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Abstract – The paper presents the results obtained 

from a preliminary experimental assessment of a 

novel method which relies on Compressed Sampling 

(CS) of electrocardiographic (ECG) signal. The 

mathematical model for CS-based acquisition of ECG 

signals and its feasibility for practical implementation 

for an Internet-of-Medical Things (IoMT) system are 

described. Herein, the presented experimental results 

demonstrate the robustness and convenience of the 

proposed method. 
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I. INTRODUCTION

Internet of Things (IoT) represents a new paradigm 

for machine-to-machine communication, where the things 

are augmented with smart sensors and Internet 

connectivity in order to observe various physical 

quantities, collect information, transmit, store and analyse 

the acquired data [1]. Biomedical smart sensors adopting 

IoT paradigm (i.e. thus forming instrumentation for 

patient monitoring), represent the Internet-of-Medical-

Things (IoMT) for connected health.  

Patient mobility requires that many of such 

biomedical smart sensors (i.e. forming wearable 

instrumentation) are battery powered. For instance, 

signals like the electrocardiogram (ECG) are used for 

identification of arrhythmia or irregular abnormalities. 

This process of patient monitoring requires long-term 

ECG records. Consequently, connected health wearable 

instrumentation is strongly dependent on the energy cost 

for wireless transmission [2]. Therefore, the energy 

consumption will define the practicability of wearable 

instrumentation in case of long-term recording of bio-

electrical signals [1]-[3]. For this reason, the research 

direction is motivated on developing wearable devices 

which embeds smart sensors and exhibits low power 

consumption.   

The research activity presented in this paper is part of 

the project titled Ambient-intelligent Tele-monitoring and 

Telemetry for Incepting & Catering over hUman 

Sustainability, ATTICUS, supported by the Italian 

Ministry of Education and Research, which aims to 

develop a smart wearable device for the monitoring of 

several vital parameters by adopting novel technologies 

for minimizing the power consumption [4].  

The general architecture of the ATTICUS system 

consists of: (i) a smart wearable device (S-WEAR), (ii) 

an ambient intelligence device (S-BOX), (iii) a Decision 

Support System (DSS), and (iv) a monitoring station. 

The S-WEAR is composed by a T-shirt (i.e. worn by 

the user) enriched with smart sensors providing: (i) from 

one up to twelve leads ECG measurements, (ii) user 

activities information (i.e. step counting, fall detection, 

orientation, position), (iii) skin temperature, (iv) bio-

impedance measurements for estimating the galvanic skin 

response, (v) respiration rate, and (vi) heart rate 

measurements. All those measurements have to be stored 

on a local SD card and sent to the S-BOX via low-energy 

wireless communication (e.g. Bluetooth Low-Energy, 

BLE, interface). In order to reduce the amount of data 

transmitted to the S-BOX, data compression algorithms 

have to be implemented on the S-WEAR.  

Continuous monitoring of bio-electrical signals (e.g. 

ECG, electroencephalography (EEG), heart and 

respiration rates, blood pressure, etc.) requires designing 

robust sensing schemes, for the signals information 

acquisition, in order to allow data reduction (i.e. prior to 

the transmission) at the smart sensor level. For that 

reason, sparse behaviour of bio-electrical signals has led 

to research and development of Compressed Sensing (CS) 

signal processing frameworks. Accordingly, CS-based 

sampling schemes have become popular and in literature 

[5]-[7]. Furthermore, developments of IoT prototypes for 

ECG signal monitoring [8-9], as well as digital signal 

processing algorithms for ECG signal quality 

improvement have been also reported in literature [10-11]. 

In [12], a novel method for CS-based sampling of 

ECG signals for IoMT has been proposed. Based on that 

work, in this paper, an initial experimental assessment of 

the method is presented. This assessment is necessary in 

order to validate the method for the S-WEAR design. 

The paper is organized as follows. Section II 

describes the adopted CS-based method. In Section III,  
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  Fig. 1. The processing steps of the adopted novel CS-

based sampling method. 

 

the IoT prototype is presented. The experimental setup 

and the experimental results are described in Section IV. 

Several conclusions and future work are reported in the 

last Section of the paper. 

 II. DESCRIPTION OF THE METHOD 

In this Section, the adopted CS-based method for 

practical ECG compression is shortly described. This 

approach was firstly presented in [12] and it is based on a 

sensing matrix which contains information related to the 

auto-correlation coefficients from the observed signal.   

In particular, for one lead ECG signal compression, 

the method performs the following steps (see Fig.1):  

Step 1.  Acquisition of a vector x of N samples 

containing at least one period of the ECG signal. 

𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁]
𝑇 (1) 

Step 2.  Based on this vector, the average value, xavg, is 

calculated. 

xavg =
∑ 𝑥𝑖
𝑁
1

𝑁
  

Step 3.  The absolute value of the point-by-point 

difference between the x vector and its average value, 

xavg, is performed, thus obtaining the vector xa: 

 𝐱a = |𝐱 − xavg| 

Step 4.  The vector xa is compared point-by-point with a 

threshold value, xth. 

Step 5.  The vector p, 𝑁 × 1, is built as follow: (i) if the 

element of xa is higher than the xth, the value 1 is 

inserted in the corresponding vector position of p, (ii) 

if the element of xa is higher than the xth, the value 0 

is inserted in the corresponding vector position of p. 

Step 6.  Each row of the sensing matrix Φ is obtained by 

circular shifting of the vector pT. The number of 

shifted samples is equal to the desired compression 

ratio, CR = N/M, where M is the number of 

compressed samples and it corresponds to the 

number of the Φ rows: 

𝚽 = [

p(1) p(2) ⋯ p(N)
p(N − CR + 1) p(N − CR + 1) ⋯ p(N − CR)

⋮ ⋮ ⋱ ⋮
p(CR + 1) p(CR + 2) ⋯ p(N)

]  

Step 7.  The M compressed samples, which are contained 

in vector y, are obtained from the multiplication 

between the sensing matrix Φ and the vector x: 

 𝐲 = 𝚽𝐱 
Step 8.  At the receiving side, the R coefficients �̂� in the 

domain defined by the Mexican Hat wavelet matrix, 

Ψ, (see [12]) are obtained from the compressed 

vector y by knowing the sensing matrix Φ and by 

using the Orthogonal Matching Pursuit (OMP) 

algorithm. 

Step 9.  The signal reconstruction process is performed 

by multiplying the estimated vector �̂�  with the 

Mexican Hat wavelet matrix, Ψ. From this 

multiplication, the vector �̂� is obtained (see Fig.1). 

 III. THE IOT PROTOTYPE 

As reported in [4], S-WEAR has to provide at least: (i) 

sufficient quality of signal measurements related to the 

monitored bio-parameters, (ii) low energy consumption, 

(iii) low amount of data stored, and (iv) high compression 

of data for transmission.  

The S-WEAR architecture consists of five modules 

[4]: (i) the smart T-shirt, which embeds all the electrodes 

for acquiring the ECG signals, the bio-impedance and 

two-point skin temperatures, (ii) the core module, (iii) the 

extended ECG module, (iv) the position measurement 

module, and (v) the Internet interface module.  

In particular, the core module comprises: (i) a 

microcontroller unit, with a BLE transceiver integrated 

on-chip, (ii) two skin temperature sensors, (iii) one lead 

ECG sensor, (iv) one bio-impedance sensor, (v) a 

respiration rate sensor, (vi) an IMU and 3-axis 

magnetometer sensor, (vii) an SD card memory card, and 

(viii) the battery with the associated power distribution 

network.  

According to the previous mentioned architecture of 

the core module, in this Section, a test microcontroller 

has been chosen and its features are described below. 

Furthermore, the developed software which implements 

the CS-based method described in Section II, is reported. 

A. Hardware 

As development platform, the Cypress Semiconductor 

CYW920719Q40EVB-01 evaluation board [13] was 

chosen for the implementation of the mentioned CS 

method. This platform contains a CYW20719 System-on-

Chip (SoC) based microcontroller, which comprises the 

BLE 5.0 capabilities.  
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Fig. 2. Flowchart of the developed firmware running on the 

CYW920719Q40EVB-01 evaluation board.   

The CYW20719 is a 96 MHz ARM Cortex M4 type 

processor with floating-point unit, making this SoC a 

powerful platform which is optimized for low power 

consumption applications. The CYW20719 includes: (i) 

two Serial Peripheral Interface (SPI) interfaces, (ii) two 

Universal Asynchronous Receiver Transmitter (UART) 

interfaces, (iii) two Inter-Integrated Circuit (I2C) 

interfaces, and (iv) 28 channels for the single 13-bit Σ-Δ 

Analog-to-Digital Converter (ADC). 

As first implementation, the ECG signal has been 

connected directly to the A0 channel of the ADC. The 

programming, debugging and user interaction with the 

platform is done by the UART interface. 

B. Software  

The firmware for the CYW20719 SoC was 

developed in WICED Studio. The aim of the 

implemented firmware is to acquire, compress and 

transmit to the PC, the ECG signal.  

A synthetic flowchart of the software is presented in 

Fig. 2. At the beginning, the microcontroller waits for 

receiving via UART: (i) the M value, which corresponds 

to the number of compressed samples, and (ii) the 

threshold value xth. Subsequently, a periodic timer of 

2 ms is started. When the interrupt event related to the 

timer occurs, the interrupt routine is performed.   

During this routine, a sample of the ECG signal from 

the ADC block is acquired and then stored in a buffer of 

length N.  

The N value is chosen by the user. On the other hand, 

when the interrupt event is not taking place, the infinite 

loop routine is performed.  

At the beginning of this routine, the number of 

acquired samples is checked. If this number is equal to N, 

the CS-based method is performed on the buffer, thus 

obtaining the y vector of compressed samples. After that, 

the obtained x, y and p vectors, are sent to the PC via 

UART. 

 

 IV. RESULTS AND DISCUSSIONS 

For testing purposes, the following experimental 

setup has been realized, see Fig. 3. The 

CYW920719Q40EVB-01 evaluation board is connected 

by the USB interface to a laptop Personal Computer (PC) 

which runs a MATLAB script for managing the signal 

acquisition and CS-based signal reconstruction. The ECG 

signal under test is a synthetic one, which is provided by 

using an Agilent 33220A waveform/function generator 

from a built-in function. 

In order to evaluate the quality of signal 

reconstruction, the MATLAB script acquires and stores in 

the PC memory the raw ECG signal samples, x and the 

compressed version of it, y. Furthermore, the vector p is 

transmitted to the PC, together with x and y in a single 

UART frame.  

In MATLAB, from this vector p, which is associated 

with the acquired compressed frame y, the Φ matrix is 

built as it is described in Step 6. 

The reconstruction of signal �̂� is performed by using 

OMP algorithm implemented in MATLAB. To limit the 

testing time, the length of N=512 and M = {256; 128; 64; 

32}, thus obtaining a CR={2; 4; 8; 16}, has been 

considered for this work. As a figure-of-merit, the 

Percentage of Root-mean-squared Difference (PRD) has 

been computed as follows: 

 PRD = √
∑ [x(n)−x(n)̂]

2𝑁
𝑛=1

∑ [x(n)]2𝑁
𝑛=1

× 100% 

In Fig. 4.a) the vector p, red line, obtained by 

comparing the absolute value of the ECG signal 

processed as in Step 3, the blue line, with a threshold 

value of 50 mV is depicted. This vector consists of one 

when the signal is higher than the imposed threshold 

value, zero in other case.  

For graphical visualization purposes, the vector p, 

which contains one and zero values, has been scaled by a 

factor of 1000.  

The obtained compressed samples, y, are plotted in 

Fig. 4.b). The obtained vectors are compatible as it was 

expected.
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Fig. 3. The experimental setup. 

 
Fig. 4. Exemplification of the CS-based ECG signal sampling by its evaluation in MATLAB: a) the vector p, red line, and the 

absolute value of the ECG signal processed as in Step 3, blue line; b) the compressed values provided by the microcontroller

The used CR is 4. The reconstructed signal �̂� which 

was obtained from the compressed samples y, provided by 

the microcontroller, is depicted in Fig. 5.a). In particular it 

is possible to observe that the estimated signal approaches 

the original sampled one. Furthermore, in Fig. 5.b), the 

relative error in percentage between the reconstructed 

signal and the original one is reported. Thus, in this 

example, the maximum obtained relative error in 

percentage is around 8% of the original one.  

In order to assess the performance of the implemented 

CS-based method, the PRD has been evaluated for each 

acquired frame by considering several CR values.  

In Fig. 6, the mean value of PRD obtained for 100 

trials for variation of CR={2; 4; 8; 16} is presented. From 

this figure it is possible to note that according to a 

maximum acceptable PRD value of 9% [12], a CR of 8 

can be chosen for medical diagnosis purposes. 

 V. CONCLUSIONS 

In this paper, a preliminary experimental assessment of 

a novel CS-based ECG signal acquisition method, which 

has been implemented on an IoT prototype, was presented. 

 
Fig. 5. One frame of ECG signal: (a) the classical sampling vs. 

the reconstructed signal, (b) the relative error in percentage (∆) 

between the classical sampled signal and the reconstructed one. 
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Fig. 6. The mean value of PRD results obtained for variation of 

CR={2; 4; 8; 16}.   

The primary motivation of the presented work is to 

investigate the amount of samples reduction prior to 

transmit/store actions. The obtained experimental results 

demonstrate that the adopted method could provide good 

ECG signal quality after its reconstruction process. Thus, 

it was investigated the PRD as a main figure-of-merit and 

it was observed that even for compression ratio of 8, the 

method allows a good quality of signal reconstruction for 

medical diagnosis purposes.  

Further works are directed to: (i) test the method by 

using raw ECG signals coming from a patient which are 

collected by an Analog-Front-End (AFE) module, (ii) 

implement a firmware which enables the BLE 5.0 

capabilities of the CYW20719 SoC, and (iii) compare the 

energy consumption of the CYW920719Q40EVB-01 

evaluation board by adopting the proposed CS-based 

method against raw data acquisition. 
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