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Abstract − It is presented an integrated software for 
experimental testing preference aggregation method for 
interlaboratory comparison data processing. The data can be 
obtained by a Monte-Carlo simulation and/or taken from real 
comparisons. Numerical experimental investigations with 
the software have shown that, as against traditional 
techniques of interlaboratory comparison data processing, 
the preference aggregation method provides a robust 
comparison reference value to be closer to a nominal value.  
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1. INTRODUCTION 
 

Interlaboratory comparisons (IC) are now quite common 
and important metrological procedure that is used under key 
comparisons [1], measurement laboratories proficiency 
testing [2], etc. The procedure consists in arrangement and 
implementation of assessment of measurement quality of a 
given object characteristic by means of several different 
laboratories in accordance with definite prescribed rules.   

Main task of any kind of interlaboratory comparisons is 
establishing a reference value of measured quantity xref that 
characterizes a largest subset of consistent (reliable) 
measurement results, i.e. so called largest consistent subset 
(LCS) [3]. For this aim, participating in comparisons 
laboratories estimates the same nominal value xnom of the 
measured quantity. Laboratories having unreliable 
measurement results are not participated in establishing final 
reference value. 

There are different approaches to check consistency of 
laboratory measurement results and to find the reference 
value xref, see, for example [3-6]. Choice of particular 
consistency test method depends on a kind of travelling 
standard, measurement conditions and number of 
participating laboratories. Widely used methods are 
statistical ones characterizing IC participant competences to 
carry out measurements based on, for example, calculation 
of difference of laboratory measurement result and assigned 
by comparison provider, percent differences, percentiles, or 
ranks [8]. However, these methods usually imposes 
limitations on a feasible IC participating laboratories 
number. Moreover, statistical methods may evince low 

discriminating ability, that is ability to differ truly unreliable 
laboratories from laboratories providing results to be trusted 
to.  

In [1], a method had been presented that is based on 
rather widely known so called Procedure A [4-5]. The 
procedure uses weighted mean value y: 
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where xi is nominal value estimate provided by i-th 
laboratory; u(xi) are corresponding standard uncertainties; m 
is the number of IC participating laboratories. The standard 
uncertainty of value y has the view: 
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In this procedure the weighted average value y is 
accepted as the reference value xref only if its consistency 
with IC participating laboratories data is confirmed in 
accordance to criterion χ2. 

If the consistency test is not satisfied, it is proposed in 
[3] to use a strategy of successive exclusion of outliers, that 
is results which are not consistent with the remainder in 
limits of claimed uncertainties. A result is deemed to be 
inconsistent if |En| > 2, where 
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The process of exclusion of one inconsistent result is 
repeated until a consistency of results by the criterion χ2 is 
achieved. For obtained in this way LCS the reference value 
is determined by formula (1), where instead of m number of 
reliable laboratories m' is used. 

Procedure A can be reasonably applied if measurement 
results provided by participating laboratories are 
characterized with normal probability distribution. That is 
why there is a need to develop robust methods for 
interlaboratory comparison data processing that are well-
behaved in cases where the law of laboratory measurement 
results distribution differs from normal or unknown. 



For example, in paper [9] Nielsen proposed the method 
which successful application has been described in [10]. The 
method offers to consider the uncertainty range u(xi) as the 
rectangular distribution and to deem that each participant 
gives one vote to each value within its uncertainty range and 
no votes for values outside this range. This produces a 
robust algorithm of reference value xref determination that is 
insensitive to outliers, i.e. results with the uncertainty 
considerably lower than those of other participants.  

This paper is devoted to software implementation of 
comparison reference value determination method that is 
presented in terms of preference aggregation [11-13]. In 
Section 2 a way is considered to transform uncertainty 
intervals provided by participating laboratories into rankings 
of measured quantity values. Then the obtained rankings, 
constituent an initial preference profile, can serve as input 
data for determination of consensus ranking by Kemeny rule 
that allows to find the reference value of measurand and to 
assess an ability of participating laboratories to provide 
reliable measurement results. In Section 3 a specially 
developed software is discussed to carry out numerical 
experimental researches of IC methods including Procedure 
A, Nielsen algorithm and the proposed preference 
aggregation method. 

 
2. IC DATA PROCESSING ON THE BASE OF 

PREFERENCE AGGREGATION 
 
Define procedure of transformation of uncertainty 

intervals provided by laboratories into rankings. For this 
aim, designate an uncertainty interval gained by i-th 
laboratory through l u( ) [ ( ), ( )]i i iu x u x u x= .  

Define A, a range of actual values (RAV), of the 
measurand for converting uncertainty intervals of m 
laboratories to rankings. The initial value а1 of A is chosen to 
be equal to a least lower bound of uncertainty intervals 

1 lmin{ ( ) | 1,..., }ia u x i m= =  provided by laboratories. The 
finite value аn of A is chosen to be equal to a largest upper 
bound of laboratories uncertainty intervals 

umax{ ( ) | 1,..., }n ia u x i m= = . 
 Divide A into n – 1 equal intervals (divisions) in such a 

way that their amount guarantees a necessary and sufficient 
accuracy of the measurand values representation. Then there 
will be n values of the measurand A = {а1, а2, …, аn} 
corresponding to boundaries of the division intervals 
(marks), see Fig. 1.  

 

 
 

Fig. 1. An example of shaping a range of actual values A. 
 
Compose a preference profile Λ of m rankings 

representing the uncertainty intervals of laboratories. Each i-
th ranking, i = 1, …, m, is a union of binary relations of strict 
order and equivalence possessing the following properties at 
k = 1, …, m and i, j = 1, …, n: 

а) ai  aj if ai ∈  u(xk)  ∧ aj ∉  u(xk); 
b) ai ~ aj if ai, aj ∈  u(xk)  ∨ ai, aj ∉  u(xk);  
c) ai  aj if ai ∉  u(xk)  ∧ aj ∈  u(xk). 
Then the indicated by some laboratory measurement 

result is represented by a ranking of the measurand values  
where more preferable are one or more equivalent values 
which belong to uncertainty interval of the laboratory. All 
other values of A in this ranking are less preferable and 
equivalent to each other. Thus, each ranking includes a 
single symbol of strict order  and n – 1 symbols of 
equivalence ~. 

To aggregate m ranking means to determine a single 
preference relation β ensuring a best compromise between 
them. Such a ranking β is called consensus ranking. 

In the authors works [12,14,15] it was shown that 
Kemeny median can be used in the capacity of consensus 
ranking. One of possible algorithms on the base of branch 
and bound technique is described in [12].  

As soon as a consensus ranking β is found, a value 
ranked first in it can be selected as the reference value xref of 
measurand.  

Subset of consistent results will consist of laboratories 
uncertainty intervals of which include the revealed reference 
value. In opposite case corresponding laboratories are 
excluded of forming the largest consistent subset. 

A standard uncertainty of the obtained reference value 
for LCS is defined as the smallest of the two values, i.e. 
from the maximum lower bound l ref( )iu x x≤ and the 
minimum upper bound u ref( )iu x x≥  of the uncertainty 
intervals of laboratories. 

 
3. EXPERIMENTAL INVESTIGATIONS OF IC DATA 

PROCESSING METHODS 
 

To investigate experimentally the proposed method for 
IC data processing on the base of preference aggregation 
there was developed special software called 
INTERLABCOM in the environment Microsoft Visual С#. 
The software has user-friendly interface and, in its current 
version, implements the following three IC data processing 
methods: the proposed preference aggregation method 
(PAM), Procedure A and Nielsen algorithm. 

Measurement results provided by laboratories can be real 
and/or simulated by means of a program pseudo-random 
numbers generator that provides an opportunity to realize 
various modifications of Monte-Carlo method when 
conducting numerical computing experiments. There is a 
possibility of choice of uniform or normal distributions of 
generated measurement results. Uniformly distributed data 
of comparison xi и u(xi) can be generated at a given value 
хnom using standard library function rand(). Normally 
distributed data of comparison results are obtained of 
uniformly distributed data using well known Box–Muller 
transform [16]. 

When preparing for an experiment, in a special window, 
one can preset a nominal measurand value xnom, number of 
participating laboratories m, and number of the measurand 
values n. By pushing button "Generation" generated 
measurement result xi and its uncertainty u(xi) are displayed 
on a monitor screen. The uncertainty u(xi) is represented as 
the couple of upper and lower bounds. Graph of the initial 
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generated IC data is indicated in a special window (Fig. 2). 
Uncertainty intervals are shown in a two-dimensional graph 
with dimensions "Measurand" (vertical axis) and 
"Laboratories" (horizontal axis). 

The software allows to indicate IC data processing of 
each method in a separate window including a table with 
initial comparison data (measurand values and 
corresponding uncertainty intervals), graph of comparison 
processed data and conclusion on consistency of each 
participating laboratory results.  

 

 
 

Fig. 2. One of the software user interface windows.  
 

All the IC data processing results by means of different 
methods are reduced to a summary table and graph. An 
inconsistent result is labeled by special mark and the 
corresponding data are removed from the processed set. The 
graph and final data of comparison can be saved at 
Microsoft Excel format for further processing. 

In order to demonstrate the developed software tool 
operation, some IC measurement data for 7 participating 
laboratories are shown in Fig. 3. In this case the RAV with 
lower and upper bounds 11.43 and 12.73 is divided into 5 
equal divisions, bounds of which define 6 values a of the 
measurand.  

 
Fig. 3. Example of IC measurement results. 

 
The appropriate preference profile Λ, constructed as 

described in Section 2, has the following view: 
λ1: a2 ~ a3  a1 ~ a4 ~ a5 ~ a6  

λ2: a2 ~ a3  a1 ~ a4 ~ a5 ~ a6 

λ3: a3 ~ a4 ~ a5 ~ a6  a1 ~ a2 

λ4: a2 ~ a3  a1 ~ a4 ~ a5 ~ a6 

λ5: a3 ~ a4 ~ a5  a1 ~ a2 ~ a6 

λ6: a2 ~ a3 ~ a4  a1 ~ a5 ~ a6 

λ7: a1 ~ a2  a3 ~ a4 ~ a5 ~ a6 

For this profile two optimal consensus rankings exist: 
а3  a2  a4  a5  a6  a1 

a3  a2  a4  a5  a1  a6, 
from where the final consensus ranking is: 

β = { a3  a2  a4  a5  a6 ~ a1}, 
where the first position is occupied by the value a3 = 11.95. 
This value is accepted as the measurand reference value xref. 

Our hypothesis consists in that, as ordinal data are used  
in the PAM, a reference value obtained by means of this 
method should not significantly depend on the particular 
probability distribution law of measurement results. 

For experimental investigations of this hypothesis there 
were generated normally distributed data for 100 individual 
problems that were distinguished from each other by random 
uncertainty intervals; laboratories number m = 15; хnom = 3. 
These data were processed by PAM, Procedure A and 
Nielsen algorithm. The same steps under similar conditions 
were undertaken for uniformly distributed generated data. 

In Table 1 and Table 2 the numerical experimental 
investigations results of PAM as compared with Procedure 
A and Nielsen algorithm are reduced. The fact that the 
program model allows to assign and know a nominal value 
beforehand, gives a possibility to assess a quality of method 
M intended for IC data processing by means of simple 
calculation of the difference  

ξ = |xref(M) – хnom|.         (4) 

Thus, Table 1 includes xref and ξ for each individual problem 
solved by each of the three methods obtained for normal 
distribution and Table 2 includes the values acquired for 
uniform distribution. 

The experimental data were used to plot curves 
illustrating how values ξ are changed from problem to 
problem for each comparison method. Values ξ were taken 
for every of 100 individual problems and organized in 
ascending order. 

Fig. 4 show graph of deviations ξ obtained by the 
proposed PAM compared to Procedure A for uniform (U) 
and normal (N) distributions of comparison result. It should 
be noticed that Procedure A is not intended to be applied for 
data distributed by laws other than normal.   Therefore, the 
experimental results obtained for it under the uniform law 
are given here in order to demonstrate the non-robust 
method behavior compared to the robust ones over the same 
data. One can see in Fig. 4 that a particular kind of measured 
results probability distribution practically does not influence 
to the PAM (curves 3 and 4) performance. It means that the 
PAM is a robust procedure. Over the same data, the 
Procedure A (curves 1 and 2) has shown considerable 
increasing of ξ when passing from normally to uniformly 
distributed measurements.  

Fig. 5 show graph of deviations ξ obtained by the 
proposed PAM compared to Nielsen algorithm for uniform 
(U) and normal (N) distributions of comparison result. It can 
be seen from Fig. 5 that the PAM provides an estimates of 
xref closer to the nominal value xnom than Nielsen algorithm. 
At the same time the latter method (curves 1 and 2) shows 
discrepancy between normally and uniformly distributed 
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data is about 0.18 that is more than twice bigger against 
PAM with its discrepancy 0.08. 

 
Table 1. A fragment comparison generated data procession 

results for xном = 3.0 arbitrary units (a.u.); normal distribution 

Problem 
number 

PAM Procedure 
A 

Nielsen 
algorithm 

xref ξ xref ξ xref ξ 
1 2.97 0.03 2.92 0.08 2.95 0.05 
2 2.91 0.09 2.90 0.10 2.93 0.07 
3 2.95 0.05 2.91 0.09 2.91 0.09 
4 2.98 0.02 2.98 0.02 2.90 0.12 
5 3.05 0.05 2.90 0.10 2.96 0.04 
6 2.89 0.11 2.89 0.11 2.86 0.14 
7 2.98 0.02 3.00 0.00 2.79 0.21 
8 2.93 0.07 2.98 0.02 3.10 0.10 
9 2.98 0.02 2.86 0.14 2.91 0.09 

10 2.97 0.03 2.97 0.03 2.68 0.32 
11 2.98 0.02 2.95 0.05 3.02 0.02 
12 2.92 0.08 2.99 0.01 2.85 0.15 
13 2.99 0.01 2.97 0.03 2.92 0.08 
14 2.96 0.04 2.99 0.01 2.92 0.08 
15 2.93 0.07 2.99 0.01 2.99 0.01 

… 
86 3.03 0.03 2.90 0.11 2.94 0.06 
87 2.99 0.01 2.97 0.03 2.85 0.15 
88 2.94 0.06 2.97 0.03 2.83 0.17 
89 2.98 0.02 2.94 0.06 2,74 0.26 
90 2.91 0.09 2.94 0.06 2.88 0.12 
91 2.93 0.07 2.97 0.03 2.92 0.08 
92 2.98 0.02 2.90 0.10 2.93 0.07 
93 2.97 0.03 2.81 0.19 2.70 0.30 
94 2.99 0.01 2.99 0.01 2.94 0.06 
95 2.99 0.01 2.78 0.22 2.87 0.13 
96 2.96 0.04 2.99 0.01 2.83 0.17 
97 2.98 0.02 2.97 0.03 3.05 0.05 
98 2.97 0.03 2.84 0.16 2.93 0.07 
99 2.99 0.01 2.91 0.09 3.11 0.11 

100 3.01 0.01 3.01 0.01 2.85 0.15 
 

 
Fig. 4. Deviations ξ of obtained by PAM and Procedure A for 

uniform (U) and normal (N) distributions of comparison results. 
 

4. CONCLUSION 
 

There was described a method, called preference 
aggregation method – PAM, to process IC data based on 
transformation of uncertainty intervals provided by 
participating laboratories into rankings of measured quantity 
values. For composed in this way preference profile 

consensus ranking is determined by Kemeny rule that allows 
to find the reference value of a measurand. Operation of this 
method was demonstrated. 

 
Table 2. A fragment comparison generated data procession 

results for xном = 3.0 a.u.; uniform distribution 

Problem 
number 

PAM Procedure 
A 

Nielsen 
algorithm 

xref ξ xref ξ xref ξ 
1 3.01 0.01 2.92 0.08 2.95 0.05 
2 2.97 0.03 2.92 0.08 2.95 0.05 
3 3.12 0.03 2.43 0.57 3.25 0.25 
4 3.04 0.04 2.69 0.31 2.67 0.33 
5 2.98 0.02 2.65 0.35 2.46 0.54 
6 2.98 0.02 2.16 0.84 2.86 0.14 
7 2.89 0.11 2.54 0.46 2.86 0.14 
8 2.81 0.19 2.57 0.43 2.54 0.46 
9 2.91 0.09 2.49 0.51 2.74 0.26 

10 3.10 0.10 3.00 0.00 2.71 0.29 
11 2.96 0.04 2.62 0.38 3.20 0.20 
12 3.04 0.04 2.97 0.03 3.37 0.37 
13 3.14 0.14 2.69 0.31 2.73 0.27 
14 2.98 0.02 2.90 0.10 3.00 0.00 
15 2.90 0.10 2.54 0.46 3.06 0.06 

… 
86 2.99 0.01 3.01 0.01 2.95 0.05 
87 2.84 0.17 2.66 0.34 2.90 0.10 
88 3.03 0.03 2.88 0.12 2.85 0.15 
89 2.94 0.06 2.77 0.23 2.85 0.15 
90 2.86 0.14 2.40 0.60 3.09 0.09 
91 2.98 0.02 2.90 0.10 2.79 0.21 
92 3.11 0.11 2.38 0.62 3.27 0.27 
93 2.97 0.03 2.88 0.12 2.75 0.25 
94 2.73 0.27 1.90 1.10 2.69 0.31 
95 3.00 0.00 2.49 0.51 3.11 0.11 
96 2.96 0.04 2.95 0.05 3.11 0.11 
97 2.97 0.03 2.90 0.10 3.12 0.12 
98 2.95 0.05 2.62 0.38 3.12 0.12 
99 2.98 0.02 2.85 0.15 2.89 0.11 

100 3.08 0.08 3.01 0.01 2.93 0.07 
 

 
Fig. 5. Deviations ξ of obtained by PAM and Nielsen algorithm for 

uniform (U) and normal (N) distributions of comparison results 
 

A software tool was considered that is intended for 
experimental researches of the proposed method and other 
methods of IC data processing. Numerical experiments 
carried out with its help have shown that the PAM is indeed 
a robust procedure that does not depend on measured results 
probability distribution. The PAM provides an estimates of a 
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reference value closer to the nominal value than other robust 
method (Nielsen algorithm). The latter method has shown 
discrepancy between normally and uniformly distributed 
data is more than twice bigger against PAM. 
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