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1. INTRODUCTION 

Mathematical modelling allows for a description – by 
mathematical tools – of the properties of complex mechanical, 
electric, and any systems in which the final behaviours result 
from the physical relationships of various origins acting in a 
complex manner. These include behaviour analysis and the 
prediction of electronic [1], mechanical [2]-[4], biological [5] 
system components, thermal systems [6][7], data transmission 
channels [8], and more. A mathematical model gives concise 
information about basic processes, without the effects of low 
significance. Such modelling is beneficial in that its accuracy can 
be controlled according to user needs. Electrical modelling is 
especially suitable for biomedical systems, where the noise and 
several inherent artefacts influence the measured signal from the 
output of the observed biological object. The best examples of 
applying mathematical modelling of biological signals is the 
evaluation and extraction of electrocardiogram (ECG) signals 
[9]-[11] and compressed sensing [12]-[14][16]. 

The human heart generates spatio-temporal electric potential 
during contractions in the cardiac pump cycle. The measured 
potential propagates through human tissues on the skin surface. 
The difference of electric potential between electrodes placed on 
the selected positions of the body is acquired and converted to a 
standardized ECG. Because ECG is a result of the propagation 
through the human body, it contains artefacts caused by muscle 
and respiration movement; powerline and other external noise 
sources; and spurious distortion from non-perfect electrode 
contacts [15].  

Databases of real recordings, such as Phisionet [17], are often 
used for model evaluation, but it may be difficult to assess how 
a particular method reacts in the case of the same basic signal, 
with different levels of noise and artefacts. An alternative 
approach is to generate synthetic biomedical signals by using the 
suitable signal model and comparing its output signal with the 
measured one.  

In the past, a wide variety of different ECG signal models 
have been developed and tested. One of the most basic ECG 
models was published in [18]. In [19], the rational Bézier curves 
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and Bernstein polynomials were used to model heartbeat curves. 
The Gaussian curve is also a very common method of modelling 
ECG signal. An evaluation and comparison concerning 
mathematical models for the extraction of QRS features was 
done in [21]. Gaussian, Mexican hat, and Rayleigh functions were 
used for the whole heartbeat period of the modelling. Adaptive 
weighted Hermit functions were used in [22]. An original, 
alternative method was introduced in [23], where a QRS wave 
group was modelled using the Ant Colony algorithm. The 
researchers in [24] simulated real-time ECG waveforms by 
means of the superposition of bounded functions. This property 
is a defining feature of most periodic functions. An alternative 
method of the simulation of ECG signals the spectrum-based 
one [25]. Among the well-known, most widely used ECG signal 
models, the dynamic model [26] is based on three coupled 
differential equations. 

The approach presented in this paper is significantly different 
to all of these. It is based on the elementary trigonometric and 
linear functions or the derivation of the Gaussian pulse to model 
each individual wave. Computational simplicity is the main 
advantage of these models, which allows for the implementation 
on embedded devices thereof for denoising, automated patient 
diagnostics, etc.  

2. ECG SIGNAL 

The ECG signal is described by five consecutive waves, 
labelled with the letters P, Q, R, S, and T, as is standard (Figure 
1). These waves correspond to the depolarization and 
repolarization of heart muscles [26] during one heartbeat.  

The initial P wave represents the activation of atria and is 
followed by a relatively short isoelectric segment, while the 
cardiac impulse passes through the A-V node and the His-
Purkinje system. The excitation and muscle contraction 
represent the main force behind blood circulation to the organs 
and creates the tallest QRS complex. It has three components. 
The first downward deflection is called the Q wave, the 
consecutive upward deflection is called the R wave, and the final 
downward deflection is called the S wave. The polarity of each 
wave in the QRS complex may vary according to the position of 
sensing leads as well as body abnormalities. A normal ECG beat 
ends with a low-frequency T wave, during which the ventricles 
return to their electrical resting state. 

3. THE PROPOSED ECG SIGNAL MODEL 

The authors initially proposed two signal models, in which 
each wave of a PQRST complex is modelled by elementary 
concatenated mathematical functions. The models differ in the 
modelling of the Q and S waves. The first one uses the fixed 
shape of Q and S waves with the adjustable time of origin, width, 

and amplitude. The second ECG signal model additionally allows 
for the adaptation even of their shapes. 

Finally, the third custom ECG signal model is based on 
linking the cardiac cycles of the first two models, where the 
vectors of their parameters may differ in each PQRST complex. 
It allows for the generation of a model of a different waveform 
for each subsequent heartbeat or the superposition of different 
heart rate disturbances at predefined positions. 

These models can include the interference of Gaussian and 
powerline noise as well as interference caused by respiration. 

3.1. Fixed-shape Q and S waves 

The heartbeat starts with a short isoelectric segment. It is 
modelled by the simple constant: 

𝐵(𝑘) = 0 for 0 ≤ 𝑘 ≤ 𝐾𝐵  () 

where KB is the width and k is the sample number within one 
wave segment. The consecutive P wave is modelled by the cosine 
function: 

𝑃(𝑘) = −𝐴𝑃 cos (
2𝜋𝑘+15

𝐾𝑃
) for 0 ≤ 𝑘 ≤ 𝐾𝑃  () 

where AP is the amplitude and KP is the width of the P wave. A 
short isoelectric segment follows: 

𝑃𝑄(𝑘) = 0 for 0 < 𝑘 ≤ 𝐾𝑃𝑄  () 

where KPQ is the width. The Q wave is modelled using a segment 
created by a section of a Gaussian monopulse (a differentiated 
Gaussian pulse): 

𝑄(𝑘) =
𝐴𝑄(k−0.1KQ+0.1)19.78𝜋

𝐾𝑄
𝑒

−2(
6𝜋

𝐾𝑄
(k−0.1𝐾𝑄+0.1))

2

 () 

for 0 ≤ 𝑘 ≤ 𝐾𝑄 , where AQ is the amplitude and KQ is the width 

of Q wave. The R wave is modelled using a sinewave segment: 

𝑅(𝑘) = 𝐴𝑅 sin (
𝜋𝑘

𝐾𝑅
) for 0 ≤ 𝑘 ≤ 𝐾𝑅 () 

where AR is the amplitude and KR is the width of R wave. The S 
wave is modelled by a segment of a Gaussian monopulse: 

𝑆(𝑘) = −𝐴𝑆0.1𝑘
19.78𝜋

𝐾𝑆
𝑒

−2(
6𝜋

𝐾𝑆
0.1𝑘)

2

for 0 ≤ 𝑘 ≤ 𝐾𝑆 − 𝐾𝐶𝑆 () 

where parameter AS is the amplitude, and KS is the basic width 
of the S wave. KCS is a parameter that allows for the slight 
adjustment of the S wave shape by cutting away a portion at the 
end. The transition between the S and T wave is described as a 
linear function: 

𝑆𝑇(𝑘) = −𝑆(𝐾𝑆 − 𝐾𝐶𝑆)
𝑘

𝑠𝑚
+ 𝑆(𝐾𝑆 − 𝐾𝐶𝑆) () 

for 
STKk 0 , where sm is the slope parameter, and KST is the 

width of the transition segment. The T wave is modelled using a 
segment of the cosine function: 

𝑇(𝑘) = −𝐴𝑇 cos (
1.48𝜋k+15

𝐾𝑇
) + 𝐴𝑇 + 𝑆𝑇(𝐾𝑆𝑇) ()  

Figure 1. PQRST complex of a normal lead II ECG recording.  
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for 
TKk 0 , where AT is the amplitude and KT is the width of 

the T wave. The final transition from the T wave back to the 
isoelectric line is modelled using the function: 

𝐼(𝑘) = 𝑇(𝐾𝑇)
𝑠𝐼

𝑘+10
 for 0 ≤ 𝑘 ≤ 𝐾𝐼 () 

where sI is the parameter for setting the transition slope between 
the T wave and isoelectric line, and KI is the width of the ending 
section. 

The concatenation of all modelled H(1b,n) (Equations 1-8) 
describes the complete heartbeat. The beginning of each segment 
is appended to the end of a previous one, while their order is 
always the same starting with Equation (1) and ending with 
Equation (8). Here, parameter 1b denotes the set of heartbeat 
parameters for the first variant: 

𝑏 
1 = {𝐾𝐵 , 𝐴𝑃 , 𝐾𝑃, 𝐾𝑃𝑄 , 𝐴𝑄 , 𝐾𝑄, 𝐴𝑅 , 𝐾𝑅 , () 

𝐴𝑆, 𝐾𝑆 , 𝐾𝐶𝑆 , 𝑠𝑚, 𝐾𝑆𝑇 , 𝐴𝑇 , 𝐾𝑇 , 𝑠𝐼 , 𝐾𝐼} 

and n denotes the sample number within one generated heartbeat 
(n = 0, 1, 2, …, N1-1). Each heartbeat segment has a maximum 
length defined by its width parameters (Kx). Thus, the sum of all 
segment lengths is N1=KB+KP+KPQ+KQ+KR+KS–KCS+KST+KT+KI. 

3.2. The PQRST complex with adjustable Q and S waves 

The modelling of the Q and S waves by their linear functions 
is the main enhancement on the previous model. Using linear 
functions instead of a Gaussian monopulse allows for the 
adjustment of the shape more precisely. All other modelling 
functions in this model are the same as those in the previous 
model, except for Equations (4) and (6).  

Equation (4) is replaced by concatenation of two functions: 

𝑄1(𝑘) = −𝐴𝑄
𝑘

𝐾𝑄1
 for 0 ≤ 𝑘 ≤ 𝐾𝑄1 () 

𝑄2(𝑘) = 𝐴𝑄
𝑘

𝐾𝑄2
− 𝐴𝑄 for 0 ≤ 𝑘 ≤ 𝐾𝑄2 () 

where KQ1 is the width of the downward deflection, KQ2 is the 
width of upward deflection, and AQ is the amplitude of the Q 
wave.  

Equation (6) is replaced by a concatenation of two functions: 

𝑆1(𝑘) = −𝐴𝑆
𝑘

𝐾𝑆1
 for 0 ≤ 𝑘 ≤ 𝐾𝑆1 () 

𝑆2(𝑘) = 𝐴𝑆
𝑘

𝑠𝑠
− 𝐴𝑆 for 0 ≤ 𝑘 ≤ 𝐾𝑆2 () 

where KS1 is the width of the downward deflection, and KS2 is the 
width of the upward deflection. Slope parameter ss represents the 

upward deflection. Parameter AS is the amplitude of the S wave. 
The argument of S(KS-KCS) in Equation (7) is replaced here by 
KS2. 

A complete heartbeat H(2b,n) is then adjusted using the 
modified set of parameters 2b for the second variant: 

𝑏 
2 = {𝐾𝐵 , 𝐴𝑃 , 𝐾𝑃, 𝐾𝑃𝑄 , 𝐴𝑄 , 𝐾𝑄1, 𝐾𝑄2, 𝐴𝑅, 𝐾𝑅 , () 
  𝐴𝑆, 𝐾𝑆1, 𝑠𝑠, 𝐾𝑆2, 𝑠𝑚, 𝐾𝑆𝑇 , 𝐴𝑇 , 𝐾𝑇 , 𝑠𝐼 , 𝐾𝐼}  

Here, n denotes the sample number n = 0, 1, 2, …, N2-1, and 
N2=KB+KP+KPQ+KQ1+KQ2+KR+KS1+KS2+KST+KT +KI is the sum of 
all segment width parameters. 

3.3. Creating a custom ECG 

The custom ECG signal model is created by the following 
method. The function of one heartbeat is generated using any of 
the described variants as H(b,n), where b is the set of parameters 
1b or 2b and n = 0, 1, 2, …, N=N1-1 in the case of 1b or N=N2-1 
in the case of 2b. A complete ECG signal can now be built by 
concatenating multiple heartbeats Hf(bi,n). The set of parameters 
bi can vary in each consecutive heartbeat or even continuously 
throughout a heartbeat. The beginning and end segment of each 
heartbeat aligns smoothly with the isoelectric line, so there are 
no artefacts present at the position of their joint.  

The concatenation of the functions forming the sequence of 
the heartbeats may lead to unnatural sharp edges present in the 
resulting signal, so the generated heartbeat is filtered using a 
Savitzky-Golay smoothing filter with a window size of 7: 

𝐻𝑓(𝑏, 𝑛) =
1

21
{−2𝐻(𝑏, 𝑛 − 3) + 3𝐻(𝑏, 𝑛 − 2) +  

+6𝐻(𝑏, 𝑛 − 1) + 7𝐻(𝑏, 𝑛) + 6𝐻(𝑏, 𝑛 + 1) + () 

+3𝐻(𝑏, 𝑛 + 2) − 2𝐻(𝑏, 𝑛 + 3)}  

for n =0, 1, 2, …, N, where H(b,n±j)=0 if the sum n ± j is out of 
the specified interval for n. The filter plays a significant role while 
using the second model variant, because it forms the smooth 
shape of the Q and S waves.  

This ECG model allows for the creation of a completely 
custom-defined ECG signal, which can include various irregular 
heartbeats present at custom positions. Even mixing the 
heartbeats generated from both the proposed model variants is 
possible. For example, a short signal containing a premature 
ventricular contraction (PVC) is modelled in Figure 2 using the 
first model variant. 

 

Figure 2. A modelled ECG containing a PVC heartbeat. 

  

Figure 3. A modelled example of hypokalaemia ECG with noise and 
respiration added. 
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3.4. Modelling additive signals caused by respiration and 
external noise sources 

To make the modelled signal more realistic, different artefacts 
can be easily added to it. The respiration causes a baseline wander 
in the ECG signal. This means that the isoelectric line 
periodically changes its position, relatively slowly. A simple way 
of modelling this effect is to add a sinewave of the respiration 
frequency into the ECG signal, which may vary from about 0.2 
Hz to 0.5 Hz (approximately 12 to 30 breaths per minute). 

The interfering parasitic signal from external sources is 
modelled by the white noise and the inducted periodic signal 
from the powerline. If necessary, powerline noise can also be 
added in the form of a small sinewave with a powerline frequency 
of 50 Hz or 60 Hz. 

An example of a synthetized ECG signal in relation to 
hypokalaemia, with the addition of noise and the effect of 
respiration, can be seen in Figure 3. 

4. AN EVALUATION OF THE PROPOSED ECG SIGNAL 
MODELS 

At the beginning of this study, the proposed models were 
evaluated using a database in the LabVIEW Biomedical Toolkit. 
The database represented the reference signals created from 
large-scale experimental data by medical experts. To test the 
possibilities of QRS pattern generation using the proposed 
model, its parameters were adjusted to fit typical irregular 
heartbeats. As a reference, irregular heartbeats associated with 
various diagnoses were generated using the ECG signal generator 
of the LabVIEW Biomedical Toolkit [27]. Each reference 
pattern Hr(n) was extracted from a 60 bpm signal, generated with 
a sampling frequency of 512Hz and containing one QRS 
complex with a length of 1 s. The set of model parameters b was 
found using the Differential Evolution (DE) optimization 
algorithm [28] using the principle in [29]. The optimal model 

parameters for the best fit are found by means of the iterative 
minimization of each parameter b: 

𝑏 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑏

𝑃𝑅𝐷  () 

where PRD is the normalized mean square difference between 
the reference heartbeat ECG signal and the modelled heartbeat 
ECG signal: 

𝑃𝑅𝐷 =
‖𝐻𝑟(𝑛)−𝐻𝑓(𝑏,𝑛)‖

2

‖𝐻𝑟(𝑛)‖2
100%  () 

In each iteration, the DE algorithm takes the reference ECG 
signal, compares it to the ECG generated based on the current 
parameter set b, and updates the parameter set, as summarized in 
Figure 4. This is repeated until a sufficiently low PRD or 
maximum iteration count is reached.  

The initial bounds of the b parameters were set in the 
following way: -0.2 to 2 for the amplitude parameters, 0-150 for 
the segment length parameters, and 0-200 for the slope 
parameters. After the first few iterations of DE, the b parameter 
bounds were adjusted according to the data shown in Table 1. 
The length parameter of the last segment KI is calculated so that 
the total sum of length parameters N=N1-1 or N=N2-1 is always 
equal to 512; thus, it is excluded from the set of parameters that 
are being optimized. The signal output of a model with such a 
configuration does not need resampling. 

Artificial QRS patterns were used as a test reference, 
corresponding to (a) atrial tachycardia, (b) ventricular 
tachycardia, (c) junctional tachycardia, (d) atrioventricular block, 
(e) hyperkalaemia, (f) hypokalaemia, (g) hypercalcemia, and (h) 
hypocalcaemia. The resulting ECG waveforms are shown in 
Figure 5.  

The corresponding parameters found by the DE optimization 
and the resultant PRD for the first model are listed in Table 2. 
For the second model, the identified parameters and PRD are 
listed in Table 3.  

The results were obtained using a simulation in the LabVIEW 
programming environment. The DE optimization used the 
uniform crossover method, a population size of 500, and a 
maximum number of iterations of 200 for all the testing results 
provided. The PRD values listed in all the tables are given as an 
average of ten runs of the DE algorithm. 

 

Figure 4. ECG patterns generated by the first model variant: a) atrial 
tachycardia; b) ventricular tachycardia; c) junctional tachycardia; d) 
atrioventricular block; e) hyperkalaemia; f) hypokalaemia; g) hypercalcaemia; 
h) hypocalcaemia. 

Table 1. DE parameter bounds for the first and second model. 

1b min max  2b min max 

KB 0 130  KB 0 130 
AP -0.2 0.1  AP -0.2 0.1 
KP 10 100  KP 10 100 
KPQ 0 60  KPQ 0 60 
AQ 0 0.5  AQ 0 0.5 
KQ 10 150  KQ1 0 70 
AR 1 2  KQ2 0 50 
KR 10 150  AR 1 2 
AS 0 1  KR 10 150 
KS 10 200  AS 0 1 
KCS -5 150  KS1 0 50 
sm 1 150  ss 1 110 
KST 0 110  KS2 0 50 
AT -0.5 1  sm 1 150 
KT 50 200  KST 0 100 
sI 0 50  AT -0.5 1 

    KT 50 200 
    sI 0 150 
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The second evaluation method is based on a comparison 
between the modelled signal and the real signal taken from a 
database of real patients’ signals. The evaluation of the real ECG 
patterns is similar to that which was described in the previous 
subsection. Here, the reference pattern is made by means of 
extraction of a single heartbeat from the beginning of the first 
channel of each Massachusetts Institute of Technology – Beth 
Israel Hospital (MIT-BIH) database record [17]. The database 
records use a sampling frequency of 360 Hz. The reference 
pattern Hr(n) is obtained by the resampling for a duration of 1 s 
at a sampling frequency of 512Hz. The DE algorithm remains 
the same as listed in Table 1 for the previous experiments. The 
modelling accuracy, evaluated by PRD, was assessed for the real 
ECG patterns taken from the MIT-BIH database and is 
presented in Table 4.  

As evidenced in Table 4, each model is suitable for different 
types of patterns. The average PRD is better for the second 
model variant, although it should be noted that the extracted 
heartbeats possibly contain noise and artefacts that were not 
included in the signal model during this test. Noise causes a 
higher PRD even if there is a good fit between the original and 
modelled signal [30]. 

Table 3. The second variant model parameter sets for each pattern. 

2b 
Diagnosis 

a b c d e f g h 

KB 10 0 117 61 121 121 117 124 
AP 0.03 0 0.0045 0.053 0.035 0.035 0.05 -0.02 
KP 93 23 79 91 73 69 79 75 
KPQ 1 1 14 50 13 43 14 17 
AQ 0.13 0.33 0.065 0.065 0.047 0 0.06 0 
KQ1 55 55 12 12 12 0 11 0 
KQ2 31 37 7 7 7 0 7 0 
AR 1.15 1.09 1.52 1.55 1.17 1 1.55 1.37 
KR 77 137 22 22 22 12 23 32 
AS 0.38 0.27 0.18 0.16 0.12 0.48 0.1 0.19 
KS1 32 44 9 7 7 12 5 15 
ss 62 108 4 4 6 6 2 8 
KS2 33 31 4 4 6 7 4 4 
sm 53 97 138 64 14 1 29 55 
KST 52 52 100 56 53 74 1 62 
AT 0.12 0 0.2 0.13 0.665 -0.1 0.12 0.23 
KT 119 87 137 126 126 126 133 183 
sI 17 0 0 128 32 0 23 0 
KI 9 45 11 76 72 48 118 0 

PRD in % 9,5 10,6 9,18 9,59 6,69 13,9 10,6 11,4 
 

 

Figure 5. An ECG fitting algorithm for finding the set model parameters. 

Table 2. The first variant model parameter sets for each pattern. 

1b 
Diagnosis 

a b c d e f g h 

KB 10 0 117 61 121 121 117 124 
AP 0.03 0 0.0045 0.053 0.035 0.035 0.05 -0.02 
KP 93 23 79 91 73 69 79 75 
KPQ 0 0 0 48 6 13 5 0 
AQ 0.135 0.325 0.065 0.04 0.04 0.02 0.03 0 
KQ 85 140 25 21 21 22 20 15 
AR 1.15 1.09 1.52 1.55 1.17 1 1.55 1.37 
KR 84 133 23 23 23 15 22 36 
AS 0.35 0.28 0.16 0.13 0.11 0.75 0.6 0.16 
KS 114 182 15 15 15 26 14 54 
KCS 61 100 5 2 4 -3 5 27 
sm 61 119 96 17 26 35 1 87 
KST 52 57 101 52 56 64 6 42 
AT 0.13 0 0.19 0.132 0.685 -0.1 0.115 0.225 
KT 127 77 126 116 112 112 116 184 
sI 0 0 2 9 9 7 10 19 
KI 8 0 31 87 89 67 138 9 

PRD in % 7,8 7,61 11,12 11,3 14,0 9,89 13,4 7,65 
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5. CONCLUSIONS 

 Two basic ECG signal models have been presented in this 
paper based on a set of basic function parameters. The models 
allow for the description of irregularieties in the shapes of the 
characteristic waves in one heartbeat. Irregularities in the 

consecutive heartbeats can be modelled by combining both 
models. In addition, the respiratory and external electromagnetic 
interferences can be included in the models. The model 
parameters were identified from real ECG records using the 
differential evolution optimization strategy. The normalized 
mean square difference PRD was the parameter describing the 
modelling accuracy. Besides the physically acquired ECG signals, 
the modelling accuracy was evaluated by the ECG signals 
generated by the LabVIEW Biomedical Toolkit and real ECG 
records from MIT-BIH. 

The ECG model evaluation using signals from databases 
showed that modelling the low-frequency Q and S waves is better 
in the first model. The second ECG model, with linearly 
modelled segments Q and S, is more suitable in the case of 
steeper waveforms. A lower number of model parameters is the 
advantage of the first model, also an advantage in the DE 
optimization. The relatively complicated adjustment of the heart 
rate of long-term signals is another drawback of the second 
variant presented. Resampling the acquired ECG signal to a 
suitable rate is the easiest way of suppressing this disadvantage 
for both model variants. 
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