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Abstract – A remote calibration method of 

measurement error of smart meter, which has the 

characteristics of large quantity and difficult 

calibration one by one on site, is studied in this paper. 

First of all, we introduce the principle of estimation 

the measurement error of smart meter by using a 

large number of data collected by smart meter to the 

information center under the structure of Advanced 

Metering Infrastructure. Then, the relationship 

between reading of summary meter and sub-meters 

and line loss estimation is given. Finally, the influence 

of line loss estimation on the measurement error 

remote estimation of smart meter is analyzed and 

show the solution of the model can be solved by the 

mature iterative method. 
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I. INTRODUCTION

Smart meter is an important part of smart grid, and it 

is also the basis of power grid operation control and trade 

settlement between power supply and power supply. The 

measurement results are directly related to the safety of 

power grid and whether the trade settlement between the 

two sides is fair and reasonable, so it is particularly 

important to determine the operation error state of smart 

meter [1-3]. 

Advanced Metering Infrastructure (short for AMI) is 

the basic link of smart grid. Its main function is to collect 

the system information with time scale, and to connect 

the users with the load to support the operation of the 

power grid[1, 4-6]. With the development of AMI and 

smart meter which can record and transmit electricity 

data, power supply company can accumulate a large 

amount of active power, voltage, current, power factor, 

positive and negative power grid state data from ever 

meter. 

The measurement data collected by AMI should not 

only exist in the database, but should be utilized. With the 

help of the rich communication and computing storage 

resources of AMI, the data should be processed and 

excavated deeply to realize its value. 

Generally speaking, load forecasting is carried out 

using system level data and with little or no information 

at lower levels, such as, substation level, feeder level, 

transformer level, or residential level. It is the consensus 

of academic and industrial researchers to use high-voltage 

level data for load forecasting, one can see [7, 8]. Based 

on the emergence of AMI structure and the application of 

a large number of intelligent meters, it is possible to carry 

out more accurate load forecasting through a large 

number of household load data [4, 6, 9-16]. 

In fact, the main direction of these applications is to 

use AMI data to load forecasting. Although the data of 

smart electric meter based on AMI structure have made 

some progress in load forecasting, there are few 

applications in other fields.  

The traditional power grid metering system realizes 

the reliability of electric energy metering through the 

verification of the initial installation of electricity meter, 

regular calibration, periodic replacement and so on. These 

steps are particularly complex for meters with huge 

number, and require lots of costs [6]. 

In fact, the electric energy flowing through the 

summary meter should be the sum of all the sub-meters 

(household meters) and the loss on the line in AMI 

structure. On the basis of this principle, the research of 

remote estimation of measurement error of smart meters 

is possible by using a large number of electric energy 

metering data of smart meters. 

In this paper, the remote estimation of measurement 

error of smart meters is theoretically explored by using 

the data of sub-meters and the summary meter data in 

different time in a region. The relationship between the 

summary meter, sub-meters and the line lose based on 

AMI structure is analyzed. Then the influence of line loss 

on the accuracy of measurement error estimation of each 

meter in the model is analyzed. 

The proposed method provides a theoretical basis for 

the measurement error verification of large-scale smart 

meters. 



II. ESTIMATION MODEL OF MEASUREMENT

ERROR 

In AMI system, the structure of summary meter and 

sub-meters in a region can be shown in Fig. 1, where M  

represents the smart meter, subscript represents the 

summary meter within the area, the number i  form 1 to 

n  means the label of sub-meters. 
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Fig. 1. Physical structure of smart meter based on AMI 

structure 

The specific power transfer can be described by the 

following equation: 
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where 0,1,2, ,i n  , 0,1,2, ,j m  , m n , j

iE

represents the real electric energy flowing through the i -

th meter 
iM during the j -th measurement, jL

represents all power line losses during the j -th 

measurement, mainly includes leakage loss, line loss, 

power consumption of sub-meters 
1M to 

nM , etc. 

The energy value given by (1) is the real energy 

value in theory. In reality, the electrical energy used by 

householder is measured by the increment of smart meter 

readings. Denote 
i as the relative measurement error 

of meter 
iM . Then, the increment of smart meter reading 

can be expressed by the real flow of energy as 
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where j

iO express the increment of the reading of meter 

iM during the j -th measurement. 

Next, the real energy flow j

iE in (1) of meter 
iM

during the j -th measurement can be expressed as 
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where 
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
represents the ratio of the real energy 

flowing through the meter 
iM to the reading increment. 

Put (2) into (1), one can obtain the following 

equation: 
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Then, by (3) and the data collection of m , m n  

reading increments, the power transfer in a region based 

on AMI can be expressed as 

Ax b (4)

where m nA  represents m times reading 

incremental data matrix of sub-meters 
1M to 

nM sent 

by the communication module of smart meters, nx

represents the ratio of the real energy to the reading 

increment of 
1M to 

nM , mb represents the 

vector of m  times difference between the total electric 

energy flowing through the region and the total loss in the 

region. Specifically, it can be expressed as 
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respectively. 

By calculating the solution x  of equation (4), the 

measurement relative error of meter 
1M to 

nM in the 

region can be determined. 

In the next section, the influence of the estimation 

accuracy of line loss , 1,2, ,iL i m  on the estimation 

of measurement error of meters is analyzed. 

III. INFLUENCE OF LINE LOSS ESTIMATION

ACCURACY 

Denote by ( , )nC J the metric space of vector-

value continuous functions from nJ  endowed with 

the norm 
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Assuming that the energy measured by the summary 

meter is accurate, and in fact, the measurement accuracy 

of the summary meter is also much higher than that of the 

household sub-meters. Therefore, the error b  in formula 

(5) depends only on the estimation of line loss.

Denote the estimation error of b  is b , and then

we can rewrite (4) as 

( )  A x x b b (6) 

where x  represents the perturbation of the solution x  

with the influence of b . 

Due to (4) and (6), one can obtain   A x b , that 

is to say, 
1 .  x A b (7) 

Taking norm for (7), we have 
1   x A b (8)



according to the basic properties of norm. 

By (4), we can obtain 
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Next, by (8) and (9), we have 
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and then one can obtain the effect of b  depended on 

line loss on the measurement error x  
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where 1A A is also represented as the condition

number of matrix A . 

IV. CONCLUSIONS

This paper explores a new application direction 

of smart meter data under AMI structure. Make full use 

of the meter power data sent by the smart meter to the 

data center, provides a new research idea for on-line 

analysis of measurement error of large-scale smart 

electric meter. Then the main factors affecting the 

measurement error of smart meter are analyzed. This 

specific model can be solved by using the iterative 

method of linear equations, the least square method, 

which is now more mature. 
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