, while the Log-Distance model predicts
a number of 64 nodes supported, the other two models foresee
about 100 nodes.

According to Section II-B, we then modeled a more real-
istic LoRa deployment by placing nodes in the same GPS-
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Fig. 5. Comparison of DER results obtained by setting different path loss
models, in the two configurations SN1 S.M. and SNPL

1 , for N = 1000.
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Fig. 6. Comparison of mean DER results obtained by setting different path
loss models, for an increasing number of nodes.

referenced positions used for field RSSI measurements (hot
spots). Given the poor DER results obtained from the simu-
lations discussed above, and in order to increase the number
of nodes supported by the network, we assumed a scenario
including 3 GWs, one located on top the highest tower (as for
the measurements campaign), and two additional GWs, both
at 150 m a.s.l.. The new scenario is shown in Fig. 7.

We first tested the SN1 configuration, comparing the DER
results provided by the random positioning of the nodes (dea-
fult option in LoRaSim), and the GPS-based positioning, in
the two cases of 1 GW and 3 GWs serving the network. From
Fig. 8 it is clear that with the GPS-based node placing method
and 1 GW, a 34.6% increase of mean DER is obtainable,
from about 0.11 to about 0.148. The network performances
are further improved by using 3 GWs. This way (GPS-3GW)
we can obtain a 91.94% increase of the DER compared to
a single gateway (GPS-1GW), and a global 158.4% increase
compared to the random placement method (Random-1GW),



Fig. 7. The simulated scenario with 3 GWs located in the campus area: hot
spots (yellow markers) and GWs (white circled red markers) placement.
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Fig. 8. Comparison of mean DER results obtained with different nodes
placing methods, in the SN1 configuration.

thus increasing the mean DER value from 0.11 to 0.285. The
use of the GPS-based location of the nodes improves the
simulated performance as it allows to fully exploit the results
of the field RSSI measurements campaign, with a realistic
distribution of the received signal power described by the
propagation model used.

The last simulated configuration, named SN5 in Table I,
relies on dynamic parameters and allows to minimize both
airtime and TP. As shown in Table II, this is the best choice
to ensure a high reception rate, since the mean DER ranges
between 0.97 and 0.99: from simulations, a DER ≥ 0.8 is
obtainable with up to 6000 nodes deployed.

TABLE II
DER RESULTS FOR A 3 GWS DEPLOYMENT

Model SN1S.M. SN1 SN5

Log-Distance 0.07 0.21 0.97
Okum. small city, metropolitan 0.03 0.31 0.99
Okum. suburban 0.04 0.28 0.99
Okum. rural 0.03 0.29 0.98
3GPP urban, suburban 0.03 0.29 0.99

IV. CONCLUSION

In this paper, we presented two effective modifications to
the LoRa simulator, aimed at improving the accuracy of the
software tool in predicting the number of nodes that can be
sustained by a dense LoRa network, given a target mean DER.
The applied modifications consist of introducing the possibil-
ity of testing different path loss models, previously verified
through an extensive field measurements campaign of LoRa
RSSI values, and providing a GPS-based positioning of the
nodes, instead of a random one, as natively available within the
simulator. While the default Simple Model configuration tends
to underestimate the link quality, the 3GPP path loss models
are the most beneficial ones, allowing to place about 100 nodes
in a metropolitan area, contrary to the 64 nodes supported by
the deafult Log-Distance model. The Okumura-Hata model
introduces an 83% increase of DER, compared to the Log-
Distance one, in rural scenarios. The GPS-based location of
nodes allows to simulate a more realistic network deployment
that optimizes the estimation of the mean DER. This way,
regardless of the path loss model applied, a 34.6% increase
of the mean DER has been obtained. Future activities foresee
the deployment of an adequate number of nodes to measure
the simulator performance, and the introduction of additional
capabilities, like accounting for imperfect orthogonality among
nodes’ transmissions.
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