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1. INTRODUCTION 

After the redefinition of the kilogram, the Kibble balance is 
one possible approach to the calibration of mass standards in 
terms of the fixed value of the Planck constant with zero 
uncertainty [1]. The Planck-Balance (PB) is a table-top Kibble 
balance and is currently under development in a collaboration 
between Physikalisch-Technische Bundesanstalt (PTB) and 
Technische Universität Ilmenau (TUIL) [2]. 

The Kibble balance has two measuring modes: force mode 
and velocity mode. In the velocity mode of other Kibble balance 
experiments, the coil is usually moved at a constant velocity [3]-
[5]. In contrast to these Kibble balances, the coil of the PB is 
sinusoidally moved through the magnetic (B-)field in an 
oscillatory manner, thus inducing an AC voltage across the coil 
ends. This voltage is digitised by means of a high-precision digital 
multimeter (Keysight 3458A). If it is assumed that the coil 

motion and the induced voltage are perfectly sinusoidal, the force 
factor Bl (l denotes the coil wire length, B the magnetic flux 
density) can be determined by the oscillation frequency, the 
amplitudes of the coil motion, and the induced voltage. In the 
PB setup, only the amplitudes need to be estimated because the 
oscillation frequency can be accurately measured with a 
frequency counter. The motion of the coil with respect to the 
magnet is measured with a high-precision (but commercial) laser 
interferometer, which provides the position data as a function of 
time. The measurements of voltage and position are 
synchronised by means of an external trigger source with a trigger 
frequency of 1 kHz. 

The three-parameter sine fitting algorithm is applied to 
determine the amplitudes of the induced voltage and the coil 
motion. However, in practice, the sampled signal is not an ideal 
single-component sine wave due to some perturbations like, for 
example, additive Gaussian white noise, quantisation error, 
harmonic distortion, frequency error, and time jitter. The fitting 
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algorithm is not robust against these perturbations and may 
result in a bias of the amplitude, which will directly affect the 
accuracy of Bl. In this article, the effects of aforementioned 
perturbations are analysed by numerical simulations. The bias 
and standard deviation of the estimated amplitude provided by 
the three-parameter sine fit are investigated by the theoretical 
equations and a Monte Carlo simulation. 

2. VELOCITY MODE OF THE PLANCK-BALANCE 

A Kibble balance establishes a link between the mass and the 
Planck constant. This is done by compensating the mechanical 

force 𝐹𝑚𝑒𝑐ℎ = 𝑚 ∙ 𝑔  with an electromagnetic force 𝐹𝑒𝑚 = 𝐵 ∙
𝑙 ∙ 𝐼. Here, m denotes the mass, g the local gravity, B the magnetic 
flux density, l the length of the coil in the magnetic field, and I 
the electrical current that flows through the coil. The 
electromagnetic force is generated by a voice coil actuator. The 
electrical current can be measured to high precision via Ohm’s 
law with an electrical resistor and a voltmeter, which can be 
traced back to quantum standards (the Quantum Hall resistor 
and Josephson voltage standard). B and l, however, cannot be 
measured separately with high accuracy. This is why the so-called 
‘velocity mode’ was introduced by Bryan Kibble (hence the name 
‘Kibble balance’) [1]. Here, the coil is moved through the B-field 
that – according to Faraday’s law – induces a voltage between the 

coil ends as Uind = B  l  v, where v denotes the coil velocity. In 
state-of-the-art Kibble balances, the motion has constant 
velocity. Hence, the induced voltage is DC. In the PB, the motion 
is harmonic. The induced voltage, therefore, is AC. 

In the velocity mode of the PB, the coil oscillates through the 
B-field generated by the magnet. The coil position is measured 
by using an interferometer, while the induced voltage in the coil 
is measured by using a digital voltmeter synchronously. The 
measured coil motion is assumed to be an ideal single-
component sine wave with an amplitude S and an initial phase 

s: 

𝑠(𝑡) = 𝑆0 + 𝑆 sin(𝜔𝑡 + 𝜑s). (1) 

Here, S0 is the DC offset and  is the angular frequency,  

𝜔 = 2𝜋𝑓sig, where fsig denotes the oscillation frequency. 

The coil velocity can be obtained as the derivative of (1) with 
respect to time t as 

𝑣(𝑡) = 𝜔𝑆 cos(𝜔𝑡 + 𝜑s). (2) 

The induced voltage is also assumed to be a perfect sine wave 

with an amplitude U and an initial phase u: 

𝑢(𝑡) = 𝑈 cos(𝜔𝑡 + 𝜑u). (3) 

Assuming that the force factor Bl is a constant during the 
whole range of the coil movement, Bl can be calculated to divide 
the amplitude of the induced voltage by the amplitude of the coil 
velocity as 

𝐵𝑙 =
𝑈

𝜔𝑆
=

𝑈

2𝜋𝑓sig𝑆
. (4) 

In the PB system, oscillation frequency fsig can be accurately 
measured by a frequency counter. Therefore, the accuracy of Bl 
depends mainly on the estimation of amplitudes U and S. 

3. MEASUREMENT SETUP 

In the current setup of the PB (see Figure 1 [6]), which 
consists of several custom-made circuitries and a customised 
setup of commercially available devices, the controller is 
implemented on a Digital Signal Processor (DSP) system 
provided by dSPACE GmbH. 

The control algorithm runs on a processor board of type 
DS1006, which is enhanced by an Analogue-to-Digital Converter 
(ADC) board of type DS2004 and a Digital-to-Analogue 
Converter (DAC) board of type DS2102. The available DACs 
and ADCs all have a 16-bit resolution. 

The current PIDT1-controller is implemented with a sampling 

frequency fs of 10 kHz and provides an output voltage Udrv in 
order to control the measured position sensor voltage UP to a 
given set point value. The output voltage of the DSP is converted 
by an amplifier circuitry into a controlled current that is 
proportional to Udrv. When applied to the internal balance 
actuator, the output current can be utilised to excite the load 
carrier with a sinusoidal motion that is necessary in the velocity 
mode for the calibration of the force factor Bl of the external 
coil. After this calibration mode, the output current is connected 
via latching relays to the external coil and is then used to balance 
the system in force mode. 

In addition to the control algorithm, several different signal 
generators are implemented on the DSP, which provide chirp 
signals for testing purposes and the sinusoidal modulation of the 
set point position in velocity mode. Since the internal clock of 
the DSP represents the time base for the excitation frequency, 
one of the DACs outputs a square wave that changes its voltage 
level at each sampling period of the DSP and therefore yields a 
frequency of fs/2. The actual frequency of this signal is measured 
by a frequency counter of type Keysight 53220A, which receives 

a reference frequency fref = 10 MHz from a stable reference 
clock. The reference clock is an oven-stabilised quartz oscillator 
of type RSGGO10O provided by RF Suisse, which is disciplined 
by GPS signals. 

The same reference frequency is supplied to a waveform 
generator of type Keysight 33521B that provides a square wave 
signal with the frequency ftrig. The square wave signal is used to 
trigger the measurement of the laser interferometer and the 
digital multimeters (Keysight 3458A) with a sampling frequency 

of 1 kHz. One multimeter measures the induced voltage in 
velocity mode, while the other one measures the necessary 
compensation current during force mode as a voltage drop Ur 

 

Figure 1. The signal processing setup of the PB [6]. 
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across a pre-calibrated reference shunt resistor that is connected 
in a series with the coil and the current amplifier output. 

4. THREE-PARAMETER SINE FIT 

A sinusoidal signal can be described as 

𝑦(𝑡) = 𝑌0 + 𝑌 sin(𝜔𝑡 + 𝜑), (5) 

where Y is the amplitude,  the initial phase, and Y0 a DC offset. 
Equivalently, the signal in (5) can be written as a linear 
combination of two shifted sine waves as 

𝑦(𝑡) = 𝑌0 + 𝐴 sin(𝜔𝑡) + 𝐵 cos(𝜔𝑡) (6) 

where A and B are the amplitudes of the in-phase and 
in-quadrature components, respectively. In (6), the signal 
frequency is known; thus, only three parameters Y0, A, and B 
need to be estimated. 

When a set of M (with M > 3) samples y1, y2,..., yM from a sine 
wave is sampled at the time instants t1, t2,..., tM, a linear least 
squares method can be used to determine the best sine wave 
parameters by minimising the sum of the squares of the 
following errors: 

min
𝐴,𝐵,𝑌0

∑(𝑦𝑖 − 𝑌0 − 𝐴 sin(𝜔𝑡𝑖) − 𝐵 cos(𝜔𝑡𝑖))2

𝑀

𝑖=1

. (7) 

The estimated parameters of the sine wave can be calculated 
in a matrix form as: 

[
𝐴
𝐵
𝑌0

] = (𝐃T𝐃)−1𝐃T [

𝑦1

𝑦2

⋮
𝑦𝑀

], (8) 

with 

𝐃 = [

sin(𝜔𝑡1) cos(𝜔𝑡1) 1

sin(𝜔𝑡2) cos(𝜔𝑡2) 1
⋮ ⋮ ⋮

sin(𝜔𝑡𝑀) cos(𝜔𝑡𝑀) 1

]. 

Amplitude Y can be determined from 𝑌 = √𝐴2 + 𝐵2. 

5. INFLUENCES ON THE AMPLITUDE ESTIMATION 

The amplitudes of the induced voltage and displacement are 
provided by the sine fitting algorithm. An overview of the 
possible influences of the induced voltage on the amplitude 
estimation is given in Figure 2. Due to the possible error sources, 
the effects of these error sources on the amplitude estimation 
should be investigated, and the additional contributions to the 
uncertainty budget of the Bl in velocity mode must be 
considered. In this section, several error sources shown in Figure 
2 are investigated by using the theoretical equation and/or 
numerical simulations. The values of most of the parameters 
used for the numerical experiments have been chosen according 
to real measurement data [7]. 

5.1. Additive Gaussian white noise 

The amplitude estimation is affected by Additive Gaussian 
White Noise (AGWN), with zero mean and standard deviation 

n. The theoretical expressions have been derived in [8] and [9] 
as: 

𝜀u,N ≈
𝜎n

2

𝑀𝑈ref
2  and (9) 

𝜎u,N = √
2

𝑀
𝜎n, (10) 

where u,N and u,N are the systemic error and standard deviation 
of the estimated amplitude, respectively. Uref is the nominal i.e. 
unbiased voltage, and M is the number of samples calculated 
from the product of sampling frequency fs and sampling period 
T. 

In order to validate the theoretical (9) and (10), the Monte 
Carlo Method (MCM) is used to evaluate the relative bias and 
standard deviation of the amplitude. Firstly, a single-component 
sine wave for the induced voltage is generated with the amplitude 

Uref = 0.3051 V, the initial phase  = -1.5876 rad, and the 
oscillation frequency fsig = 4 Hz. For the error comparison of 
amplitude, the value of Uref is taken as the reference value. A 

dataset {𝑢𝑖}𝑖=1
104

 is generated from the pure sine wave with the 
sampling frequency fs = 1 kHz and the sampling period T = 10 s. 

 

Figure 2. An Ishikawa diagram showing the influences of the possible error sources on the amplitude estimation of the induced voltage. 
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The generated dataset {𝑢𝑖}𝑖=1
104

 is taken as nominal points. The 

AGWN with different values of n is superimposed on the 
nominal points. The three-parameter sine-fitting algorithm is 

used to estimate the amplitude 𝑈̂. The process is repeated 104 

times. Finally, the relative bias of the amplitude u,N is calculated 

by comparison of the mean value of 𝑈̂  with Uref as 𝜀u,N =

|𝑈̂ − 𝑈ref| 𝑈ref⁄ . The standard deviations associated with the 

estimated amplitude as a function of the noise level are presented 
in Figure 3. According to (10), the theoretical values are also 

calculated with M = 104 samples and different values of n. The 
solid line in Figure 3 represents the theoretical results. 

From (9) and (10), it can be deduced that the bias is negligible 
with respect to its standard deviation. Figure 3 shows good 
agreement between the theoretical and simulated results. It is 

shown that u,N increases with increasing n. 
In the real measurement of PB, the standard deviation of the 

residuals is in the order of 10-4 V after the extraction of the 
harmonics up to the fifth order. In such a case, the 

corresponding u,N is in the order of 10-6 V. When the Type A 
evaluation is used to estimate the standard uncertainty, repeated 
measurements for the velocity mode can reduce the standard 

uncertainty of amplitudes. For the Type B evaluation, u,N can 

be reduced by either reducing n or by increasing the number of 
samples M for each single measurement i.e. the sampling 
frequency or the sampling period. 

5.2. Sampling strategy 

When measuring the induced voltage and the coil motion, the 
sampling frequency fs and the sampling period T need to be 
determined. The number of samples M is equal to the product of 
fs and T. As mentioned in Section 5.1, the bias of the estimated 
amplitude and associated standard deviation can be reduced by 
increasing M. The longer sampling period of measurement T can 
increase the number of samples with a fixed sampling frequency 
fs. 

In addition, more samples can also be obtained by increasing 
fs within a fixed sampling period T. However, a higher sampling 
frequency fs may result in a lower amplitude resolution of the 
digitiser with q bits of resolution, which results in an increased 
quantisation error. The quantisation error is assumed to be 

uniformly distributed with the standard deviation q [10]: 

𝜎q =
1

√12
∙

𝑈FSR

2𝑞
, (11) 

where UFSR is the full-scale range. 
If only the quantisation noise is considered, the standard 

deviation of the estimated amplitude is [11]: 

𝜎u,Q = √
2

𝑀
𝜎q . (12) 

Figure 4 gives an example of the influence of the quantisation 
noise on the amplitude estimation. The theoretical values with 
respect to sampling frequencies of 1 kHz and 10 kHz are 
represented by the blue circles, which are calculated by using (12). 
The digital multimeter Keysight 3458A is used to measure the 
induced voltage in a measurement range of 1 V i.e. UFSR = 1 V. 
When the sampling frequency fs = 1 kHz, the corresponding 

resolution is 21 bits [12]. According to (11), q is equal to 

1.38  10-7 V. When the sampling period is T = 10 s, the 

standard deviation of the voltage is u,Q = 1.95  10-9 V. For a 
sampling frequency of 10 kHz, the resolution is q = 18 bits, and 

q = 1.10  10-6 V. Consequently, u,Q is equal to 4.92  10-9 V. 
Next, the MCM is implemented to evaluate the standard 

deviation of the amplitude. Two datasets of nominal points are 

generated i.e. {𝑢𝑖}𝑖=1
104

 for fs = 1 kHz and {𝑢𝑖}𝑖=1
105

 for fs = 10 kHz. 
The quantisation noise is generated and superimposed on the 
nominal points. The process is repeated 104 times. The standard 
deviations of the estimated amplitude are represented by red 
triangles in Figure 4. The results show that those theoretically 
determined values have been validated by the MCM. When the 
sampling frequency fs increases by a factor of ten from 1 kHz to 
10 kHz, the corresponding standard deviation of amplitude 

increases by a factor of about 2.5 (see Figure 4). However, u,Q 
is in the order of 10-9, which is much lower than the noise level. 
Therefore, the quantisation error is negligible in this case. 

If fs = 10 kHz is used instead of 1 kHz and the noise standard 

deviation of n = 10-4 V, the corresponding u,N is reduced by 

√10  times according to (10). Therefore, fs = 10 kHz can be 
adopted to reduce the uncertainty of amplitude estimation. 

 

Figure 3. The standard deviation of the amplitude as a function of the noise 
standard deviation. The circles represent the simulated values obtained by 
the MCM. The solid line represents the theoretical values given by (10). 

 

Figure 4. Standard deviation of the amplitude as a function of the sampling 
frequency. The circles represent the simulated values by the MCM. The 
triangles represent the theoretical values given by (12). 
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5.3. Harmonic distortion 

The oscillation frequency fsig, the sampling frequency fs, and 
the number of samples M satisfy the relation [13] 

𝑓sig

𝑓s

=
𝐽 + 𝛿

𝑀
, (13) 

where J and  are, respectively, the integer and the fractional 
parts of the number of sine wave cycles. 

When  = 0, it is called coherent sampling, and (9) and (10) 
are only valid in this case. However, when non-coherent 

sampling (  0) occurs, the three-parameter sine fit provides a 
biased amplitude due to harmonic distortion [14]. Multiharmonic 
sine fitting or the extraction of integer periods of the sine wave 
can be used to reduce the bias of the amplitude provided by the 
three-parameter sine fit. 

In practice, there are higher-order harmonics in the 
measurements of the induced voltage and the displacement. The 
magnitudes of higher-order amplitudes are shown in Figure 5 by 
using a Fast Fourier Transform (FFT) – obtained from a real 
measurement of the induced voltage. The oscillation frequency 
of the measurement data in Figure 5 is about 4 Hz. The 
amplitudes of the second- up to the fifth-order harmonics are 
estimated by a factor of about 103, 104, 105, and 105 smaller than 
that of the first harmonic, respectively. The total harmonic 
distortion is 0.15 %. 

A numerical simulation is implemented to investigate the 
influence of the harmonic distortion on the amplitude 
estimation. Figure 6 shows the simulation results [15]. The signal 
of the induced voltage is simulated by using a fundamental sine 
wave and simply superimposed by higher order harmonics up to 
the fifth order. The adopted amplitude for each harmonic is 
acquired from the real measurement data, which is the same 
amplitude as that which is shown in Figure 5. The oscillation 
frequency fsig is changed from 3.82 Hz to 4.02 Hz with the same 
sampling frequency of fs = 1 kHz and the sampling period of 
T = 10 s. When the oscillation frequency is fsig = 3.9 Hz or 4 Hz, 
the number of sine wave cycles is integer i.e. we have coherent 
sampling. Figure 6 shows that sine-fitting algorithms are robust 
against harmonics distortion when coherent sampling is applied. 
In such cases, the bias of the amplitude can be negligible. 
However, for the non-coherent sampling, the relative bias of the 
amplitude provided by the three-parameter sine fit (N = 1) is in 
the order of 10-6. Compared to the target lowest relative standard 

uncertainty for the PB (8.4  10-8 for 1 kg), the bias of the 
amplitude is relatively high. When the multiharmonic sine fit is 
applied, the higher the number of the included harmonics, the 
lower the bias of the estimated amplitude. The relative bias of 
the amplitude can greatly be reduced (to below 10-10) for the non-
coherent sampling if the number of samples is reduced to obtain 
an integer number of periods (the green line in Figure 6). In such 
cases, the bias of the estimated amplitude becomes negligible. 

Higher-order harmonics are present in the real measurement 
of the induced voltage as well as in the coil motion, which may 
be caused by the current source, nonlinear B-field, and so on. 
Moreover, in practice, coherent sampling cannot be perfectly 
achieved due to the accuracy of the generated frequency from 
the waveform generator – the time jitter of the sampling. 
Therefore, the extraction of the integer periods of the sine wave 
or the multiharmonic sine fitting included higher-order 
harmonics that could be adopted to estimate the amplitudes of 
induced voltage and coil motion. 

5.4. Frequency error 

In the linear sine-fitting algorithm, the oscillation frequency 
fsig is assumed to be known, and it is taken as an input parameter 

to the fitting model. If there is an error fsig in the input 
frequency, an additional contribution will be included in the 
fitting model, which is described by a linearly damped oscillation 
[16]. 

A numerical simulation has been implemented in order to 

investigate the effect produced by a frequency error fsig. The 

dataset {𝑢𝑖}𝑖=1
104

 is generated with fsig = 10 Hz, fs = 1 kHz, and 

T = 10 s. A frequency error fsig is added to fsig, and the obtained 

frequency (fsig + fsig) is taken as the known frequency of the 
three-parameter sine fit to evaluate the amplitude. Finally, the 

relative bias of the amplitude u,F is calculated and shown in 
Figure 7. 

It can be seen from Figure 6 that in order to keep this bias 
below 10-8, the frequency has to be known with the same relative 
uncertainty. In the measurement setup, the frequency counter of 
type Keysight 53220A can measure the actual frequency 
accurately (< 10-8), which can be used as the input frequency of 
the model and can achieve the desired accuracies for the PB 
(about 10-8). Experiments using other algorithms (e.g. the four-

 

Figure 5. A periodogram using FFT for the residuals obtained by using the 
three-parameter sine fit. 

 

Figure 6. The relative bias of the amplitude as a function of the number of 
periods [15]. The amplitudes are estimated by using multiharmonic sine 
fitting included from first- up to fourth-order harmonics and the extraction 
of the integer periods of the sine wave. 
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parameter sine fit) showed that those algorithms can also achieve 
frequency estimations with errors in the order of 10-8 [13]. 

5.5. Time jitter 

When implementing the sine fitting algorithm in (7), it is 
assumed that the sampling instants t1, t2,..., tM have no influence 
due to the time jitter. However, in practice, the time jitter is an 
unpredictable timing noise, and this effect leads to the bias of 
estimated sine wave amplitude. The relative bias of the amplitude 
is [17] 

u,J = (
1

2
−

1

𝑀
) (𝑒−𝜎𝜃

2
− 1) (14) 

where 𝜎𝜃 = 2𝜋𝑓sig𝜎t , and t is the standard deviation of the 

time jitter. 
Moreover, the time jitter also leads to amplitude noise of the 

estimated signal. The corresponding noise standard deviation of 
the amplitude is calculated as [18]: 

𝜎j = 2𝜋𝐴RMS𝑓sig𝜎t, (15) 

where ARMS is the Maximum Root Mean Square (RMS) 
amplitude of the effective value of an AC signal. 

As the induced voltage is an AC measurement, the maximum 

RMS amplitude ARMS is equal to 𝑈ref √2⁄ . If only the time jitter 
is considered, the standard deviation of the estimated amplitude 
is 

𝜎u,J = √
2

𝑀
𝜋𝑈ref𝑓sig𝜎t. (16) 

The time jitter of a Keysight 3458A DMM is 5 ns and has a 
rectangular distribution [19]. Thus, the standard deviation of the 

time jitter becomes t = 2.89 ns. When fsig = 4 Hz and M = 104, 
the relative bias and relative standard deviation of the amplitude 
is in the order of 10-15 and 10-10, respectively. In such a case, the 
influences of the time jitter are negligible. 

According to (14) and (16), the influences of the time jitter 
will be stronger for a sampled signal with a higher oscillation 
frequency and a lower number of samples. In the current 
measurement of the PB, the number of the sample points is not 
below 5000, and the oscillation frequency is lower than 15 Hz. If 
fsig = 15 Hz and M = 5000 are selected to estimate the relative 
bias and relative standard deviation, in the worst-case scenario, 

the values are equal to 3.7  10-14 and 2.7  10-9, respectively. 
Therefore, the time jitter is negligible in the current measurement. 

6. CONCLUSIONS 

Perturbations in the signal can result in a bias of the amplitude 
estimation when using the three-parameter sine-fitting algorithm. 
The effects of AGWN, quantisation error, harmonic distortion, 
frequency error, and time jitter have been investigated by 
numerical simulations in this article. The bias and the associated 
standard deviation due to AGWN depend on the noise level and 
the number of samples. In order to improve the accuracy of the 
amplitude estimation, a sampling frequency fs = 10 kHz can be 
used instead of 1 kHz without notable influence of the increased 
quantisation noise. The three-parameter sine fit is not robust 
against harmonic distortion with non-coherent sampling. In 
order to reduce the bias of the estimated amplitude, the 
extraction of the integer periods of the sine wave or the 
multiharmonic sine fitting included higher-order harmonics 
could be adopted. Moreover, the simulation results indicate that 
the frequency error of the fitting mode can also cause a biased 
amplitude. However, the use of a frequency counter or some 
effective algorithms can keep this influence negligible. The 
effects of time jitter can also be neglected in this case. In total, it 
can be concluded that the three-parameter sine-fitting algorithm 
satisfies the requirement of the PB. 

As a next step, work will be carried out in order to include 
other important effects, e.g. a nonlinear B-field. All the 
investigated error sources will be taken into account in order to 
evaluate the uncertainty of the force factor Bl in the velocity 
mode. The aim is to create a good model for the implementation 
in a digital twin of the Planck-Balance i.e. a Monte Carlo-based 
uncertainty estimation to the PB [2]. 
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