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1. INTRODUCTION 

In the last years the fast development and improvement of 
3D-print techniques have strongly affected many human 
activities [1-5]. Printed materials are also involved in high 
frequency applications as telecommunication technologies up to 
microwave frequencies [6-12]. Thus, a reliable and handy 
electromagnetic (e.m.) characterization is increasingly requested 
[13]. 

In this work we present the microwave characterization of 
plastic materials for 3D-printers with a resonant perturbative 
technique. The physical quantity under investigation is the 

permittivity 𝜀, which is defined as the quantity (in the more 
general case a tensor) which describes the proportionality 

between the electric displacement vector 𝑫 and the electric field 

strength vector 𝑬 in a medium, 𝑫 = 𝜀0𝜺 ⋅ 𝑬 with 𝜀0 the vacuum 
permittivity. In our case we consider isotropic and homogeneous 

materials in their linear regime, then 𝜺 = 𝜀̃  is a scalar quantity 
which does not depend on the position. The scalar complex 

relative permittivity is defined as 𝜀̃ = 𝜀′ − i𝜀′′, where the real 

part 𝜀′ is a measure of the energy storage properties of the 

medium while the imaginary part 𝜀′′  is related to the e.m. losses 

and i = √−1. Since 𝜀̃ is a complex quantity, it is often 

represented on the complex plane, where the angle 𝛿 between 𝜀̃ 
and the real axis is known as loss angle. Thus, the ratio 

𝜀′′ 𝜀′⁄ = tan𝛿 is called the loss tangent.  

We propose in this work a microwave (∼ 12.9 GHz) 
measurement method based on a resonant technique. We show 
that a specially designed dielectric loaded resonator (DR) can be 

used to measure 𝜀̃ by placing the dielectric sample on one of its 
flat bases, without the need for disassembling and reassembling 
the whole structure for each measurement, thus reducing the 
uncertainties involved. DRs are well known for their high 
sensitivity [14], but also for the poor measurement repeatability 
[15-16] in particular for what concerns the resonant frequency. 
Thus, a closed structure can be particularly useful to characterize 
samples by reducing systematic errors inevitably introduced by 
each mounting procedure. Moreover, since it is not necessary to 
reassemble the resonator for each measurement, the 
measurement time is reduced.  

We substituted a part of the volume of the resonating 
structure with the dielectric material under study. Comparison of 
the changes induced by the sample insertion of the unloaded 

quality factor 𝑄 and the resonant frequency 𝑓0 can be used to 
evaluate the electric/magnetic properties of the sample. If the 
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changes on the distribution of the electromagnetic (e.m.) field 
caused by the insertion of the sample are “small”, the resonant 
medium perturbation method [14] can be used.  

Dielectric printed materials are already used for high 
frequency applications and some works explored their dielectric 
permittivity. Noticeable is the result obtained in [18] where 
acrylonitrile butadiene styrene (ABS) doped with different 

quantities of BaTiO3 microparticles, allowed to obtain 2.6 < 
𝜀′ < 8.7 and 0.005 < tan 𝛿 < 0.027, thus opening the 
possibility to engineer these materials for specific needs. The 
measurements were performed at 15 GHz with a split post 

dielectric resonator obtaining 𝑢(tan 𝛿)/ tan 𝛿 ∼ 0.4 %. The 
split post resonator is a very sensitive measurement instrument 
but with critical issues related to the assembly procedure [14]. 

Our resonator works at a similar frequency (∼ 12.9 GHz), with 
a somewhat reduced sensitivity with respect to a split post 
resonator, but with much improved ease of operation, a useful 
feature in view of routine measurements.  

In Sec. 2 we present the measurement method and system. 
Then, in Sec. 3 a detailed uncertainties analysis is shown. In Sec. 4 
we present the experimental results and, in Sec. 5, we compare 
the obtained results to those given by a standard waveguide 
transmission/reflection method and to other relevant scientific 
works [13], [17], [18]. A short summary is presented in Sec 6. 

2. DESCRIPTION OF THE METHOD 

We use a special configuration of a dielectric loaded resonator 
in Hakki-Coleman [19] configuration, designed to guarantee 
enhanced measurement repeatability at room temperature. The 
two physical quantities that characterize the response of the 

resonator are the unloaded quality factor 𝑄 and the resonant 

frequency 𝑓0. 𝑄 is defined as 𝑄 = 𝜔0𝑊/𝑃, where 𝑊 is the 
energy stored into the resonator at the resonant angular 

frequency 𝜔0 = 2𝜋𝑓0 and 𝑃 the power dissipated at the same 
frequency. Thus, as we will show below, we can obtain the 
information about the dielectric losses of the material under 

study (i.e. tan𝛿), from the 𝑄 measurement. 

𝑃 is the sum of all the power losses 𝑃 = 𝑃𝑆 + 𝑃Ω + 𝑃𝑉 , where 

we indicate with the subscripts 𝑆, Ω, 𝑉 the quantities related 
respectively to the sample, to the metal surfaces and to all the 
other dielectric materials inside the resonator volume. Hence: 

1

𝑄
=

𝑃𝑆 + 𝑃Ω + 𝑃𝑉

𝜔0𝑊
=

1

𝑄𝑆

+
1

𝑄Ω

+
1

𝑄𝑉

, (1) 

with: 

1

𝑄𝑆

=
∫ ε𝑆

′′ε0|𝐄|2dV
VS

2W
= [

ε𝑆
′ ∫ ε0|𝐄|2dV

VS

2W
]

ε𝑆
′′

ε𝑆
′ = 𝜂𝑆tan𝛿, (2) 

1

𝑄Ω

= ∑
∫ 𝑅𝑖|𝑯𝜏|2dS

Si

2W
𝑖

= ∑
𝑅𝑖

𝐺𝑖𝑖
 , (3) 

1

𝑄𝑉

=
∫ 𝜀𝑉

′′𝜀0|𝑬|2𝑑𝑉
𝑉𝑉

2𝑊
= 𝜂𝑉 tan 𝛿𝑉 , (4) 

where 𝑬 is the electric field and 𝑯𝜏 is the magnetic field 

tangential to the 𝑖-th metallic surface 𝑆𝑖 with surface resistance 

𝑅𝑖 and geometrical factor 𝐺𝑖 . 𝜂𝑆 and 𝜂𝑉 are the filling factors of 
the sample and of the dielectric elements inside the resonator 
respectively. Thus: 

1

𝑄
= 𝜂𝑆 tan 𝛿𝑆 + ∑

𝑅𝑖

𝐺𝑖

+ 𝜂𝑉 tan 𝛿𝑉

𝑖

 (5) 

Since 𝑊 and the field configuration depend on 𝜀′ of all the 

dielectric elements inside the resonator, both 𝜂 and 𝐺 are 

functions also of 𝜀𝑠
′. Thus, to evaluate tan 𝛿𝑠 of the dielectric 

sample placed in the resonator from Eq. (5), 𝜀𝑠
′ must be 

measured. To this aim, one can exploit 𝑓0 of the resonator as a 
second measurand. However, it is known that the absolute value 

of 𝑓0 is strongly affected by many intrinsic (e.g. the 
electromagnetic properties of the elements inside the resonator) 
and extrinsic (e.g. temperature, pressure, humidity) factors, so 
that it is very difficult to exploit it in practice. However, the 

variation Δ𝑓0/𝑓0,𝑟𝑒𝑓 of 𝑓0, with respect to the reference value 

𝑓0,𝑟𝑒𝑓 , due to the changes in one or more parameters is much 

more reliable [14]. In our case, we measure Δ𝑓0 caused by the 
insertion of the dielectric sample. Then, with electromagnetic 

simulations we calculate Δ𝑓0 as a function of 𝜀𝑆
′  until the 

simulated and measured Δ𝑓0 coincide. Thus, 𝜀𝑆
′  is evaluated with 

the aid of e.m. simulations of the resonator. 

After that 𝜀𝑆
′  is evaluated, the factors 𝜂 and 𝐺 in Eq. (5) can 

be analytically or numerically (with simulators) calculated. Then, 

Eq. (5) can be inverted to obtain tan 𝛿𝑆 from 𝑄 measurements if 

all the 𝑅𝑖 and tan 𝛿𝑉 of the resonator are known from previous 
measurements or calibration procedures.  

It must be mentioned that the unloaded 𝑄 in Eq. (5) differs 

in principle from the measured 𝑄𝑙  because of the coupling of the 
resonator with the external lines. However, with very small 

coupling (i.e. 𝑃𝑒𝑥𝑡/𝑃 < 0.01 with 𝑃𝑒𝑥𝑡  the losses in the external 

transmission lines), as in our working condition, one has 𝑄𝑙 ∼
𝑄 and 𝑢(𝑄) ∼ 𝑢(𝑄𝑙) [14]. 

The use of Eq. (5) can give unacceptably large uncertainties 
since at microwave frequencies, the accuracy with which all the 
quantities in Eq. (5) are known is poor if compared to dc or low 
frequency measurements. In fact, in our case, we have 

𝑅 = 92 mΩ with 𝑢(𝑅) 𝑅⁄ ∼15 % and tan 𝛿𝑉 = 4 ⋅ 10−5 with 

𝑢( tan 𝛿𝑉 )/ tan 𝛿𝑉 ∼ 50 %.  

In order to reduce the contribution of these uncertainties on 

tan 𝛿𝑠, we propose to use a perturbative approach. The 

difference Δ(𝑄−1) between the measured quality factors 𝑄𝑆
−1 

and 𝑄𝐴
−1, obtained with the sample into the resonator (subscript 

S) or with a gap of air in its place (subscript A) respectively, can 

be written as: 

Δ(𝑄−1) = 𝜂𝑆 tan 𝛿𝑆 + ∑ 𝑅𝑖Δ(𝐺𝑖
−1) + Δ(𝜂𝑉) tan 𝛿𝑉 ,

𝑖

 (6) 

 

where it is clear that the smaller Δ(𝐺𝑖
−1) and Δ(𝜂𝑉) are, then the 

smaller the uncertainties on 𝑅𝑖 and tan 𝛿𝑉 contributions are. 

 

Figure 1. Sketch of the dielectric loaded resonator (not to scale). 
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2.1. Measurement system and procedure 

The resonator used for this study is depicted in Figure 1. The 

sapphire single crystal is a cylinder (height ℎ = 5.0 ± 0.1 mm, 

diameter ⌀ = 8.0 ± 0.1 mm). A K-type coaxial transmission 
line, ended with coupling loops, is used to excite and sense (in 
transmission mode) the e.m. field configuration into the 
resonator. The dielectric samples are supported by a brass mask 

with a central hole ⌀ = (13.00 ± 0.01) mm and closed with a 
brass cap in order to prevent energy radiation as depicted in 

Figure 1. The DR is excited in the TE011 mode thus the 𝑬 field is 
oriented parallel to the bases of the resonator. It is important to 

underline the orientation of the 𝑬 field because the layered 
deposition techniques, typical of most of the 3D-printers, can 
generate anisotropic effects on the e.m. properties of the printed 
samples. It was measured a uniaxial anisotropy factor of almost 

7 % on 𝜀′ at 40 GHz on polylactide (PLA) samples with 
waveguide reflection method [17]. In the method presented here 

the 𝑬 field is almost parallel to the deposition layers of the 
sample, thus our results probe the direction along the layer 
deposition, without significant mixing of the perpendicular 
component. 

The resonator transmission scattering complex parameter 𝑆12 , 
from which 𝑄 and 𝑓0 are evaluated, is measured with an Anritsu 
37269D Vector Network Analyzer (VNA), with the following 
procedure: 

- The VNA is calibrated with SOLT method and the 12-
errors parameters are applied to the frequency range in 
which the measurements are performed;  

- The transmission scattering parameter 𝑆12(𝑓) is 
acquired with 1601 points evenly distributed in a 

frequency range width 7Δ𝑓−3𝑑𝐵 , where Δ𝑓−3𝑑𝐵  is the 
width of the resonance curve at half power. Each data 
point is averaged with 10 acquisitions to reduce the noise 
contribution;  

- The absolute value of the acquired points |𝑆12(𝑓)|, with 

their uncertainty 𝑢(𝑆21(𝑓)), given by the VNA after the 

calibration [21], are fitted to the Fano resonance curve 
[22, 23]: 

|𝑆12(𝑓)| = |
𝑆12(𝑓0)

1 + 2i𝑄
𝑓 − 𝑓0

𝑓0

+ 𝑆𝑐| , (7) 

where the complex constant 𝑆𝑐 represents the cross-

coupling contribution. For each resonance curve, 𝑄 and 

𝑓0 are evaluated with their uncertainties 𝑢(𝑄), 𝑢(𝑓0). 
The uncertainties on the fitting parameters are obtained 
by standard statistical methods starting from the fitting 

residuals variance 𝜎𝑅
2 [20];  

- For each mounting 10 resonance curves are acquired. 

Then, the mean values of 𝑄 and 𝑓0 are evaluated with 

their standard deviation: 𝑢(𝑄) 𝑄⁄ ∼ 0.05 % and 

𝑢(𝑓0 )/  𝑓0  ∼ 1 ppm; 

- For each sample 5 mountings are performed 
disassembling and resetting the sample in its position. 

Then, the mean value of 𝑄 and 𝑓0 with their standard 
deviation are evaluated. The final uncertainties 

𝑢(𝑄) 𝑄⁄ ∼ 1 % and 𝑢(𝑓0 )/𝑓0  ∼ 20 ppm are mainly 
due to the assembling repeatability.  

3. UNCERTAINTIES ANALYSIS 

In this section we explore the behaviour of the measurement 
technique in the whole sample parameters space in order to 
establish the best working condition and its boundaries as a 

function of 𝜀𝑠′, tan 𝛿𝑠 and sample thickness 𝑡.  

First, we analyse the sensitivity of the resonator to tan 𝛿𝑠 
variations. The sensitivity is evaluated from Eq. (5), as: 

𝑐 =
𝜕𝑄

𝜕 tan 𝛿𝑆 

= −
𝜂𝑆

(𝜂𝑆 tan 𝛿𝑆 + 𝑙𝑟)2
= −𝜂𝑆𝑄2, (8) 

with 𝑙𝑟 = ∑
𝑅𝑖

𝐺𝑖
+𝑖 𝜂𝑉 𝑡𝑎𝑛 𝛿𝑉 which, as a first approximation, in 

this analysis is assumed to be independent from the sample 
properties: in the small perturbation limit the changes in the e.m. 
field configuration due to the sample are small and practically 
negligible, thus the conduction/volume losses given by the 
resonator components do not change appreciably. In our case, 

𝑙𝑟 ∼ 5000 = 𝑄𝐴
−1. 

In Figure 2, |𝑐(tan 𝛿𝑠, 𝜂𝑠)| is reported for 

10−5 < tan 𝛿𝑠 < 100 and 𝜂𝑠 = {10−4, 10−3, 10−2, 10−1}. We 

can notice a different log |𝑐| slope 𝑚 at high tan 𝛿𝑠 values 

(𝑚 = − 2) and at low tan 𝛿𝑠 (𝑚 = 0) in the log-log plot 

(Figure 2). The 𝑚 = −2 behaviour is given by the losses inside 

the dielectric samples when these are prevailing: 𝜂𝑠 𝑡𝑎𝑛 𝛿𝑠 ≫ 𝑙𝑟, 

then from Eq. (8) 𝑐 → − 𝜂𝑠
−1(tan 𝛿𝑠)−2. Instead, when 

𝜂𝑠 tan 𝛿𝑠 ≪ 𝑙𝑟, 𝑐 → − 𝜂𝑠𝑙𝑟
−2

 thus 𝑐 is no more dependent on 

tan 𝛿𝑠. As expected, the bigger 𝜂𝑠 the higher |𝑐| as long as the 

sample losses are small. Thus, for low tan 𝛿𝑠 samples, a higher 

𝜂𝑠 is preferable while at higher tan 𝛿𝑠, a lower 𝜂𝑠  gives better 
performances.  

At a fixed tan 𝛿𝑠 value the maximum of the sensitivity is 

obtained at the crossover of |𝑐| (see Figure 2) thus 

𝜂𝑠 = 𝜂𝑠,𝑜𝑝𝑡 = 𝑙𝑟/ tan 𝛿𝑠 and |𝑐|𝑚𝑎𝑥 = (4𝑙𝑟 tan 𝛿𝑠)−1. 𝜂𝑠,𝑜𝑝𝑡 is 

the optimum sample filling factor which gives the maximum 

sensitivity on 𝑄 measurements. Thus, the geometry of the 
samples under investigation can be adjusted in order to fulfil the 

𝜂𝑠,𝑜𝑝𝑡 requirement. In our case, the expected tan 𝛿𝑠 ∼ 10−2 , 

thus from Figure 2 𝜂𝑠,𝑜𝑝𝑡 ∼ 10−2. 

The loss tangent measure uncertainty 𝑢(tan 𝛿𝑠) is evaluated 
as follows [20]: 

 

Figure 2. Solid lines: the absolute value of resonator sensitivity |𝑐| as a 
function of the sample 𝑡𝑎𝑛 𝛿𝑠 and filling factor 𝜂𝑠. Dotted line: the 
maximum sensitivity |𝑐|𝑚𝑎𝑥 reachable for every 𝑡𝑎𝑛 𝛿𝑠 value. 
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𝑢2(tan 𝛿𝑆)

=
1

𝜂𝑆
2 [(𝑢(Δ(𝑄−1)))

2

+ ∑(Δ(𝐺−1)𝑢(𝑅𝑖))

𝑖

2

+ ∑ (𝑅𝑖𝑢(Δ(𝐺−1)))
2

+ (tan 𝛿𝑉𝑢(Δ(𝜂𝑉)))
2

𝑖

+ (Δ(𝜂𝑉)𝑢(tan 𝛿𝑉))
2

+ (tan 𝛿𝑆𝑢(𝜂𝑆))2], 

(9) 

 
with: 

𝑢2(Δ(𝑄−1)) = (
𝑢(𝑄𝑆)

𝑄𝑆
2 )

2

+ (
𝑢(𝑄𝐴)

𝑄𝐴
2 )

2

,  (10) 

𝑢2(Δ(𝐺−1)) = (
𝑢(𝐺𝑖,𝑆)

𝐺𝑖,𝑆
2 )

2

+ (
𝑢(𝐺𝑖,𝐴)

𝐺𝑖,𝐴
2 )

2

− 2𝑟𝐺

𝑢(𝐺𝑖,𝑆)𝑢(𝐺𝑖,𝐴)

𝐺𝑖,𝑆
2 𝐺𝑖,𝐴 

2 , 

(11) 

𝑢2(Δ(𝜂𝑉)) = 𝑢2(𝜂𝑉,𝑆) + 𝑢2(𝜂𝑉,𝐴) − 2𝑟𝜂𝑢(𝜂𝑉,𝑆)𝑢(𝜂𝑉,𝐴). (12) 

 

The correlation factors 𝑟𝐺  and 𝑟𝜂  are supposed to be almost 1 

since the evaluation of 𝐺𝑖 and 𝜂𝑉 is performed with the same 

algorithm and with the same settings. Instead, the 𝑄 
measurements are not strongly correlated since the different 
mountings can give different uncorrelated error contributions. 

Then, 𝑢(tan 𝛿𝑠) is explored in the (1 < 𝜀′ < 10, 

10−5 < tan 𝛿𝑠 < 100, 0.5 mm < 𝑡 < 2 mm)  space to 

establish the operative limits of this technique. 𝑢(tan 𝛿𝑠) is 

evaluated with Eq. (9) with geometrical 𝐺 and filling 𝜂 factors 
obtained through e.m. simulations. We verified with e.m. 

simulations that tan 𝛿𝑠 variations (in the studied space) does not 

alter the e.m. field configuration, thus, for the evaluation of 𝐺 

and 𝜂, tan 𝛿𝑠 is fixed  (i.e. tan 𝛿𝑠 = 10−2). Both 𝑢(𝐺) and 𝑢(𝜂) 
are obtained with Monte Carlo e.m. simulations randomly 
varying all the physical dimensions and the e.m. properties of the 
materials, of which the resonator is made, in their uncertainty 
space [24].  

It should be noticed that 𝑢(𝑄)/𝑄 is ideally constant for every 

𝑄 value if the measurement frequency span is kept proportional 

to 𝑓0/𝑄 and the number of points constant [25]. Actually, 
because of the mounting repeatability limitation, the presence of 
other resonance modes and other non idealities (e.g. a complex 
background signal on the transmission parameter and a cross-

coupling contribution), 𝑢(𝑄) is somehow limited even at low 𝑄,  

thus its absolute value is assumed constant 𝑢(𝑄) ∼ 40. In 

Figure 3 𝑢(tan 𝛿𝑠)/ tan 𝛿𝑠 is evaluated in the plane(𝜀′, tan 𝛿) 

and it is reported for samples with 𝑡 = 1.5 mm and 𝑡 = 0.5 mm. 

𝑢(tan 𝛿𝑠)/ tan 𝛿𝑠 strongly depends on the sample thickness 𝑡, 

thus on 𝜂𝑠, as expected from Figure 2. 𝑢(tan 𝛿𝑠) sharply 

increases with thinner samples particularly at low tan 𝛿𝑠 values: 

with tan 𝛿𝑠 ∼ 10−2 and 𝜀𝑠
′ ∼ 2, 𝑢(tan 𝛿𝑠) tan 𝛿𝑠⁄ ∼ 100 % 

for a 0.5 mm thick sample while 𝑢(tan 𝛿𝑠) tan 𝛿𝑠⁄ ∼ 10 % in 

the same conditions but with 𝑡 =1.5 mm. In Figure 3 we 

reported also the 𝜀𝑠′(tan 𝛿𝑠) curve corresponding to |𝑐|𝑚𝑎𝑥 : it 

fairly agrees with the lowest 𝑢(tan 𝛿𝑠) tan 𝛿𝑠⁄  level.  

Once the maximum 𝑢(tan 𝛿𝑠) threshold level is fixed, from 

Figure 3 the space (𝜀′, tan 𝛿) where the proposed technique can 
be reliably used is defined. However, two other limiting factors 
must be considered. The first is related to the impossibility to 

discriminate small Δ𝑄 ∼ 𝑄𝐴 − 𝑄𝑆 variations because of the 

measurement noise. Thus, where Δ𝑄 < Δ𝑄𝑚𝑖𝑛  this technique is 

no more sensitive. In our case with 𝑄𝐴 ∼ 5000, Δ𝑄𝑚𝑖𝑛 ∼ 40. 

We reported in Figure 3 the Δ𝑄𝑚𝑖𝑛 curve which however crosses 

the (𝜀′, tan 𝛿) plane where 𝑢(tan 𝛿𝑠)/ tan 𝛿𝑠 > 100 %. The 
second limit is set where the losses of the sample are so high to 

make 𝑄𝑠 too small to be reliably measured. Due to the 𝑆12(𝑓) 

background we set this minimum value min(𝑄𝑠) ∼ 100. In 
Figure 3 the dotted line represents this limit: above this curve no 

tan 𝛿𝑠 measurements are possible. 

Since we expect for 3D-printer materials 2.5 < 𝜀𝑠
′ < 3.5 and 

5 × 10−3 < tan 𝛿𝑠 < 5 × 10−2, it is possible to exploit the 

minimum  𝑢(tan 𝛿𝑠)/ tan 𝛿𝑠 area of the presented technique 

with a correct 𝜂𝑠 tuning.  

 

Figure 3. Relative loss tangent uncertainty 𝑢(𝑡𝑎𝑛 𝛿𝑆)/ 𝑡𝑎𝑛 𝛿𝑠 contour plot in 
the plane (𝜀′, tan 𝛿)  for sample of thickness 𝑡 = 0.5 mm (a) and 𝑡 = 1.5 mm 
(b). The thicker solid line represents the points of maximum sensitivity |𝑐|𝑚𝑎𝑥  
as evaluated from Figure 2. The dashed line corresponds to the minimum 
quality factor appreciable variation 𝛥𝑄𝑚𝑖𝑛 = 𝑄𝐴 − 𝑄𝑆 ∼ 40 and the dotted 
on to the minimum evaluable 𝑄𝑆,𝑚𝑖𝑛 ∼ 100. 

Table 1. The mean thickness 𝑡̅ of the samples and its standard deviation 𝜎𝑡. 

 
 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

𝑡̅ (mm) 0.522 1.002 1.512 2.063 

𝜎𝑡  (mm) 0.003 0.004 0.005 0.004 
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Figure 4. Differences between the resonant frequencies 𝑓0,𝑆 whit the samples 
mounted and 𝑓0,𝐴 whit the sample substituted by an air gap of the same 
thickness. The red dots are the experimental data and the blue lines the 
simulations results. 

4. RESULTS AND DISCUSSION 

The measurements were performed on four dielectric 
samples, made of a photopolymer material printed with 
PolyJetTM deposition technique, and of different thickness values 

𝑡 as reported in Table 1. The thickness of the samples and their 

flatness were checked with a micrometer. The mean values 𝑡̅ and 

their standard deviation 𝜎𝑡 = √∑ (𝑡 − 𝑡̅)2𝑁
𝑖=1 (𝑁 − 1)⁄  have 

been obtained by 𝑁 = 10 different measurements of the 

thickness probing the surfaces of the samples. Thus, 𝜎𝑡 can be 
read as a measure of the flatness of the samples.  

A sensitive enough method to evaluate 𝜀′ relies on the 
frequency repeatability of our setup, so that we can reliably 

measure the differences between 𝑓0,𝑆  measured with the 

dielectric samples mounted and 𝑓0,𝐴 measured without the 

sample and leaving an air gap of the same sample thickness. This 
is done thanks to 3D-printed rings, prepared in the same way and 
of the same thickness of the dielectric samples. The data are 
presented in Figure 4: from those one can then evaluate 

ε'S = 2.9 ± 0.2. 

Once 𝜀𝑠
′ is estimated with its uncertainty, the geometrical and 

filling factors of the resonator components (with their 
uncertainties) are evaluated from the simulations as shown in the 
previous section. 

Then, tan 𝛿𝑠 is evaluated through Eq. (6) from the measured 

𝛥(𝑄−1) = 𝑄𝑆
−1 − 𝑄𝐴

−1. The quality factors 𝑄 are reported in 
Table 2. 

In Figure 5 the measured tan 𝛿𝑠 is shown with the error bars 
evaluated with Eq. (9) using the uncertainties on the measured 
quantities and simulated parameter shown previously. Figure 5 

shows the best estimate: tan 𝛿𝑆 = (1.8 ± 0.2) ⋅ 10−2 as 

calculated with 𝜀′𝑆 = 2.9 ± 0.2. The evaluation of tan 𝛿𝑆 is 

performed taking as best value the centre point in the common 
confidence interval of all the experimental points (the green band 
in Figure 5). Then, the uncertainty is the half width of that 
common interval.  We note that the uncertainty bars rapidly 
increase when the sample thickness becomes small due to a lack 
of sensitivity as expected from the analysis presented in Sec. 3. 
This effect is present also in Figure 4, where the simulated curves 
for small thickness values tend to coalesce. On the contrary, 
samples with large thickness could cause e.m. field radiation from 
the structure, thus changing significantly the resonant mode and 
adding further losses. The method here presented, in our 
geometry, is then most suitable for samples of thickness between 
1 and 2 mm. 

5. COMPARISON WITH OTHER METHODS 

With a combined technique, a broad band (1 MHz÷11 GHz) 
characterization of 3D-printer materials was presented in [13]. 

The high frequency range (8.2 GHz÷11 GHz) was studied 
through a waveguide in reflection mode, although an uncertainty 
study was lacking in this frequency range. Reported values at 

11 GHz were 2.5 < 𝜀′ < 3.29 and 0.005 <  tan 𝛿 < 0.037, 
perfectly in agreement with our results. 

In order to check the accuracy of the DR technique shown in 

this paper, we measured 𝜀̃ of the dielectric material here used 
with a standard reflection/transmission method. We used a 
WR90 waveguide with a PNA Network Analyzer, model 
E8363C, Agilent Technologies, with the Agilent 85071E 
software and the ‘NIST precision’ method [26]. To perform this 
measurement, we printed parallelepipeds of section 

22.8 ⋅ 10.1 mm2 and different thickness (4, 5, 6, 7, 8 mm). We 

obtained 𝜀𝑆
′ ∼ 3.1 extrapolating the value at 12.9 GHz and no 

significative sample variations (Figure 6). This value is well 
comparable with the one obtained with the proposed DR 

technique using the 𝑓0 variation.  

Then, for the imaginary part we obtained 𝜀𝑠
′′ ∼ 0.23 with the 

waveguide method, which yields tan 𝛿𝑠 ∼ 0.074 and with a 
significative inter-sample scattering. This value is about 4 times 
larger than the one obtained with the DR method. However, it 
must be mentioned that the ‘NIST precision’ method was 
developed to solve the accuracy problems of the 
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Table 2. The inverse of the measured quality factors when the four samples, 
S1-S4, are inserted. 𝑄𝑆

−1and 𝑄𝐴
−1 refer to the measurement with the sample 

and an air gap of equal thickness, respectively. 

 
 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

𝑄𝑆
−1 ⋅ 104 2.15 2.48 3.06 4.25 

𝑄𝐴
−1 ⋅ 104 1.95 1.96 1.98 2.00 

 

Figure 5. The measured loss tangent of the dielectric 3D-printed material 
𝑡𝑎𝑛 𝛿𝑆. The error bars are evaluated with Eq.(9) and the green area represent 
the confidence interval. 
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Nicholson-Ross-Weir (NRW) technique near the sample 
resonances [14, 26]. The ‘NIST precision’ and the NRW give 
comparable results out of the resonances. It is well known that 

the NRW is not a reliable method for 𝜀′′ evaluation of low loss 
materials. In fact, we tested the same measurement fixture with 
a Polytetrafluoroethylene (PTFE) sample obtaining 

𝜀𝑃𝑇𝐹𝐸
′′ ∼ 1.5 × 10−2, while from literature [27] it is expected to 

be about two order of magnitude smaller. Also for materials with 
higher losses, the NRW accuracy is limited: the comparison 
presented in [28] between the NRW and other methods shows 

some discrepancy even at tan 𝛿 ∼ 10−2 values (e.g. with nylon 
samples) as in our case. Thus, the incompatibility between the 

DR tan 𝛿 measurement with that obtained in waveguide, will be 
subject of study in further works but it was something somehow 
expected. 

6. SUMMARY 

We presented a dielectric loaded-resonator-based technique 

for the measurement of the complex permittivity 𝜀̃ of 3D 
printable materials. We exploited the possibility to shape the 
sample in appropriate shapes (disks, in our case) and the excellent 
frequency repeatability of our setup in order to reliably measure 

the quality factor 𝑄 and the resonance frequency 𝑓0, with and 
without the sample loaded into the cavity. From the variations of 

𝑄 and 𝑓0 given by the sample insertion, 𝜀̃ is obtained with the 
perturbation approach. The measurement technique 
performances were deeply analysed in terms of sensitivity and 
accuracy in the whole parameters space in order to establish the 
sample geometry, as a function of its e.m. properties, for the best 
measurement accuracy. 

We tested the technique measuring photopolymer material 

printed with PolyJetTM deposition. We obtained ε'S = 2.9 ± 0.2 

and tan 𝛿𝑠 = 0.018 ± 0.002. The accuracy of the measured ε'S 
was checked using the ‘NIST precision’ method [26] based on 
transmission/reflection measurements with a WR90 waveguide. 

The results obtained with the presented technique, both on 𝜀′𝑠   
and tan 𝛿𝑠, are fairly in agreement with other literature works. 

Summarizing, we presented a new measurement technique for 
the e.m. characterization of dielectric materials, with interesting 

possible industrial applicability due to its simple conceptual 
approach and good accuracy. 
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