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Abstract – The Planck-Balance (PB) is a table-top 

version of a Kibble balance. In contrast to many 

existing Kibble balances, the coil is moved sinusoidally 

and an ac rather than a dc signal is generated in the 

dynamic mode. The three-parameter sine fitting 

algorithm is applied to estimate the amplitudes of the 

induced voltage and the coil motion, which are used to 

determine the force factor Bl of the voice coil of the 

electromagnetic force compensation balance. However, 

the three-parameter sine fitting algorithm is not 

robust against some perturbations, e.g. additive 

Gaussian white noise, quantization error, and 

frequency error. These effects have influences on the 

accuracy of the amplitude estimation. Based on 

numerical simulations and correlation analyses, the 

effects of these perturbations are determined. By 

optimizing measurement and data processing 

approach, the bias and standard deviation of the 

estimated amplitude could be effectively reduced, and 

thus the accuracy of the force factor Bl in the dynamic 

mode can be improved. 
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 I. INTRODUCTION 

After the redefinition of the unit of mass, the kilogram, 

the Kibble balance is one possible approach to calibrate 

mass standards in terms of a fixed value of the Planck 

constant with zero uncertainty [1]. The Planck-Balance 

(PB) is a table-top sized Kibble balance and is currently 

under development in a collaboration between the 

Physikalisch-Technische Bundesanstalt (PTB) and the 

Technische Universität Ilmenau (TUIL) [2]. 

The Kibble balance has two measuring modes: static 

mode and dynamic mode. In the dynamic mode of 

existing Kibble balance experiments, the coil is usually 

moved at a constant velocity. In contrast to these Kibble 

balances, the coil of the PB is sinusoidally moved 

through the magnetic (B-)field in an oscillatory manner, 

thus inducing an ac voltage across the coil ends. This 

voltage is digitized by means of a high-precision digital 

multimeter (Agilent 3458A). If it is assumed that the coil 

motion and the induced voltage are perfectly sinusoidal, 

the force factor Bl (l denotes the coil wire length) can be 

determined by the oscillation frequency, the amplitudes 

of the coil motion and the induced voltage. In the PB set-

up only the amplitudes are required to be estimated since 

the oscillation frequency can be accurately measured with 

a frequency counter. The motion of the coil with respect 

to the magnet is measured with a commercial laser 

interferometer, which provides the position data as a 

function of time. The measurements of voltage and 

position are synchronized by means of an external trigger 

source with a trigger frequency of 1 kHz. 

The three-parameter sine fitting algorithm is applied 

to determine the amplitudes of the induced voltage and 

the coil motion. However, in practice, the sampled signal 

is not an ideal single-component sine wave due to some 

perturbations like, e.g., additive Gaussian white noise, 

quantization error or harmonic distortion. The fitting 

algorithm is not robust against these perturbations, and 

may result in a bias of the amplitude, which will directly 

affect the accuracy of Bl. In this paper, the effects of 

aforementioned perturbations are analyzed by numerical 

simulations. The bias and standard deviation of the 

estimated amplitude provided by the three-parameter sine 

fit are evaluated by the Monte Carlo simulation. 

 II. DYNAMIC MODE OF PLANCK-BALANCE  

In the dynamic mode of the PB, the coil oscillates 

through the B-field generated by the magnet system. The 

coil position is measured by using an interferometer, 

while the induced voltage in the coil is measured by using 

a voltmeter synchronously. The measured coil motion is 

assumed to be an ideal single-component sine wave with 



an amplitude S and an initial phase ��: 
 ���� = �	 + � sin��� + ��� 

Here �	 is the dc offset and � is the angular frequency, � = 2�����, where ���� denotes the oscillation frequency.  

The coil velocity can be obtained as the derivative of 

(1) with respect to the time t as 

 ���� = �� cos��� + ��� 

The induced voltage is also assumed to be a perfect 

sine wave with an amplitude U and an initial phase ��: 

 ���� = � cos��� + ��� 

Assuming that the force factor Bl is a constant during 

the whole range of coil movement, Bl can be calculated to 

divide the amplitude of the induced voltage by the 

amplitude of coil velocity as 

 �� = ��� = �� !"#$� 

In the PB system, the oscillation frequency ���� can 

be accurately measured by a frequency counter. 

Therefore, the accuracy of Bl depends on the estimation 

of amplitudes U and S. 

 III. THREE-PARAMETER SINE FIT 

A sinusoidal signal can be described as follows: 

 %��� = &	 + & sin��� + �� 

where Y is the amplitude,  the initial phase, and Y0 a dc 

offset. Equivalently, the signal (5) can be written as a 

linear combination of two shifted sine waves: 

 %��� = &	 + ' sin���� + � cos���� 

where A and B are the amplitudes of in-phase and in-

quadrature components, respectively. In (6), the signal 

frequency is known, and thus only three parameters Y0, A 

and B are required to be estimated. 

When a set of M samples %(, %�, … , %+  from a sine 

wave is sampled at the time instants �(, ��, … , �+, a linear 

least squares method can be used to determine the best 

sine wave parameters by minimizing the sum of the 

squares of the following errors: 

 min-,.,/0∑ �%2 − &	 − ' sin���2� − � cos���2���+24( 

The estimated parameters of the sine wave can be 

calculated in a matrix form: 

 5'�&	6 = �787�9(78 :%(%�⋮%+< 

with 

 7 = :sin���(� cos���(� 1sin����� cos����� 1⋮ ⋮ ⋮sin���+� cos���+� 1<. 

The amplitude Y can be determined from & =√'� + ��. 

 IV. INFLUENCES ON AMPLITUDE ESTIMATION 

In order to investigate some effects on the amplitude 

estimation provided by the three-parameter sine fitting 

algorithm, numerical experiments are implemented to 

simulate the induced voltage measurement. Firstly, a 

single-component sine wave is generated with the 

amplitude Uref = 0.3051 V, the initial phase  = -1.5876 

rad and the signal frequency fsig = 4 Hz. These parameters 

are chosen according to real measurement data [4]. A 

data set ?�2@24(+  is generated from the ideal sine wave 

and taken as the nominal points. For error comparison of 

amplitude, the value of Uref is taken as the reference value. 

Then, one or multi-perturbations are superimposed on the 

nominal points. The three-parameter sine fitting 

algorithm is implemented to estimate the amplitude �A. 

Finally, the relative bias of the amplitude B�  is 

calculated, as B� = C�A − �DEFC �DEF⁄ . 

 A. Additive Gaussian white noise 

The amplitude estimation is affected by additive 

Gaussian white noise (AGWN) with zero mean and 

standard deviation n. The theoretical expressions have 

been derived in [4-5] as follows: 

 B� ≈ IJK+�LMNK  

 O� = P�+ OQ 

where u denotes the standard deviation of the estimated 

amplitude. 

In order to validate the theoretical expressions (9) and 

(10), the Monte Carlo method (MCM) is used to evaluate 

the relative bias and standard deviation of the amplitude. 

The data set ?�2@24((	R is taken as nominal points, which is 

generated from a pure sine wave with the sampling 

frequency fs = 1 kHz and the sampling time T = 10 s. 

AGWN with different values of n is superimposed on 



the nominal points. The three-parameter sine fitting 

algorithm is used to estimate the amplitude �A . The 

process is repeated 104 times. The relative bias of the 

amplitude B� is calculated by comparison of the mean 

value of �A with Uref. The standard deviations associated 

with the estimated amplitude as a function of the noise 

level are presented in Fig. 1. According to (10), the 

theoretical values are also calculated with 104 samples 

and different values of n. The solid line represents the 

theoretical results in Fig. 1. 

 

Fig. 1. Standard deviation of the amplitude as a function of the 

noise standard deviation. The circles represent the simulated 

values obtained by the Monte Carlo method. The solid line 

represents the theoretical values given by (10). 

 

From (9) and (10), it can be deduced that the bias is 

negligible with respect to its standard deviation. Fig. 1 

shows a good agreement between theoretical and 

simulated results. It can be seen that u increases with the 

increase of n. If n = 10-4 V, the corresponding u is in 

the order of 10-6 V. The u can be reduced by either 

reducing n or increasing the number of samples M. 

 B. Sampling strategy 

When measuring the induced voltage and the coil 

motion, the sampling frequency fs and the sampling time 

T need to be determined. The number of samples M is 

equal to the product of fs and T. As mentioned in section 

A, the bias of the estimated amplitude and associated 

standard deviation can be reduced by increasing M. With 

a fixed value of T, more samples can be obtained by 

increasing fs. However, a higher sampling rate fs may 

result in a lower amplitude resolution of the digitizer with 

q bits of resolution, which results in an increased 

quantization error. 

Fig. 2 gives an example of the influence of the 

sampling frequency on the amplitude estimation. The 

quantization error is generated and superimposed on the 

nominal points. It is assumed that the quantization error is 

uniformly distributed with the variance OS =

T�U V√12 ∙ 2XY⁄ , where FSR is full-scale range [6]. The 

measurement time is T = 10 s, and the corresponding bits 

are 21 and 18 for the sampling frequencies fs = 1 kHz and 

10 kHz, respectively. The MCM with 104 trials is 

implemented to evaluate the standard deviation of the 

amplitude. The results show that when the sampling 

frequency increases by a factor of ten from 1 kHz to 10 

kHz, the corresponding standard deviation of the 

amplitude increases by a factor of about 2.5. However, 

the value of O� is in the order of 10-9, which is much 

lower than the noise level. Therefore, the quantization 

error is negligible in this case.  

 

Fig. 2. Standard deviation of the amplitude as a function of 

sampling frequency by using the Monte Carlo simulation. 

 

If fs = 10 kHz is used instead of 1 kHz and the noise 

standard deviation of n = 10-4 V, the corresponding u is 

reduced by an order of magnitude according to (10). 

Therefore, fs = 10 kHz can be adopted to improve the 

accuracy of amplitude estimation. 

The signal frequency fsig, the sampling frequency fs 

and the number of samples M satisfy the relation: 


!"#$!" = Z[\+  

where J and  are respectively the integer and the 

fractional parts of the number of sine wave cycles.  

When ] = 0, it is called coherent sampling, (9) and 

(10) can only be valid for this case. However, when non-

coherent sampling (] ≠ 0) occurs, the three-parameter 

sine fit provides a biased amplitude due to harmonic 

distortion [7]. The details have been given in [8]. 

Multiharmonic sine fitting or the extraction of integer 

periods of the sine wave can be used to reduce the bias of 

the amplitude provided by the three-parameter sine fit. 

 C. Frequency error 

In the three-parameter sine fitting algorithm, the 

signal frequency fsig is assumed to be known, and it is 

taken as an input to the fitting model. If there is an error 



]���� of the input frequency, an additional contribution 

will be included in the fitting model, which is described 

by a linearly damped oscillation [9].  

A numerical simulation has been implemented in 

order to investigate the effect produced by a frequency 

error ]����. The data set ?�2@24((	R  is generated with fsig = 

4 Hz. A frequency error ]���� is added to fsig, and the 

obtained frequency V]���� + ����Y is taken as the known 

frequency of the three-parameter sine fit to evaluate the 

amplitude. Finally, the relative bias of the amplitude is 

calculated and shown in Fig. 3. 

 

Fig. 3. Relative bias of the amplitude as a function of the signal 

frequency error. 

 

It can be seen in Fig. 3 that a more accurate amplitude 

can be obtained with a lower frequency error used in the 

fitting model. A frequency counter can measure the 

frequency accurately (< 10-8), which can be used as the 

input frequency of the model and is sufficient for the 

accuracies aimed for the PB (about 10-8). Experiments 

using other algorithms, e.g., the four-parameter sine fit 

and interpolated DFT method, showed that those 

algorithms can also reach frequency estimations with 

errors in the order of 10-8.  

 V. CONCLUSIONS AND OUTLOOKS 

Perturbations in the signal can result in a bias of the 

amplitude estimation when using the three-parameter sine 

fitting algorithm. The effects of AGWN, quantization 

error and frequency error have been investigated by 

numerical simulations in this paper. The bias and the 

associated standard deviation due to AGWN depend on 

the noise level and the number of samples. In order to 

improve the accuracy of the amplitude estimation, a 

sampling frequency fs = 10 kHz can be used instead of 1 

kHz without a notable influence of the increased 

quantization noise. Moreover, the simulation results 

indicate that the frequency error of the fitting model can 

also cause a biased amplitude. However, the use of a 

frequency counter or some effective algorithms can keep 

this influence negligible. 

In the near future, work will be carried out in order to 

include other important effects, e.g. a nonlinear B-field or 

time jitter. All investigated error sources will be taken 

into account to evaluate the uncertainty of the force factor 

Bl in the dynamic mode. The aim is to create a good 

model for the implementation in the virtual Planck-

Balance, i.e. a Monte Carlo based uncertainty estimation 

to the PB [2]. 
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