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Abstract The paper presents the detailed analysis of 
the Radial Basis Function (RBF) neural network 
application for diagnostics of analog systems. In most 
cases RBF networks are used in the approximation 
tasks. In this work the network is used as the fault 
classifier. Because RBF networks are known to be 
dependent on the size of training data, the procedure 
to minimize the amount of the learning examples was 
proposed. The classifier is tested on the model of the 
electronic filter, which, was also diagnosed by 
alternative methods, such as Multilayered Perceptron
and Support Vector Machine. Experimental results 
show what are advantages and drawbacks of the RBF 
classifier compared to other solutions.

I. INTRODUCTION

Artificial Neural Networks (ANN) the most popular 
Artificial Intelligence (AI) tools used in the diagnostics of 
analog systems. Their numerous advantages include the 
ability to extract generalized knowledge from the 
available data, autonomous operation and (in some cases)
the ability to accurately process data in uncertainty 
conditions. Memory and processing efficiency make them 
useful in embedded applications. Their disadvantage is 
the obscure form of stored knowledge, which is not 
crucial as long as the diagnostic system accurately detects 
and identifies faults. 

The most widely used ANN are Multilayered 
Perceptrons (MLP), which were successfully applied to 
solve biomedical and financial problems [1]. Their 
implementations in the diagnostics cover power lines [2]
or electrical machines [3]. They are currently widely 
exploited and work as the standard diagnostic tool. Using 
the MLP classifier requires selecting one of multiple 
available learning algorithms to the predefined 
architecture of the network, including selected types of 
neurons (computational units) and number of layers. 
These are often main design problems, as the optimal 
MLP architecture must be determined individually for 
each problem.

Similar problems are encountered during the 
application of Support Vector Machines (SVM), which 
are considered the optimal ANN-based classifiers in the 
uncertainty conditions [4]. Their disadvantage is the time 
consuming process of selecting the optimal kernel and its 

parameters [5]. Despite such challenges, SVM are also 
popular in diagnostics, used to identify faults in electrical 
machinery [6], electronic circuits [7] or power plants [8].

On the other hand, RBS networks are considered
simpler in design and training. They are faster trained and 
have only one hidden layer, therefore the only parameter 
to determine is the number of computational units, which 
depends on the size of the training data. In most cases the 
RBF network is used for the approximation task, having 
linear neurons in the output layer. Its application to 
classification requires substituting the linear output 
neurons with their sigmoidal counterparts. Such 
approaches are rare and not well described in the 
literature [9]. This calls for the thorough investigation of 
the ability to apply the RBF classification module in the 
diagnostics of analog systems. 

The aim of the paper is to present analysis of various 
RBF network configurations for the fault detection and 
identification. Monitored parameters include relations
between the size of the network or the output neurons 
coding schemes and the diagnostic accuracy. The RBF-
based classifier is compared to its well-established 
counterparts, i.e. MLP and SVM to see in which 
situations it should be selected for the task. All classifiers 
are tested on the model of the 5th order filter.

The structure of the paper is as follows. Section II 
presents the applied diagnostic architecture. Details of the 
implemented network are also introduced here. Training 
and testing data sets structure is presented in Section III. 
The analyzed circuit is introduced in Section IV, while 
experimental results are in Section V. Conclusions about 
the conducted analysis are in Section VI. 

II. ANN-BASED DIAGNOSTIC ARCHITECTURE

The typical diagnostic scheme using any type of the 
ANN-based classifier is presented in Fig. 1. Here the 
System Under Test (SUT) is monitored by the 
hardware/software module, which performs data 
acquisition on the accessible nodes, extracting from
measured signals the feature vector e (further called 
example), subsequently processed to make the diagnostic 
decision (hypothesis) h. It is assumed that knowledge 
stored in the module allows for the automatic fault 
detection and identification. This requires implementation 
of the machine learning algorithm. During the operation 
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the ANN-based classifier produces the binary output, in 
which every fault category is represented by the unique 
sequence of values {0,1} or {-1,1}, depending on the used 
type of sigmoidal neurons. 

Fig. 1. ANN-based diagnostic system architecture.

Application of the RBF network for the fault 
classification task requires adjusting its structure to the 
specific problem. This includes selection of the number 
of neurons in the hidden layer and selecting coding
scheme for binary units in the output layer. As opposed to 
MLP and similarly to SVM, the RBF network contains 
hidden layer units with the Gaussian activation function

(si) of the width (defined as the standard deviation ,
where c is the center of the function (1), usually set to 0
for all neurons) being the design parameter, which 
influences the capability to distinguish between different 
fault categories. These aspects of the RBF classifier must
be optimized during the design stage, as described below.

2

2

2
exp

cs
s i

i
(1)

A. Minimization of the number of hidden neurons

The number of neurons k in the hidden layer (usually 
greater than for MLP) is automatically adjusted during
the training. T mum 
acceptable value. Maximally k is equal to the number of 
examples in the set, which ensures the high classification 
accuracy, but makes the network large and complex. To 
avoid this, the number of hidden neurons should be 
minimized. In this work clustering of examples was 
applied to find the most similar ones. It is assumed that
training data is redundant, caused by one of two factors:

low sensitivity of the SUT on the changes of the 
specific parameter, which results in multiple 
examples describing the same category being close 
to each other. Such a group can easily be substituted 
by the single example representing all original 
members. It becomes their centroid.
existence of ambiguity groups (AG) [10], resulting 
in multiple examples belonging to different 
categories being close to each other. In this case 

aced and must all remain in 
the data set.

Data processing requires determining all groups of 
similar examples by the cluster analysis, which results in 
the set of groups Gl easily distinguishable from each 
other, based on the similarity measurements. The detailed
scheme is presented in Fig. 2.

Fig. 2. Learning data set preprocessing for the RBF 
classifier training.

Redundancy in the set L may be exploited in two ways. 
The first one consists in providing the original data set for
the RBF network training, but limiting the maximum 
number of neurons in the hidden layer to the number of 
clusters nc. Alternatively, the reduced data set may be
provided for training.

The distance-based similarity method was used in the 
presented case. Its parameter is the threshold , below 
which two examples ei and ej are considered close to each 
other (2). The measure applied to create clusters exploits 
Euclidean dE (3) and cosine dc (4) distances, treating
every example as the point in the m-dimensional space.
This way groups located close to each other are easily 
identified. Thresholds 1 and 2 for both distances should 
be selected adaptively to minimize the number of clusters 
containing examples belonging to different classes (i.e. 
forming AG).
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The illustration of the clustering method for m=2 is 
presented in Fig. 3. 
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Fig. 3. Illustration of the clustering method.

B. Output layer coding schemes

The important parameter of the ANN-based classifier is 
representation of multiple categories by neurons in the 
output layer. Among multiple coding schemes, three were 
selected for experiments [11]. It is assumed that only 
single faults are considered (the most probable case). 
Schemes differ in the number of output neurons o:

One-vs-All (OvA) here each output unit is 
responsible for the separate category. The number of 
fault codes l determines the number of neurons o in 
the output layer (Table 1). During the identification 
only one neuron is active, determining the particular 
fault. If multiple neurons become active, they can be
interpreted as fault candidates in the uncertainty 
conditions. 

Table 1. Applied OvA coding scheme.

Category Coding scheme
c1

c2

cl

One-vs-One (OvO) each neuron is responsible for 
distinguishing between the pair of categories. This 
time o classifiers with output neuron are created and 
simultaneously trained Their number o is driven by
the number of distinct pairs: l (l-1)/2. In this scheme
both active and inactive neuron determines the fault. 
The diagnostic decision is made based on the 
majority voting the category pointed by the 
greatest number of network supporting it. This way 
classifiers are created. For instance, three fault 
codes require the following units: 1: c1 vs c2, 2: c1 vs 
c3, 3: c2 vs c3.
Minimum Output Coding (MOC) the minimal set 
of neurons, which represents each fault code by the 
unique combination of active units. The subsequent 
codes are represented by the binary representation 
of integers (Table 2).

The more sophisticated coding schemes, such as Error 
Correcting Output Coding (ECOC) [12] were excluded 
from experiments, as their implementation would 

complicate the output layer even more, not necessarily 
increasing diagnostic accuracy. Computations were 
performed using the Matlab environment. 

Table 2. Applied MOC coding scheme.

Category Coding scheme
c1

c2

c3

III. DATA SET DESCRIPTION

Learning L and testing T datasets are required to train 
the RBF network classifier and verify its accuracy. Both 
have the same structure, containing n feature vectors e
with m attributes (symptoms s), supplemented by the 
fault code, describing the state of the SUT. The generic 
form of the set (4) is the table, identical for L and T.

lnmn

m

css

css

TL

1

1111

(5)

The example is generated after simulating the SUT 
model. It is then possible to introduce the desired fault to 
the structure of the examined object and then observe the 
effect of the fault on the accessible nodes. The key issue 
is generation of the fault code for each example, based on 
the actual value of the faulty parameter. As before [13], it 
is the integer number, being the combination of the 
parameter identifier and its deviation from the nominal 
value. The code considers the discrete degree of change, 
both negative and positive (for values greater and smaller 
than the nominal one). The assignment of these degrees 
depends on the assumed thresholds for deviations. For 
instance, if the parameter value is above ten percent of 
nominal, the degree is , indicating it 
being
direction of deviation). Additional intervals depend on the 
need to increase the resolution of the diagnostic module. 
For instance, if the value of the parameter is above fifty 

may be 
assigned. This way the second parameter with the value 
larger than the nominal one is represented by the code 

- The 
exception is the nominal state, encoded with the value 

The number of simulated parameter values depends 
on the expected data set size and the accuracy of the SUT 
modeling. In the presented work both sets are of the same 
size, containing mutually exclusive examples. 

Diagnostic accuracy acc of the ANN-based classifier is 
measured using the set T, for which the number of
incorrectly classified examples (i.e. the ones for which 
the hypothesis h(e) is not equal to the fault code c(e)) 

dc

dE
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cluster Gl
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determines the sample error es:

T

hcT
eacc s

eee :
11 (6)

Each SUT simulation was performed after changing the 
eyond the tolerance margins 

(here 10% of the nominal value) with all other parameters 
nominal. 

 IV. ANALYZED SUT

The fifth-order analog filter is a good example to 
implement the data processing methods. It is complex 
(because of the large number of nodes and SUT elements) 
and difficult to diagnose. Therefore multiple stamps are 
needed to allow for identification of all elements 
(resistances and capacitances). The circuit in Fig. 1 
contains ten analysed elements of the following nominal 
values: R1=R2=R3=R4=R5=1k , C1=16nF, C2=19nF, 
C3=13nF, C4=51nF and C5=49nF. Subsequent 
resistances were labeled with numbers from 1 to 5 
respectively, while capacitances were referred to as 
parameters No. 6 to 10. The cutoff frequency of the filter 
for such values is 10kHz. The model of the circuit was 
implemented in the Simulink environment. Simulations 
were performed to obtain examples of the SUT behaviour 
for different values of elements (up to 90 percent of the 
nominal value). The excitation signal provided at node 
No. 1 was a sinusoid with 9kHz frequency (i.e. close to
the cutoff frequency). The filter was analysed in the time 
domain, where at the accessible nodes sinusoidal 
responses were recorded. Measurements were taken at 
nodes 2, 3, 5, 6, 8 and 9. From each response the first 
three maximal and minimal values of the signal with their 
time instants and time instants of zero crossings. This 
gives the total number of 54 features for each example. 

Fig. 4. Scheme of the 5th order lowpass filter.

To evaluate the dependency between the size of the set
and the accuracy of RBF-based classifier, various sizes of 
the sets were prepared, strating from 70 examples (7 
simulations for each parameter, including the nominal 
state) to 180 (18 simulations for each example). To 
consider tolerances, additional sets were created with 
results of simulations affected by the random value added 
to the actual parameter. This allows for verifying if 
random deviations of parameter values influence the 
ability of the diagnostic module to distinguish faults. The 
number of different fault codes was 41, as not all 5 were 

used for each parameter. 

V. EXPERIMENTAL RESULTS

Conducted experiments consisted of three stages. First, 
coding schemes were compared. Next, relation between 
the size of the data set and the diagnostic accuracy was 
determined. Finally, comparison between RBF, SVM and 
MLP (also implemented in Matlab) was performed to 
find advantages of the proposed approach over other well 
established approaches. In all cases experiments were 
repeated ten times to obtain the average values, as each 
time knowledge represented by the network is different, 
so diagnostic results may vary.

A. Coding schemes verification

Presented coding schemes were used to design the RBF 
network, train it on the set L and test using the set T.
Optimal results for all configurations (regarding the width 
of the RBF , number of output neurons o, number of 
hidden neurons k, the maximum achieved training error e
and obtained accuracy on the set T) for the full data set 
(180 examples) are in Table 3.

Table 3. Comparison of performance of RBF network 
coding schemes.

Coding 
scheme

k o e acc [%]

OvA 0.5 82 41 0.0 81.11
OvO 0.6 96 820 0.0 80.56
MOC 0.3 95 6 0.02 80.56

Fig. 5. Influence of the RBF width on the diagnostic 
accuracy.

In general, the OvA coding is the best scheme,
producing the minimum error for most network 
configurations. Although requiring greater number of 
neurons than MOC, it ensures the greatest accuracy (the 
smallest error). The least practical is OvO because of the 
largest number of neurons representing categories. The 
full sweep optimization procedure was applied to 
determine the value of  (although more sophisticated 
approaches, such as simulated annealing [5] or genetic 
algorithm can be used) The optimal RBF width and the 
number of hidden neurons are in all cases in the middle of 
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the verified range (between 0.1 and 2.0). In Fig. 5 the 
relation between  and the obtained accuracy (with all 
other parameters set as in Table 3) is presented. For all 
coding schemes, there is the best  value, for which the 
minimum error is obtained. Results show that narrow 
Gaussian functions are preferred (like =0.5 for OvA). 

Similar effect is obtained for the number of hidden 
neurons. They strongly affect the accuracy, as is 
presented in Fig. 6. Disregarding the coding scheme, in 
all cases adding more hidden neurons leads to the 
decrease of the diagnostic error to some extent. Above 
the optimal point, further increase does not improve the 

 (or even makes it worse).

Fig. 6. Influence of the number of hidden neurons on the 
diagnostic accuracy.

B. Data set size

Experiments regarding the size of the training set L
were divided into two steps. In the first one, various 
numbers of experiments were inserted to the set and then 
used to train the RBF classifier. During the second stage, 
the original set was processed to group the most similar 
ones (see Section II.A) and this way compress the size of 
examples. Additionally, dependence between the training 
duration and the size of processed data was established.  

Table 4 compares the diagnostic accuracy for data sets 
of different sizes. As in other applications, the amount of 
training data influences the accuracy of the classifier, 
which may be a problem if the they are difficult to 
collect. On the other hand, the original set may be 
compressed to the smaller version based on the clustering 
scheme. This way it is possible to determine redundant 
examples, which should be represented by the single 
vector of features. Results of the diagnostic procedure for 
the RBF trained on the minimized version of the set are 
presented in Table 5. Increasing the number of examples 
improves fault detection and identification performance, 
but to obtain the accuracy equal to the RBF trained on the 
largest set with 180 examples, the density of clustering 
must not be large. Comparable diagnostic results are 
obtained on data sets with cardinality close to the original 
set. Again, the most effective is the OvA scheme. 

Table 4. Influence of the data set size on the RBF 
classifier performance.

Data set 
size

accOvA [%] accMOC [%] accOvO [%]

70 31.42 32.85 32.48
120 24.17 27.12 28.04
180 81.12 80.56 80.56

Table 5. Influence of the data clustering on the RBF 
classifier performance.

Data set 
size

accOvA [%] accMOC [%] accOvO [%]

70 63.89 61.12 61.12
88 66.67 65.56 67.23

103 72.23 68.34 71.12
109 70.00 70.56 71.12
136 70.56 69.45 72.78
153 76.67 72.23 76.12
162 81.12 72.78 78.89
180 81.12 80.56 80.56

Relation between the RBF network structure and 
training duration for the OvA coding is in Fig. 7. The 
processing time directly depends on the number of hidden 
neurons in the network structure. The relation between 
the size of the data set and the number of neurons is more 
complex, as even larger data sets may be optimally 
processed by smaller networks. The relation is in general 
linear. For contemporary computers durations required to 
perform single training are negligible. Thorough 
optimization process for  and k requires more time in the 
off-line mode.  

Fig. 7. Training duration of the OvA RBF 

C. Comparison against other classifiers

Besides the RBF-based network classifier, also SVM 
and MLP were tested on the same data sets. In Tab. 6 
diagnostic outcomes of the optimal network 
configurations for the largest set T are presented. 
Performance of all classifiers is comparable, the main 
difference lies in the training time, which is the longest 
for the MLP and comparable for RBF and SVM. In the 
last two cases, additional parameters must be determined, 
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which increases the training duration. This shows 
advantages of the presented classifier compared to its 
counterparts: comparable accuracy with the faster 
training process and relatively simple structure.  

Table 6. Comparison of the ANN-based diagnostic 
modules.

Data set 
size

accOvA [%] accMOC [%] accOvO [%]

RBF 81.12 80.56 80.56
MLP 80.75 80.56 79.80
SVM 81.12 81.12 79.80

 VI. CONCLUSIONS

The paper presented analysis and optimization of 
various RBF network-based classifier in the diagnostics 
of analog circuits. Multiple parameters, including width 
of the standard deviation, number of neurons in the 
hidden layer and coding scheme in the output layer were 
checked. The OvA scheme was the best in most of cases.
The MOC scheme, although requiring the minimum 
number of output neurons is more susceptible to random 
classification errors. The OvO, provides similar accuracy, 
but requires the greatest number of networks with the 
single output neuron. Such structures are impractical in 
the on-line diagnostics.  

The optimization process of the RBF training is similar 
to all other ANN-based classifiers. The supervised 
learning is implemented as the standard parameterized 
algorithm. s task is to select parameters to 
ensure the highest diagnostic accuracy. This process is 
time consuming, but results in the improvement in the 
accuracy. Multiple continuous or discrete optimization 
methods may be used for this purpose, as should be 
verified in the future research.  
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