
22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing
SUPPORTING WORLD DEVELOPMENT THROUGH ELECTRICAL&ELECTRONIC MEASUREMENTS

IASI, ROMANIA, September 14-15, 2017

Applications of the Phase Containment
Effectiveness Metric in Automotive Industry

Agile SW Development
Ionut-Andrei Sandu1, AlexandruSalceanu

1

1

siandrei@gmail.com, asalcean@tuiasi.ro
Gheorghe Asachi” Technical University of Iasi, Faculty of Electrical Engineering

Abstract – Phase Containment Effectiveness (PCE) is a
very powerful metric which can be used also in the
automotive SW development for defects rate
minimization. In the classical SW development
approach is used the PCE metric in order to detect
how efficient is the verification in each of the
development phases. In this paper we present the
benefits and principles for measureing PCE metric in
automotive programs and organizations which
adopted Agile SW Development. The acquired
advantages are demonstrated by a detailed example of
real application on how to measure the PCE metric on
Iteration (Sprint) and Program Increment (Scum of
Scrums / Scaled Agile) Level.

Keywords – Phase Containment Effectiveness,
software quality metric, Agile, Scaled Agile, Iteration,
Program Increment

 I. INTRODUCTION

In the automotive industry, the Agile SW Develop-
ment was adopted by pioneers since 12 years ago, accord-
ing to a KuglerMaag study published in 2015 [1]. Since
then, more and more automotive companies (OEMs and
suppliers) which develop software based electronic com-
ponents are implementing the agile methodology. Main
reason is that companies need to keep pace and be flexi-
ble with constantly changing requirements, especially in
current trend when time to market is decreasing.

Organizations adopting Agile implicitly implement
also continuous process improvement, as teams and or-
ganizations need to be effective and efficient. Agile
process transformation will implicitly trigger improve-
ment actions and measures also for the SW development
processes. By this, projects and organizations support and
fulfill successfully the requirements of the process as-
sessment models (e.g. Automotive Software Process
Improvement and Capability Determination, A-SPICE®
[2]).

One of the principles of the Agile manifesto is "work-
ing software is the primary measure of progress." [3].
This can be translated into deliveries with no faults which

affect the end user or faults introduced due to wrong
implementation of the requirements.

For defects rate minimization, in the classical SW
development approach is used the PCE metric in order to
detect how efficient is the verification in each of the
development phases. PCE metric answers the following
questions:

• how efficient is the verification process?
• which phases escaped defects?
• which phases found/did not find those defects?

But how to answer the above questions for programs
and organizations which adopted Agile SW
Development?

We here propose a method how to apply the PCE
metric in organizations and teams which develop SW for
the automotive industry using the Agile SW Development
approach.

 II. RELATED RESULTS IN THE LITERATURE

Phase Containment Effectiveness was introduced in
1997 as a software quality improvement metric by A.R.
Hevner [4]. In 2003 was also adopted by the Six Sigma (a
disciplined, data-driven approach and methodology for
eliminating defects), [5]. This metric provides the ability
to measure the verification (e.g. review, inspection or unit
testing-software method ensuring that each SW unit satis-
fies its design) effectiveness and allows the team to im-
prove their software development process.

PCE metric can be also measured in automotive SW
Developmentby applying the metric on the specific SW
Development and Test Phases.[6].

Faults can be classified into errors and defects, de-
pending on the phase they were injected and the phase
they were found in.

Errors are faults discovered in the proper phase they
were injected (e.g. design faults caught by design re-
views). Defects are faults escaping from their develop-
ment phase (e.g. design faults caught in code reviews or
software test).

Ideally, all faults should be discovered in the phase in
which were introduced, leading to an idealistic PCE of
100%. As in the automotive industry the rate of software-

22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing
SUPPORTING WORLD DEVELOPMENT THROUGH ELECTRICAL&ELECTRONIC MEASUREMENTS

IASI, ROMANIA, September 14-15, 2017

related recalls increased from 5 percent in 2011 to 15
percent in 2015 (Stout Risius Ross study based on data
from the United States National Highway Traffic Safety
Administration [7]), shows that also in the automotive
software development should be attained a better phase
containment.

Increasing the faults detection rate within the
development phases will reduce problem fixing effort and
the test effort. More precisely, detection of 10% more
defects in software design or coding phases can lead to a
potential saving of 3% of the total product development
cost [8].

The error correction cost can even increase up to 90
times in post-production phase compared to concept
phase [9]. Price of recalls comprises beside fault fixing
costs, also legal costs and image costs.

Currently there is no description in the literature how
to apply PCE metric in Agile SW Development.

 III. DESCRIPTION OF THE METHOD

Agile SW development is executed in iterations (ac-
cording to Scaled Agile Framework SAFe® model [10]
or sprints in SCRUM [11]). At the end of each iteration it
should be delivered working SW (ideally faults-free). But
if a delivery containing undiscovered faults from Iteration
N is used to add on top features for the upcoming delive-
ries >N, implicitly the undiscovered faults are translated
also to these deliveries.

As defects can escape from one iteration to another,
the iteration itself can be considered as a phase in the
classic PCE metric. Escaped (and basically inherited)
faults from one iteration to another can be monitored and
reduced by analyzing and taking the proper actions when
measuring the PCE for iterations, which can be called
Iteration Containment Effectiveness (ICE):

• Iteration Errors: faults caused during iteration N
and discovered during Iteration N (e.g.: during
Architecture review, code review, SW testing).

• Iteration Defects: faults caused during Iteration
N and detected during Iteration > N (next up-
coming Iterations) or by the Customer

Total number of faults is obtained after addition (1):
 Iteration Faults =

 Iteration Errors + Iteration Defects (1)
Iteration Containment Effectiveness (ICE) can be cal-

culated for each Iteration by applying (2):

 (2)

 IV. RESULTS AND DISCUSSIONS

In the following example, we have a Program Incre-
ment with four execution iterations. Iteration 11 was the
last one executed by the creation date of the report.

By applying (1) and (2), we could calculate the ICE
for each Iteration. This is how values from table 2 were
obtained for a specific Program.

Table 1. ICE values for a specific Program using Agile

 It.1 It.2 It.3 It.4 It.5 It.6 It.7 It.8 It.9

It.
10

It.
11

Cus-
tomer

Total
Errors

Total
Defects

Total
Faults

%
ICE

Program
Increment

 1

Iteration 1 150 40 20 5 0 0 0 0 0 10 0 2 150 77 227 66

Iteration 2 50 0 10 0 0 0 0 5 2 1 3 50 21 71 70

Iteration 3 200 50 0 0 0 5 0 0 0 1 200 56 256 78

Iteration 4 125 10 0 1 0 0 0 3 5 125 19 144 87

Program
Increment

2

Iteration 5 10 4 0 1 0 0 5 4 10 14 24 42

Iteration 6 20 3 0 0 1 10 7 20 41 61 33

Iteration 7 100 10 0 5 22 8 100 45 145 69

Iteration 8 21 3 0 0 1 21 4 25 84

Program
Increment

3

Iteration 9 36 3 1 3 36 7 43 84

Iteration 10 78 2 2 78 4 82 95

Iteration 11 60 8 60 8 68 88

22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing
SUPPORTING WORLD DEVELOPMENT THROUGH ELECTRICAL&ELECTRONIC MEASUREMENTS

IASI, ROMANIA, September 14-15, 2017

Fig. 1 ICE values for a specific Program using Agile

Also in Agile SW Development can be applied the
classical PCE metric on iteration level. For understanding
in an iteration which development phases escaped defects
and which testing phases missed to detect defects, should
be used the classical PCE for Development metric [5]
(based on the development and test phases used in the
iteration) and classical PCE forTesting metric [5] (consi-
dering only the development andtest phases used in the
iteration) scaled on iteration level.

As a Program Increment(PI) is consisting of several
iterationsand the unit of a Program execution is
represented by the PI [10], Iteration Containment Effec-

tiveness can also be translated for Program Increment
level by applying the same mechanism. Likethis we ob-
tain the Program Increment Containment Effectiveness
(PI CE) which consists of:

• Program Increment Errors: faults discovered
during Program Increment N

• Program Increment Defects: faults escaped from
Program Increment N and detected during Pro-
gram Increment > N (next upcoming Program
Increments) or by the Customer

 (3)

Fig. 2Program Increment Containment Effectiveness values for a specific Program using Agile

0

20

40

60

80

100

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

Iteration
11

%
 It

er
at

io
n

Co
nt

ai
nm

en
t

Ef
fe

ct
iv

en
es

s

Iterations

Iteration Containment Effectiveness for Agile SW Development

% Iteration Containment Effectiveness

0
20
40
60
80

100

PI1 PI2 PI3%
 P

I C
on

ta
in

m
en

t
Ef

fe
ct

iv
en

es
s

Program Increment

Program Increment Containment Effectiveness for
Agile SW Development

% PI Containment Effectiveness

22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing
SUPPORTING WORLD DEVELOPMENT THROUGH ELECTRICAL&ELECTRONIC MEASUREMENTS

IASI, ROMANIA, September 14-15, 2017

ICE and PI CE metrics can be analyzed also together

with the trend of open defects for each iteration/each
program increment. Basically, if the number of open
inherited defects is increasing over time from one itera-
tion to another, it can be used as starting point for the
analyses of the result provided by the ICE metric in order
to detect which iteration escaped defects. As a best prac-
tice, if the team does not have the capacity to solve the
detected issues during the current iteration, open defects
should be planned to be implemented in the next itera-
tion. Also, if the number of defects is high, the team can
decide to plan one iteration dedicated for bug-fixing ac-
tivities in order to reduce the defect debt. On long term,
improvement actions and measures for continuous
process improvement on iteration level should be defined.
Only by improving the PCE for development for the
phases used in the iteration, we can reduce the faults debt
and implicitly the development costs. This is how both
PCE and ICE can be applied complementary if DDT
indicates that root cause analyses is necessary.

In the following section, we present the Defects Debt
Trend (DDT) using the data from the example mentioned
above.This metric shows the cumulated number of open
defects in each iteration. It also considers the number of
solved defects from the past iterations.Similarly, to the
ICE, DDT metric can be also applied on the Program
Level.
DDT Iteration N =
(Previous Iteration Defects Debt)
+
(Total number of defects introduced in the previous
Iterations and discovered by Iteration N)
–
(Number of defects caused by the previous Iterations
and solved in Iteration N) (4)

Figure3. Defect Debt Trend

By analyzing the Defect Debt Trend, we can easily

identify that in sprint (iteration) 8 the agile team took
corrective actions in order to reduce the number of
defects inherited from the previous iterations. We can
also make a forecast that the number of defects should be
reduced starting with iteration 11 or with the next
upcoming iterations.

In the table below on the rows welisted the defects
enteredand solved in the same iteration and the number of
defects entered in iteration N and discovered in following
iterations >N. We applied formula (4) in order to
calculate DDT for each iteration. We considered that the
first iteration had 0 defect debt. When the report was
generated the last iteration was It. 11.

Table 2. Defect Debt Values for each Iteration

 It.1 It.2 It.3 It.4 It.5 It.6 It.7 It.8 It.9

It.
10

It.
11

Past
Iterations
Defects

Solved
Defects
From
PastIterations

Defect
Debt

Program
Increment

 1

Iteration 1 150 40 20 5 0 0 0 0 0 10 0 0 0 0

Iteration 2 50 0 10 0 0 0 0 5 2 1 40 20 20

Iteration 3 200 50 0 0 0 5 0 0 0 20 30 10

Iteration 4 125 10 0 1 0 0 0 3 65 50 25

Program
Increment

2

Iteration 5 10 4 0 1 0 0 5 10 0 35

Iteration 6 20 3 0 0 1 10 4 0 39

Iteration 7 100 10 0 5 22 4 0 43

Iteration 8 21 3 0 0 16 50 9

Program
Increment

3

Iteration 9 36 3 1 8 0 17

Iteration 10 78 2 21 0 38

Iteration 11 60 44 40 42

0

10

20

30

40

50

It
er

at
io

n
1

It
er

at
io

n
2

It
er

at
io

n
3

It
er

at
io

n
4

It
er

at
io

n
5

It
er

at
io

n
6

It
er

at
io

n
7

It
er

at
io

n
8

It
er

at
io

n
9

It
er

at
io

n
10

It
er

at
io

n
11

N
um

be
r

of
 O

pe
n

D
ef

ec
ts

Iterations

Defects Debt Trend

Defect Debt

22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing
SUPPORTING WORLD DEVELOPMENT THROUGH ELECTRICAL&ELECTRONIC MEASUREMENTS

IASI, ROMANIA, September 14-15, 2017

 V. CONCLUSIONS

We showed how classical PCE can be applied in
Agile by considering iterations instead of phases. ICE
metric definition was defined and its application was
explained by the presented example. By increasing ICE
through continuous process improvement, the agile team
will not be overwhelmed by the increasing number of
defects in the backlog, delivery commitments will be
fulfilled and quality of the developed product will in-
crease.

We also present how ICE metric can be used in order
to analyze the result of the Defects Debt Trend metric
which shows the trend of open defects over time. More
than this, as a result of the improvement measures, an
increased rate of ICE should lead to reduced values and
lower trend in Defects Debt Trend.We scaled the ICE
metric usage also on the Program Increment Level by
describing the formula and way of usage.

Faults debt (remaining open problem reports) from
one iteration to another can be monitored and reduced by
monitoring, analyzing and taking the proper actions when
measuring the ICE metric. The lowest rates should indi-
cate that a root cause analyses is necessary.

For root cause analyses and for understanding in an
iteration which development phases escaped defects and
which testing phases missed to detect defects, can be used
the classical PCE for Development (based on the devel-
opment and test phases used in the iteration) and PCE for
Testing (considering only the development and test phas-
es used in the iteration).

If organizations want to improve their processes, their
products and especially the customer trust, they should
focus in a first step in counting for the ICE and DDT
metric only the faults which are visible to the end cus-
tomer, independent if these are critical or not. This im-
plies also that fault severity classification needs to in-
clude also the customer visibility.
 Further development: We presented how to measure
ICE and DDT metric on iteration and program increment
levels. It can be also investigated how to measure these

metrics on the upper levels of the Scaled Agile.

REFERENCES
[1] Kugler Maag Cie.(May 2015). Agile in Automotive –State

of Practice 2015[Online]. Available:
http://www.kuglermaag.com/

[2] VDA QMC Working Group 13 / Automotive SIG. (2015,
July 16).Automotive SPICE Process Assessment /
Reference Model, Version 3.0, pp. 74-75,[Online].
Available:http://www.automotivespice.com/
fileadmin/softwaredownload/Automotive_SPICE_PAM_3
0.pdf

[3] Beck, K., Beedle, M., Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.,
Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D.
(2001). Manifesto for Agile Software Development.
[Online]. Available at: http://www.agilemanifesto.org/
[Accessed 03 Apr. 2017].

[4] A. R. Hevner. (1997). Phase Containment Metrics for
Software Quality Improvement. Information and Software
Technology [Online]. 39(13), pp. 867–877. Available:
http://www.sciencedirect.com.

[5] David L. Hallowell. (2003). Six Sigma Software Metrics
Maturity, Part 1, Six Sigma Advantage Inc [Online].
Available: https://6sigma.com.

[6] Sandu, I.-A., Salceanu, A., 2017, Metrics Improvement for
Phase Containment Effectiveness in Automotive Software
Development Process, Proceedings of the10-th
International Symposium on ADVANCED TOPICS IN
ELECTRICAL ENGINEERING (ATEE 2017), 23-25
March, Bucharest, Romania, pp.661-666.

[7] Stout Risius Ross. (2016, April 25).Automotive Warranty
& Recall Report 2016. [Online]. Available:
http://www.srr.com.

[8] C. Ebert and R.Dumke: Software Measurement, Springer,
Heidelberg, New York, 2007, pp. 245-300.

[9] D. Seidler, T. Southworth. (2016, November 21).IBM
Rational Automotive Engineering Symposium 2013,
Source - Herstellerinitiative Software (Audi, BMW,
Daimler, Porsche and Volkswagen). [Online]. Available:
https://www.ibm.com.

[10] Scaled Agile, INC. SAFe® 4.0 [Online]. Available:
http://www.scaledagileframework.com/.[Accessed 03 Apr.
2017]

[11] Scrum.org.The Home of Scrum [Online]. Available:
https://www.scrum.org/. [Accessed 03 Apr. 2017]

http://www.kuglermaag.com/�
http://www.automotivespice.com/%20fileadmin/softwaredownload/Automotive_SPICE_PAM_30.pdf�
http://www.automotivespice.com/%20fileadmin/softwaredownload/Automotive_SPICE_PAM_30.pdf�
http://www.automotivespice.com/%20fileadmin/softwaredownload/Automotive_SPICE_PAM_30.pdf�
http://www.automotivespice.com/%20fileadmin/softwaredownload/Automotive_SPICE_PAM_30.pdf�
http://www.srr.com/�
https://www.ibm.com/�
http://www.scaledagileframework.com/�
https://www.scrum.org/�

