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1. INTRODUCTION 

Autonomy is a feature that modern robotic systems severely 
lack. In robotics, autonomy can be understood as the ability of 
a robot to function for an extended period of time, over broad 
spaces, and in unpredictable environments without the need to 
collaborate with friendly objects or human operators. 

In [2], the topic of robotic autonomy was discussed. The 
need for an autonomous system is urgent for the following 
reasons: 

- Autonomous systems, as a rule, are more efficient 
than human-operated systems, 

- The expansion of the application areas of robotic 
systems, 

- The abandonment of involvement of high-skilled 
human operators, 

- The possibility of using robots in groups [11], [12], 

- Wide usage of optimisation and complex algorithms, 

- The abandonment of redundant components from 
robotic systems, 

- Minimisation of the mass and size of robots, 

- Decreasing time delays in robots' functioning, and 

- Predictability of robots' behaviour. 
It is postulated herein that in order to implement the 

autonomy of unmanned vehicles, it is efficient to increase their 
information supply and intelligence level. 

Both of these elements are connected with data processing 
coming from sensors of the robot and the environment. Due to 
the specifics of the sensors used in robots, it is necessary to use 
data fusion. The importance of data fusion is emerging for 
mobile systems in particular. 

2. DATA FUSION IN ROBOTICS 

Data fusion in itself has been widely known for centuries. 
Humans widely use data fusion (fusion of the five senses, 
distribution and doubling of sensors, etc.). 

Much interesting research has been undertaken on data 
fusion, especially in robotics [9], [13]. 
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Data fusion [14], [15], [17] in itself can be defined as a 
process of information generalisation based on more than one 
source of information. 

It is important to note the following advantages of data 
fusion for robotists: 

- It is cheaper to produce new information by developing 
software than by installing extra sensors, 

- Considerable energy savings because information 
processing requires less energy than the sensor hardware, 

- Minimisation of the autonomous systems’ mass and sizes, 
which is especially crucial for autonomous systems 
working in severe environments [3], 

- Decrease of wires and other interfaces, and thus, higher 
reliability, 

- Decrease of negative interference among autonomous 
systems’ components, 

- The possibility of using lower performance (i.e. cheaper) 
sensors with a higher quality of information therefrom, 

- Compensation for the restricted working space and 
spectrum of sensors, 

- Transfer of the computational load from the human 
operator to the onboard control system, 

- Increased unification by the use of the same set of sensors 
for various functional tasks. 

The author’s proposal is outlined in Figure 1 to distinguish 
the following cases of data fusion in robotics: 

Time-based data fusion. While tracking the variation of some 
parameters in time sequences, it is possible to estimate other 
parameters of the autonomous system. Another case of such 
data fusion is data filtering. For more details see [4]. 

Reliability-based data fusion. While fusing data from several 
sensors with low-reliability characteristics, it is possible to get 
highly reliable information. 

Space-based data fusion. By fusing information from several 
sensors, each one with a narrow working space (example in 
Figure 2), we may get information on the large working space. 
Another case of space-based data fusion is fusing data from 
dispensed sensors, which gives us new information. 

Sensor-type data fusion. Fusion of data from sensors measuring 
the same parameter but functioning on various principles gives 
information with a higher reliability factor (Figure 3). 
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Figure 1. Basic cases of data fusion in robotics. 

 

Figure 2. Space-based data fusion (fusion of ultrasonic data using the 
Pioneer P3DX platform by Adept Mobilerobots). 

 
Figure 3. Navigation data from various types of sensors is fused directly 
onboard the 120/3 navigation system from Perm Instruments Making 
Company. 
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Data-type data fusion. This type is used to produce information 
based on data of various types (e.g. fusing information from a 
video sensor with information from a laser sensor). Such fusion 
is intensively used, especially for object recognition [7]. 

In sum, most of the data fusion cases in unmanned systems 
can be described by these fusion cases or by a combination 
thereof. 

3. HIERARCHICAL DATA FUSION ARCHITECTURE 

Modern autonomous systems are extremely complex, with a 
large number of data flows [5]. In order to analyse the large 
number of data flows, it is necessary to adjust those data flows. 
This is known as data fusion architectures. There is a variety of 
such architectures: JDL, Boyd model, LAAS, The Omnibus 
Model, the Waterfall model, and more [4], [6], [16]. By the way, 
these architectures are also used for other applications (see e.g. 
[18], [19]). 

However, according to the author, these architectures lack 
some intuitiveness, logic, and flexibility. 

The JDL architecture has some restrictions [6]: 

- Most of the models were organised based on some specific 
data or information, e.g. it is difficult to combine a JDL 
model for other applications, 

- The outlook of the model seems to be rather abstract, 
which creates an obstacle to its interpretation, 

- This architecture does not correlate with some specific data 
processing algorithms, which impedes its implementation 
in real systems. 

Concerning data fusion architecture that is mostly suitable 
for unmanned vehicles, one may formulate the following 
criteria for such architecture: 

- Data fusion architecture should have a hierarchical 
structure, as only a hierarchy allows for the control of large-
scale systems, 

- Data fusion architecture should demonstrate all processes 
in their hierarchy, be easily understandable, and even be 
intuitive for its user, 

- Such architecture should allow various feedback and 
counter-current data flows, 

- In some cases, the architecture should permit data transfer, 
omitting some hierarchical layers. 

The author proposes the hierarchical data fusion architecture 
shown in Figure 4. 

The layers' terms are as follows [8]: 
Parameter – the predicate that describes, as a rule, the 

quantitative property of a single component of an autonomous 
system or of the environment. The input for this level usually 
comes directly from the sensors. 

Mathematically, the parameter can be described as follows: 
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where ip  – i-th parameter; 
gp
jia – the coefficient considering the 

influence of the j-th sensor on the i-th parameter; gj – input 

from the j-th sensor; z – number of sensors in the system; pp
kia – 

the coefficient considering the influence of the k-th parameter 

on the i-th parameter (in k=i it is predicate’s ‘inertia’); kp  – the 

value of the k-th parameter; and y – the number of parameters 
in system. 

State – the predicate that describes quantitatively or relatively 
the property of the whole autonomous system or of the 
environment. The input for this predicate comes directly from 
the parameters or from the sensors. 

Mathematically, it can be described as follows: 
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where is  – i-th state; 
ps
jia – the coefficient considering the 

influence of the j-th parameter on the i-th state; ss
kia – the 

coefficient considering the influence of the k-th state on the i-

th state; ho  – h-th instruction; x – the number of states in the 

system; os
hia  – the coefficient considering the influence of the h-

th instruction on the i-th state; and w – the number of 
instructions in system. 

 
Object type – the generalised identification of an object 

present in the environment, defined by its typical data and by its 
potential interaction with the autonomous system. 

Mathematically, it can be described as follows: 
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where im  – the i-th type of object; 
pm
jia  – the coefficient 

considering the influence of the j-th parameter on the 

identification of the i-th type of objects; sm
kia  – the coefficient 
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Figure 4. Hierarchical data fusion architecture. 
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considering the influence of k-th state on the identification of 

the i-th type of objects; mm
hia  – the coefficient considering the 

influence of various other types of objects presented in the 
environment to the identification of the i-th object type; v – the 

number of object type predicates in the system; cm
lia  – the 

coefficient considering the influence of the l-th state 

identification of the i-th object type; lc  – the l-th situation 

predicate; u – the number of situations in the system; m
i  – 

information from the database on the trends of the i-th type of 

objects’ presence; m
i  – information from tasks on the 

possibility of the i-th type of objects’ presence. 
Situation – a generalised notion that describes the 

combination of interactions between the robot and the 
environment. 

Mathematically, it can be described as follows: 
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where ic  – the i-th situation, 
pc
jia  – the coefficient considering 

the influence of the j-th parameter on the identification of the i-

th situation; sc
kia  – the coefficient considering the influence of 

k-th state on the identification of the i-th situation; mc
hia  – the 

coefficient considering the influence of various types of objects 

presented on the identification of the i-th situation; cc
lia  – the 

coefficient considering the influence of the l-th situation on the 

identification of the i-th situation; c
i  – information from the 

database on the trends of the i-th situation; and c
i  – 

information from tasks on the possibility of the i-th situation. 
Tasks – a set of situations in serial-parallel order. These 

situations must be achieved (implemented) by the robot in 
order for a task to be fulfilled. 

Mathematically, it can be described as follows: 
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where it  – the i-th task implementation; 
pt
jia  – the coefficient 

considering the influence of the j-th parameter on the 

identification of the i-th task implementation; st
kia  – the 

coefficient considering the influence of the k-th state on the 

identification of the i-th task implementation; ct
hia  – the 

coefficient considering the influence of the h-th situation on the 

identification of the i-th task implementation; tt
lia  – the 

coefficient considering the influence of the l-th task 
implementation on the identification of the i-th task 

implementation; q – the number of tasks in the system; and t
i  

– information from the database on the trends of the i-th task 
implementation. 

The operation of the scheme is now explained. 
Usage of a common data bus is also an important advantage 

as it allows for the free exchange of data and information 
among various levels. As explained above, data may flow to the 
next level and to higher levels directly. This also allows for the 

human operator to receive information on any predicate 
directly in a case of need. 

All the data is fused in a bottom-up direction. However, it is 
obvious that some simpler or more primitive systems may omit 
some of the higher levels. However, highly autonomous 
systems will involve all the levels. When needed, extra data is 
acquired from the database. The final output comes to the 
decision-making level, which sends instructions to actuators 
and sub-systems. It also may be built using the same approach. 

The proposed hierarchical data fusion architecture has the 
following advantages compared to other architectures: 

- It reflects the hierarchy of the modern autonomous 
systems' structure, 

- It has clear demonstrable and visual properties, with a high 
degree of intuition for the human operator, 

- It allows the wide usage of various data flows and feedback, 
including transient flows, 

- This structure can be effectively implemented with modern 
control methods [1], 

- The structure's modularity allows various ready-to-use 
solutions to be transferred from one scheme to another. 

It is the author’s opinion that the proposed structure can 
also be widely used for the automated programming of complex 
data fusion systems and algorithms. 

4. MATHEMATICAL IMPLEMENTATION 

The question of which mathematical methods are the most 
appropriate for data fusion has been discussed by many 
researchers, e.g. [9], [10]. 

However, as discussed in [20], data fusion deals with various 
information types and is used for different tasks. Hence, 
different types of data fusion can be supported by different 
mathematical methods. 

In [20], a special classification was presented, stating the 
following: 

Low-level data fusion is better supported by Kalman filter, 
figure of merit, and gating techniques. 

Mid-level data fusion is more efficiently implemented by 
Bayesian decision theory, Dempster-Schafer evidential 
reasoning, and neural networks. 

High-level data fusion solutions are realised by expert 
systems and fuzzy logic. 

However, according to the author of this article, it would be 
better to find some universal method for various levels of data 
and sensor fusion. 

This can be done using the fuzzy cognitive maps method  
[21]. 

In fact, the fuzzy cognitive maps method has the following 
advantages: 

- It has good demonstrable and visual properties, with a high 
degree of intuition for software engineers, 

- The structure allows for the wide usage of various data 
flows and feedback, including transient flows, 

- It can deal with noisy signals i.e. it has good filtering 
capacity, 

- The structure's modularity allows various ready-to-use 
solutions to be transferred from one scheme to another. 

Therefore, these properties almost coincide with the 
properties of the proposed hierarchical data fusion architecture 
presented in this paper. 

 In [8], an example is given supporting this statement. 
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5. CONCLUSIONS 

Data fusion is an important technology implementing the 
high autonomy of an autonomous system. Hierarchical data 
fusion architecture has good properties of modularity, 
visualisation, and hierarchy. It allows for the systematisation of 
data processing in the complex system of modern autonomous 
systems. 
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