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1. INTRODUCTION 

Frequency-domain algorithms based on the discrete Fourier 
transform (DFT) return highly accurate sine-wave parameters 
estimates under coherent sampling conditions [1]. However, in 
practice, coherent sampling is often difficult to achieve, since the 
sine-wave frequency can be time-variant, and the waveform can 
be affected by spurious tones. Time-domain approaches, such as 
those implemented by the Prony, Pisarenko, and MUSIC 
algorithms [2], [3], also ensure accurate sine-wave parameter 
estimates when non-coherent sampling occurs. Unfortunately, 
the required processing effort is quite high, and the estimation 
accuracy depends on the order of the adopted waveform model, 
which is normally unknown a priori. Therefore, these approaches 
do not provide optimal performance in real-time applications, 
for which frequency domain algorithms are often preferred due 
to their lower processing effort. Unfortunately, when non-
coherent sampling occurs, the sine-wave parameter estimates 
provided by DFT-based algorithms are affected by both spectral 

leakage [4] and picket-fence effects [5]. The spectral leakage 
effect can be significantly reduced by windowing [4], and cosine-
class windows are frequently used, since they can be easily 
implemented and ensure a good spectral leakage suppression. 
Conversely, the picket-fence effect can be reduced by applying 
one of the so-called interpolated DFT algorithms [5]-[21]. The 
classical IpDFT algorithm [8] firstly estimates the sine-wave 
frequency by interpolating the two highest samples of the signal 
spectrum. Then, the sine-wave amplitude and phase are 
determined considering the signal DFT and the estimated 
frequency. When a small number of sine-wave cycles is acquired 
under non-coherent sampling conditions, the obtained 
parameter estimates are significantly affected by the spectral 
interference raising from the fundamental image component. 
The related contribution can be reduced by using more 
interpolation points [15]-[21], but at the expenses of an estimator 
variance increase [17]. IpDFT estimators are expressed by very 
simple expressions when maximum sidelobe decay (MSD) 
windows are employed [4], [22]. These are cosine windows that 
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exhibit the maximum spectrum sidelobe decay rate for a given 
number of terms, thereby effectively reducing the detrimental 
effect on the estimated parameters of long-range spectral leakage 
due to harmonics or spurious tones. However, the effectiveness 
of windowing on short-range leakage is very low, such that the 
influence of nearby interfering tones on the estimated parameters 
can be significant. When the classical IpDFT algorithm based on 
an MSD window is applied, expressions for the frequency error 
and the amplitude and phase errors due to short-range 
interference from both the image component and harmonics 
have been derived in [23] and [24], respectively. However, real-
life sine-waves are also affected by interharmonics. An 
expression for the frequency error affecting the IpDFT 
algorithm when the analysed sine-wave is corrupted by a small-
amplitude interharmonic located at least one bit apart the 
unknown frequency has been derived in [25]. Our aim in this 
article is to extend that result by deriving the expressions for the 
amplitude and phase estimation errors that affect the classical 
IpDFT algorithm based on an MSD window. The derived 
expressions generalise the results related to the sine-wave 
affected by one harmonic. They allow us to easily analyse the 
contribution of an interharmonic on the amplitude and phase 
estimates returned by the IpDFT algorithm. To the best of the 
authors’ knowledge, such an analysis has not yet been published. 
The aforementioned expressions are outlined in Section 2, where 
some remarks about the contribution due to a nearby 
interharmonic are also reported. The accuracies of the derived 
expressions and the correctness of the remarks are then verified 
by means of computer simulations in Section 3. Finally, 
conclusions are proposed in Section 4. 

2.  SINE-WAVE AFFECTED BY AN INTERHARMONIC: IpDFT 
FREQUENCY, AMPLITUDE, AND PHASE ESTIMATION 
ERRORS 

The analysed discrete-time waveform is modelled as: 
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where A, f0, , Aih, f0ih, and ih are the amplitude, frequency, and 
initial phase of the fundamental and the interharmonic 
components, respectively, and fs is the sampling frequency, while 
M is the acquisition length. 

The ratios f0 / fs and f0ih / fs can be expressed as: 
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where  and ih are the number of acquired cycles; l and lih are 

the integer parts of  and ih, respectively. Finally,  (-0.5   < 

0.5) and ih (-0.5  ih < 0.5) are the corresponding fractional 
parts, i.e. the inter-bin frequency locations. 

It is noteworthy that the reference time (i.e. the instant m = 0) 
is chosen in the centre of the observation interval so that the 
IpDFT phase estimator is independent of the frequency 
estimator, and more accurate estimate can be obtained [11], as it 
will be shown in the next section. 

In practice, both the fundamental and the interharmonic 

components are normally non-coherently sampled (i.e.   0 and 

ih  0), so the discrete spectrum of (1) is affected by spectral 
leakage. To mitigate the issue, the windowed signal xw(m) = 

x(m)  w(m) is analysed, where w() is a suitable window function. 

An H-term MSD window (H  2) is considered due to its good 
spectral characteristics [4], [22]. It is defined as: 
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where the window coefficients ah are given by [12]: 
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The DFT of the windowed signal xw() is given by: 
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where W() is the discrete time Fourier transform (DTFT) of the 

adopted window w(). For || ≪ M and M ≫ 1, W() is given by 
[12]: 

𝑊(𝜆) =
𝑀𝑠𝑖𝑛(π𝜆)
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which shows that W() exhibits even symmetry. 
It is important to note that the second and the fourth terms 

in (5) represent the contributions of the fundamental spectral 
image and interharmonic components, respectively. 

The inter-bin frequency location estimator returned by the 
considered IpDFT algorithm is given by [12]: 

𝛿̂ =
(𝐻 − 1 + 𝑖)𝛼 − 𝐻 + 𝑖

𝛼 + 1
, (7) 

where i = 0 if |Xw(l – 1)|  |Xw(l + 1)| and i = 1 if |Xw(l – 1)| 

< |Xw(l + 1)| and 𝛼 ≝
|𝑋w(𝑙+𝑖)|

|𝑋w(𝑙−1+𝑖)|
. 

The related IpDFT amplitude and phase estimators are given 
by [11], [12]: 
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and 

𝜙̂ = ∡ {𝑋w(𝑙)}, (9) 

where 𝛿̂ is the inter-bin frequency location estimate returned by 

(7). When lih  l + 1 and Aih ≪ A, due to the interharmonic 
component, that estimate is affected by the following error [25]: 
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The corresponding relative amplitude and phase estimation 
errors are given by (see Appendix A): 
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and (see Appendix B): 

Δ𝜙 ≝ 𝜙̂ − 𝜙 = −
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
sin(2𝜙) 

+
𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)
sin(𝜙ih − 𝜙), 

(12) 

where 𝑊′(𝛿) is the derivative of W() with respect to  and  
is given by (10). 

(11) and (12) show that the amplitude error A depends on the 

frequency error , while the phase error  is independent of 

it. By using expression (8), after simple calculations, the error A 
becomes: 
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Observe that both equations (12) and (13) contain two terms 
that depend on the phases of the fundamental and interharmonic 
components through a sine function. The first term is the 
contribution of the spectral interference from the fundamental 
image component. It decreases as the number of acquired sine-

wave cycles  increases. The second term is the contribution of 

the spectral interference from the interharmonic component. It 
decreases as the difference between the observed number of 

interharmonic and fundamental cycles ih -  increases. 

Moreover, both errors A and  linearly increase with the 

relative interharmonic amplitude Aih / A. If the distance ih -  
is small, and the relative amplitude Aih / A is quite high, then the 
contribution of the interharmonic component dominates that of 
the fundamental image component. 

It is also important to note that when acquiring a single signal 

record, the errors , A and  exhibit a systematic behaviour 
since they depend on the constant parameters of the 
fundamental and the interharmonic components, the window 
DTFT and its derivative. Unfortunately, the proposed analysis 
only allows for an evaluation of that contribution (and so 
providing a type B method of uncertainty evaluation) when the 
difference between the recorded number of cycles of the 
fundamental and the interharmonic components is greater than 
about three. Indeed, below that threshold, the interference from 
the interharmonic component is significant, and the IpDFT 
algorithm does not return accurate parameter estimates, so the 
derived relationship cannot be effectively applied to evaluate – 
and possibly mitigate – the related systematic contribution. 

3. COMPUTER SIMULATIONS AND EXPERIMENTAL RESULTS 

In this section, both meaningful computer simulations and 
experimental results are reported in order to check the accuracies 
of the derived expressions for relative amplitude error (13) and 
phase error (12) and to verify the correctness of the related 
conclusions. Furthermore, equation (10) for the inter-bin 
frequency estimation error is analysed since it affects the 
amplitude estimation error. 

Only simulations and experiments related to specific values of 
the parameters are reported in the following for the sake of 
conciseness. However, behaviours very similar to those shown 
here were obtained in all the considered situations. 

3.1. Simulation results 

The amplitude and the phase of the simulated sine-waves are 

A = 1 p.u. and  = /3 rad, respectively. The acquisition length 
is M = 512 samples. Each simulation considers 1000 runs in 

which the initial phase of the interharmonic component ih 

changes at random in the range [0, 2) rad. The two-term MSD 

  
(a) (b) 

Figure 1. The simulation and theoretical results related to the maximum values of the error magnitudes ||, |A|, and || versus the inter-bin frequency 

 when l = 2 cycles, ih -  = 1.4 cycles (a) and ih -  = 2.8 cycles (b). Aih / A = 0.1 and 1000 runs of M = 512 samples each are considered. The Hann window is 
adopted. 
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window, known also as Hann window [4], [22], is used. 
Figure 1 shows the maximum values of the error magnitudes 

||, |A|, and || obtained by simulations and theoretical 

results as a function of the inter-bin frequency location  when l 

= 2 cycles, Aih = 0.1 p.u., ih -  = 1.4 cycles (Figure 1(a)) and 

ih -  = 2.8 cycles (Figure 1(b)). 
Figure 1 shows a very good agreement between the simulation 

and the theoretical results except when  is close to zero and ih -  
= 1.4 cycles. That behaviour is probably due to an incorrect 
selection of the second interpolation point between the two 

samples |Xw(l – 1)| and |Xw(l + 1)|, which exhibit very close 
values. It is noteworthy that the same behaviour was observed 

for other values of ih -   < 2.4 cycles. Moreover, this occurred 

in a range of  values that became shorter when ih -  increases. 
Notice also that the simulation and theoretical results related to 
the phase estimation error are always close each other. Indeed, 
they do not depend on the estimated inter-bin frequency, see 
(12). 

Figure 2 shows the maximum values of the error magnitudes 

||, |A|, and || obtained by the simulation and theoretical 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. The simulation and theoretical results related to the maximum values of the error magnitudes ||, |A|, and || versus the distance ih -  between 

the observed cycles of the interharmonic and the fundamental components when  = 1.7, 5.7, 10.7, 15.7 cycles (a) and  = 2.3, 6.3, 11.3, 16.3 cycles (b). Aih / A = 
0.1 and 1000 runs of M = 512 samples each are considered. The Hann window is adopted. 
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results versus the difference ih -  of the observed cycles of the 

two components when Aih = 0.1 p.u.,  = 1.7, 5.7, 10.7, 15.7 

cycles (Figure 2(a), (c), (e)) and  = 2.3, 6.3, 11.3, 16.3 cycles 
(Figure 2(b), (d), (f)). Notice that Figure 2(a) and (b), (c) and (d), 

and (e) and (f) are related to the same values of l and  = −0.3 

and  = +0.3, respectively. 
From Figure 2, it follows that there is a very good agreement 

between the simulation and the theoretical results. Furthermore, 
it can be observed that all estimation errors are quite significant 
when the two tones are close to each other (specifically, when 

ih -  is less than about 1.5 cycles) and they mainly depend on 
the interference due to the interharmonic. Conversely, when the 

differenceih -  increases, the contribution of the fundamental 
spectral image becomes significant. It is worth noticing that this 
behaviour holds regardless the value of the number of sine-wave 

cycles  as soon as it is greater than one cycle, except when  is 

close to zero and the difference ih -  is enough high (see Figure 
1). 

Figure 3 shows the simulation and theoretical results related 

to the maximum values of the estimation error magnitudes ||, 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. The simulation and theoretical results related to the maximum values of the error magnitudes ||, |A|, and || versus the ratio Aih / A when  = 1.7 

and 5.7 cycles (a), and  = 2.3 and 6.3 cycles (b). ih -  = 1 cycle and 1000 runs of M = 512 samples each are considered. The Hann window is adopted. 
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|A|, and || as a function of the ratio Aih / A between 

interharmonic and fundamental amplitudes, when  = 1.7 and 5.7 

cycles (Figure 3(a), (c), (e)),  = 2.3 and 6.3 cycles (Figure 3(b), 

(d), (f)) and ih -  = one cycle – the smallest value considered 
for the difference between the observed cycles of the 
interharmonic and the fundamental components. 

In Figure 3, it can be observed that the simulation and the 

theoretical results are very close to each other when Aih / A  

0.1, except for the phase estimation errors for which there is a 

very good agreement for all the considered values of  when 
Aih / A < 0.65. This is due to the fact that the expression for the 
phase error is accurate also when the interharmonic amplitude is 
much smaller than the fundamental component. Furthermore, all 
estimation errors linearly increase as the ratio Aih / A increases, 
as expected from the theory. 

Finally, Figure 4 compares the maximum error magnitudes 

||, |A|, and || due to both an interharmonic and a 

second harmonic as a function of ; ih -  = 1.7 cycles and both 
the interharmonic and harmonic have the same amplitude – 
equal to 0.1 p.u. The theoretical expressions for the contribution 
of the second harmonic are obtained from (10), (13), and (12), 

assumingih = 2. 
As we have shown, the sine-wave parameter estimation errors 

due to the interharmonic are almost independent of the integer 
part of the number of observed sine-wave cycles, as they mainly 

end on the inter-bin frequency location . Indeed, the second 

terms in (10), (12), and (13) dominate, and for fixed values of ih - , 

they depend on the inter-bin frequency . Therefore, the error 

magnitude ||, |A|, and || have an almost periodic 

behaviour with respect to . Conversely, the errors ||, |A|, 

and || due to the effect of the second harmonic decrease as 

the number of observed sine-wave cycles  increases. Moreover, 
the contribution of the interharmonic component dominates, 

except when  < 2 cycles, where the contribution due to the 
fundamental spectral image becomes important. 

3.2. Experimental results 

A block scheme of the experimental setup is shown in Figure 
5. The fundamental component was set to an amplitude of A = 
2 V and a frequency of f0 = 2 kHz, and it was provided at the 
signal generator OUT1 output, while an interharmonic 
component of amplitude Aih = 0.175 V and frequency f0ih = 
2.293 kHz were provided at the OUT2 output. The analysed 
signal, given by the sum of the fundamental and the 
interharmonic, was obtained at the output of the passive adder. 
This signal was sampled at a rate of 100 kHz by an NI6023E 
acquisition board with a full-scale range equal to 10 V. Fifty 
records of M = 512 samples each were acquired. Figure 6 shows 

the experimental and theoretical estimation errors , A, and 

 affecting the IpDFT algorithm. The theoretical results were 
obtained by applying (10), (12), and (13), respectively, in which 
the involved signal parameters were returned by a linear least 
squares two-tone fit algorithm. According to that algorithm, the 
number of the acquired cycles of the fundamental and the 

interharmonic components,  and ih respectively, are firstly 
determined by (2) and (3), in which f0 and f0ih are the frequencies 
of the generated signals. Then, the signal offset and the 

 

 
(b) 

 
(c) 

Figure 4. The simulation and theoretical results related to the maximum 

values of the error magnitudes ||, |A|, and || versus  when the 
sine-wave is affected by both an interharmonic and a second harmonic 
with the same amplitudes, equal to 0.1 p.u. The interharmonic is 1.7 
cycles from the fundamental component. A = 1 p.u. and 1000 runs of M = 
512 samples each are considered. The Hann window is adopted. 

 

Figure 5. A block scheme of the experimental setup. 
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amplitudes and phases of the two components are estimated by 
applying a linear least squares approach. It is important to note 
that in the considered situation, the IpDFT algorithm does not 
return accurate parameter estimates due to the strong 
interference from the interharmonic component, which abruptly 

increases as soon as ih -   is smaller than about three cycles. 
It follows that the derived equations (10), (12), and (13) do not 
allow for an effective compensation for the systematic 
contribution due to the spectral interference that arises when the 
IpDFT algorithm is used. 

Figure 6 shows that the experimental and theoretical results 

for the errors  and A are close to each other, while those 

related to the error  almost coincide, thereby validating the 
performed analysis. 

4. CONCLUSIONS 

The analytical expressions for the errors that affect the sine-
wave amplitude and phase estimates returned by the classical 
IpDFT algorithm based on a generic MSD window have been 
derived in the case when the sine-wave is corrupted by a small-
amplitude interharmonic located at least one bin apart the 
unknown frequency. The derived expressions show that the 
amplitude error depends on the inter-bin frequency location 
error, while the estimation of the phase referred at the centre of 
the observation interval is independent of the sine-wave 
frequency error. Both expressions for the amplitude and phase 
errors contain two terms that exhibit sine-like behaviour. One 
term represents the contribution of the spectral interference from 
the fundamental image component, while the other one is the 
contribution of the spectral interference from the interharmonic 
component. In particular, the obtained expressions show when 
the contribution due to an interharmonic with a frequency 
located closely to the sine-wave one can dominate the 
detrimental effect of the second harmonic. 

Both computer simulations and experimental results confirm 
the accuracies of the derived expressions. 

APPENDIX A 

Derivation of the expression for the relative amplitude error A 

 

When lih  l + 1 and Aih ≪ A, we have [25]: 
 

|𝑋w(𝑙)|  ≅
𝐴

2
𝑊(𝛿) +

𝐴

2
𝑊(2𝜈 − 𝛿)cos(2𝜙) 

+
𝐴ih

2
𝑊(𝜈ih − 𝜈 + 𝛿)cos(𝜙ih − 𝜙).  

(14) 

Since 𝛿̂ = 𝛿 + Δ𝛿, with || ≪ ||, 𝑊(𝛿̂) can be 

accurately expressed by a first-order Taylor’s series about : 

𝑊(𝛿̂) ≅ 𝑊(𝛿) + 𝑊′(𝛿)Δ𝛿, (15) 

where 𝑊′(𝛿) is the derivative of W() with respect to . 

By using expressions (14) and (15) in (8), the estimator 𝐴̂ 
becomes: 

𝐴̂ ≅ [𝐴 + 𝐴
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
cos(2𝜙) 

+𝐴ih

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)
cos(𝜙ih − 𝜙)] 

× [1 +
𝑊′(𝛿)

𝑊(𝛿)
Δ𝛿]

−1

. 

(16) 

Since |
𝑊′(𝛿)

𝑊(𝛿)
Δ𝛿| ≪ 1, using the approximation (1 + x)-1  

1 - x, when |x| ≪ 1, (A.3) becomes: 

𝐴̂ ≅ [𝐴 + 𝐴
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
cos(2𝜙) 

+𝐴𝑖ℎ

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)
cos(𝜙ih − 𝜙)] 

(17) 

 

 

 

Figure 6. Experimental and theoretical errors , A, and  affecting the 
sine-wave parameters IpDFT estimator obtained when considering 50 
records of M = 512 samples each. Real sine-waves affected by an 
interharmonic are separated by about 1.5 cycles. Theoretical results are 
achieved by using the linear least squares two-tone fit algorithm. 
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× [1 −
𝑊′(𝛿)

𝑊(𝛿)
Δ𝛿]. 

The second and third terms in the first square brackets of (17) 

become negligible when multiplied by 
𝑊′(𝛿)

𝑊(𝛿)
Δ𝛿. Thus, (17) 

becomes: 

𝐴̂ ≅ 𝐴 + 𝐴
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
cos(2𝜙) + 

+𝐴𝑖ℎ

𝑊(𝜈 − 𝜈ih − 𝛿)

𝑊(𝛿)
cos(𝜙ih − 𝜙)

− 𝐴
𝑊′(𝛿)

𝑊(𝛿)
Δ𝛿. 

 

(18) 

From (18), the amplitude estimation error results in: 

Δ𝐴 ≝ 𝐴̂ − A ≅ 𝐴
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
cos(2𝜙) + 

+𝐴ih

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)
cos(𝜙ih − 𝜙) − 𝐴

𝑊′(𝛿)

𝑊(𝛿)
Δ𝛿. 

(19) 

Finally, by using (19), equation (11) can be easily obtained. 

APPENDIX B 

Derivation of the expression for the phase error  

 
From (7), the expression of Xw(l) is given by: 

𝑋w(𝑙) =
𝐴

2
[𝑊(𝛿) + 𝑊(2𝜈 − 𝛿)] cos(𝜙) 

+
𝐴ih

2
[𝑊(𝜈ih − 𝜈 + 𝛿) + 𝑊(𝜈ih + 𝜈 − 𝛿)] cos(𝜙ih) 

+𝑗
𝐴

2
[𝑊(𝛿) − 𝑊(2𝜈 − 𝛿)]sin (𝜙) 

+𝑗
𝐴ih

2
[𝑊(𝜈ih − 𝜈 + 𝛿) − 𝑊(𝜈ih + 𝜈 − 𝛿)] sin(𝜙ih) 

(20) 

By using (20), observing that the contribution of W(ih +  - 

) can be neglected compared with the other terms, after some 
simple calculations, equation (9) becomes: 

𝜙̂ ≅ tan−1 {tan(𝜙) [1 −
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
 

+
𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)

sin(𝜙ih)

sin(𝜙)
] 

× [1 +
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
 

+
𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)

cos(𝜙ih)

cos(𝜙)
]

−1

}. 

(21) 

Observing that |
𝑊(2𝜈−𝛿)

𝑊(𝛿)
+

𝐴ih

𝐴

𝑊(𝜈ih−𝜈+𝛿)

𝑊(𝛿)

cos(𝜙ih)

cos(𝜙)
| ≪ 1 and 

using the approximation (1 + x)-1  1 – x, when |x| ≪ 1, (21) 
becomes: 

𝜙̂ ≅ tan−1 {tan(𝜙) [1 −
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
 

+
𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)

sin(𝜙ih)

sin(𝜙)
] × 

[1 −
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
−

𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)

cos(𝜙ih)

cos(𝜙)
]}. 

(22) 

The second and third terms in the first square brackets of (22) 

multiplied by [
𝑊(2𝜈−𝛿)

𝑊(𝛿)
+

𝐴ih

𝐴

𝑊(𝜈ih−𝜈+𝛿)

𝑊(𝛿)

cos(𝜙ih)

cos(𝜙)
] are very small 

compared with the other terms so that they can be neglected. 

Thus, after some calculations, the estimator 𝜙̂ becomes: 

𝜙̂ ≅ tan−1 {tan(𝜙) −
2𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
tan(𝜙) 

+
𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)

sin(𝜙ih − 𝜙)

cos2(𝜙)
}. 

(23) 

By expressing the tan-1() function using its first-order Taylor’s 

series about tan(), the following expression for 𝜙̂ is achieved: 
 

𝜙̂ ≅ 𝜙 −
𝑊(2𝜈 − 𝛿)

𝑊(𝛿)
sin(𝜙) 

+
𝐴ih

𝐴

𝑊(𝜈ih − 𝜈 + 𝛿)

𝑊(𝛿)
sin(𝜙𝑖ℎ − 𝜙). 

(24) 

Finally, using (24), equation (12) can be easily obtained. 
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