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1. INTRODUCTION 

The basic working tool in measurement uncertainty analysis, 
as advocated in the current revision (under preparation) of the 
Guide to the expression of uncertainty in measurement (GUM) [1], and 
consistent with its Supplement 1 – Propagation of distributions using a 
Monte Carlo method [2], is the state-of-knowledge PDF about the 
quantity (true value of measurand), based on the currently 
available information. The state-of-knowledge PDF quantifies 
the degree of belief about the values that can be assigned to the 
quantity based on the available information. The expectation 
and the standard deviation of this PDF (if they exist) are used 

to report the measurement result and the associated (standard) 
measurement uncertainty.  

Although the latest GUM development emphasizes the 
Bayesian view of probability in the evaluation of measurement 
uncertainty, it should be clearly stated and understood that this 
approach is not based on the strict Bayesian principles of 
statistical inference (i.e. straightforward application of the 
Bayes' theorem). For more details and further discussion see, 
e.g., [3], [4], [5], or [6], and also [7] and [8].  

In fact, the GUM approach is based on using a well-defined 
functional relationship between the mutually inter-related 
quantities for propagating the state-of-knowledge PDFs of the 
input quantities, represented by the random variables (RVs), 
into the state-of-knowledge PDF of the output quantity – 

ABSTRACT 
Measurement uncertainty analysis based on combining the state-of-knowledge distributions requires evaluation of the probability 
density function (PDF), the cumulative distribution function (CDF), and/or the quantile function (QF) of a random variable reasonably 
associated with the measurand. This can be derived from the characteristic function (CF), which is defined as a Fourier transform of its 
probability distribution function. Working with CFs provides an alternative and frequently much simpler route than working directly 
with PDFs and/or CDFs. In particular, derivation of the CF of a weighted sum of independent random variables is a simple and trivial 
task. However, the analytical derivation of the PDF and/or CDF by using the inverse Fourier transform is available only in special cases. 
Thus, in most practical situations, a numerical derivation of the PDF/CDF from the CF is an indispensable tool. In metrological 
applications, such approach can be used to form the probability distribution for the output quantity of a measurement model of 
additive, linear or generalized linear form. In this paper we present a brief overview of selected simple and efficient methods for 
numerical inversion of the characteristic function, which are especially suitable for typical metrological applications. The suggested 
numerical approaches are based on the Gil-Pelaez inverse formulae and on using the approximation by discrete Fourier transform and 
the fast Fourier transform (FFT) algorithm for computing PDF/CDF of the univariate continuous random variables. 
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which is believed to be a RV reasonably associated with the 
measurand. Frequently, it is suggested to use a well-known 
functional relationship (based, e.g., on the physical and/or 
geometrical laws) between the true value of the measurand and 
the true values of the other influencing input variables, which is 
typically expressed by the measurement equation of the 
measurement model. 

Obviously, such PDF of the output quantity represents 
currently available knowledge (limited, but hopefully the best to 
date) about the measurand, i.e. it expresses probability 
distribution of the values being attributed to a quantity (the 
measurand), based on information used (which could be rather 
limited and/or heavily biased). This interpretation is consistent 
to the original GUM definition of the uncertainty in 
measurement (see [1], clause 2.2.3), which is defined as a 
parameter, associated with the result of a measurement, that 
characterizes the dispersion of the values that could be 
reasonably attributed to the measurand. However, the derived 
term coverage interval is inconsistent with this interpretation, for 
more details and discussion see [8]. 

In fact, without imposing further (well and clearly defined) 
model assumptions and optimality criteria for selecting and 
combining the information, it can be only hardly expected that 
the presented result shall represent the best (in what sense?) 
estimate of the true measurand value. On the other hand, the 
proposed GUM approach could be well accepted as a (simple) 
method for combining experimental results with the expert 
judgment in order to get comprehensive characterization of our 
knowledge about the true value of measurand, based on all 
currently available information, albeit without the possibility of 
guaranteeing the (otherwise naturally) required statistical 
properties and/or optimality criteria. If this is the goal, other 
means and/or subsequent analysis should be applied and 
properly used. 

As already mentioned, the term coverage interval (introduced in 
[2], and defined as the interval containing the (true) value of a 
quantity with a stated probability (say 95%), based on the 
information available) is not properly used in this context. 
Hence, as an alternative to the 95% coverage interval, here we shall 
use a more appropriate term – the 95% state-of-knowledge interval. 
This should read as the interval of 95% values that could be reasonably 
attributed to the unknown value of measurand based on the current state-
of-knowledge (i.e. based on the considered measurement model, 
the currently available information, and method used for 
combining the information). Of course, further study is 
necessary for characterizing the optimality properties of the 
used method, e.g., under repeatability conditions. 

A standard approach to derive the state-of-knowledge PDF 
is based on the propagation of distributions using a Monte 
Carlo method, as suggested in Supplement 1 of the GUM, [2].  
For more details and discussion on applicability of the 
uncertainty evaluation methods based on the GUM and its 
Supplement 1 see, e.g., [9], [10], [11], [12]. A disadvantage of the 
Monte Carlo methods is ambiguity of their results, and often, a 
need of a very large number of trials to achieve the required 
accuracy. 

Among possible alternative approaches to evaluate the 
propagated probability distribution of the output quantity we 
can include the advanced methods for arithmetic computations 
with random variables and their distributions, see e.g. [13], [14], 
and also [15], [16]. However, applicability of these methods is 
still limited to a relatively small number of the input random 
variables. 

2. LINEAR MEASUREMENT MODEL AND THE 
CHARACTERISTIC FUNCTIONS 

Here we shall discuss an alternative tool to form the state-
of-knowledge probability distribution of the output quantity in 
linear measurement model, based on the numerical inversion of 
its characteristic function (CF), which is defined as a Fourier 
transform of its PDF, see (2). 

Computing the (inverse) Fourier transform numerically is a 
well-known problem, frequently connected with the problem of 
computing integrals of highly oscillatory (complex) functions. 
The problem was studied for a long time in general, but also 
with focus on specific applications, see, e.g., [17], [18], [19], [20], 
[21], [22], to show just a few. In particular, the methods 
suggested for inverting the characteristic function for obtaining 
the probability distribution function include [23], [24], [25], [26], 
[27]. 

Approximations of the continuous Fourier transform by the 
discrete Fourier transform and by using the FFT algorithm are 
widely used in different fields of engineering. However, using 
the FFT for evaluation of the PDF/CDF from the 
characteristic function is not widespread in statistical 
applications (one important exception is the field of financial 
mathematics and econometrics), and in general, not well 
implemented in relevant software packages.  

In [28], Korczynski, Cox, and Harris suggested and 
illustrated the use of convolution principles in metrology 
applications. The suggested approach was  based on replacing 
the convolution integral by a convolution sum evaluated using 
the fast Fourier transform (i.e. without direct using the 
characteristic functions), to form the probability distribution for 
the output quantity in measurement model of additive, linear or 
generalized linear form. 

In fact, in metrology applications a number of measurement 
models used in uncertainty evaluation are, at least 
approximately (up to reasonable level), of the additive linear 
form 

𝑌 =  𝑐1𝑋1 +⋯ + 𝑐𝑛𝑋𝑛,   (1) 

where the input quantities X1 , … , Xn are independent random 

variables with known probability distributions,  𝑋𝑗 ∼  𝐹𝑋𝑗 , for 

𝑗 = 1,… , 𝑛, possibly parametrized by 𝜃𝑗 . Here, 𝑐1, … , 𝑐𝑛 

denote the known constants and 𝑌 represents the univariate 
output quantity (a random variable with an unknown 
distribution to be determined). 

The characteristic function of a continuous univariate 

random variable 𝑋 ∼  𝐹𝑋, with its probability density 

function pdf𝑋(𝑥), is defined as a Fourier transform of its PDF,  

cf𝑋(𝑡) = ∫ 𝑒𝑖𝑡𝑥
∞

−∞
pdf𝑋(𝑥) 𝑑𝑥,   𝑡 ∈ 𝑹  (2) 

Analytical expressions of the characteristic functions are known 
for many standard probability distributions, see e.g. [29], or 
other publicly available sources, as e.g., WIKIPEDIA. Otherwise, 
CF could be computed either analytically, by suitable software 
as e.g., MATHEMATICA, or numerically.  

In Table 1 we present some selected characteristic functions 
of the univariate distributions, frequently used in metrological 
applications. Compare the presented distributions with those in 
the Table 1 in [2]. Notice that characteristic functions of the 
symmetric zero-mean distributions are purely real functions of 

the argument 𝑡 ∈ 𝑹. 
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Table 1. Characteristic functions of continuous univariate distributions used 
in metrological applications (selected symmetric zero-mean distributions 
and non-negative distributions). Here, 𝐾𝜈(𝑧) denotes the modified Bessel 
function of the second kind, 𝐽𝜈(𝑧) is the Bessel function of the first kind, and 
𝑈(𝑎, 𝑏, 𝑧) is the confluent hypergeometric function of the second kind. 

Probability  
distribution 

 
Characteristic function (CF) 
 

 
Gaussian  
𝑁(0,1)   

cf(𝑡) = 𝑒−
1

2
 𝑡2  

  

Student’s t 
 𝑡𝜈   

cf(𝑡) =
1

2
𝜈
2−1Γ(

𝜈

2
)
 (𝜈

1

2 |𝑡|)

𝜈

2
𝐾𝜈
2

(𝜈
1

2 |𝑡|)   

  
Rectangular 
𝑅(−1,1)  

cf(𝑡) =
sin (𝑡)

𝑡
  

  
Triangular  
𝑇(−1,1)  

cf(𝑡) =  
2−2cos (𝑡)

𝑡2
   

  
Arcsine  
𝑈(−1,1)   

cf(𝑡) =  𝐽0(𝑧)  

  

 
Exponential  
𝐸𝑥𝑝(𝜆)   

cf(𝑡) =
𝜆

𝜆−𝑖𝑡 
   

𝜆 > 0  rate 

  

Gamma  
Γ(𝛼, 𝛽)   

cf(𝑡) = (1 −
𝑖𝑡

𝛽
)
−𝛼
   

𝛼 > 0  shape, 𝛽 > 0  rate 
  

Chi-squared  
𝜒𝜈
2   

cf(𝑡) =  (1 − 2𝑖𝑡)−
𝜈

2   
𝜈 > 0  degrees of freedom 

   

Fisher-Snedecor’s F 
𝐹𝜈1,𝜈2   

cf(𝑡) =
Γ(
ν1
2
+
ν2
2
)

Γ(
𝜈2
2
)
𝑈 (

𝜈1

2
, 1 −

𝜈2

2
, −

𝜈2

𝜈1
𝑖𝑡 )  

 
𝜈1 > 0, 𝜈2 > 0 degrees of freedom 
 

 
Deriving CF of a weighted sum of independent random 

variable is a simple and trivial task. Let cf𝑋𝑗(𝑡) denote the 

characteristic function of 𝑋𝑗. The characteristic function of 𝑌 

defined by (1) is 

cf𝑌(𝑡) = cf𝑋1(𝑐1𝑡)⋯ cf𝑋𝑛(𝑐𝑛𝑡).   (3) 

In Figure 1 we illustrate the CF of a linear combination of two 

independent chi-squared random variables with 𝜈1 = 1  
and 𝜈10 = 10 degrees of freedom, evaluated for 𝑡 ∈ (−1,1).  

Here we shall assume that the considered characteristic 
functions of the input and/or output quantities, the random 

variables 𝑋1, … , 𝑋𝑛 and 𝑌 are known or can be easily derived. 
Then, by the Fourier inversion theorem, the PDF of the 

random variable 𝑌 is given by 

pdf𝑌(𝑦) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑦
∞

−∞
cf𝑌(𝑡) 𝑑𝑡,   𝑦 ∈ 𝑹. (4) 

Analytical derivation of the PDF by using the (inverse) Fourier 
transform (4) is available only in special cases. Thus, in most 
practical situation, a numerical derivation of the PDF/CDF 
from the CF is an indispensable tool. 

 

Figure 1. Real (blue) and imaginary (red) part of the characteristic function 
of 𝑌 = 10 𝑋𝜒12 + 𝑋𝜒10 2 — the linear combination of two independent chi-

squared random variables with 𝜈1 = 1 and 𝜈1 = 10 degrees of freedom, 
evaluated for 𝑡 ∈ (−1,1). 

 
In the next section, we shall present a brief overview of 

some simple (but efficient) approaches for numerical inversion 
of the characteristic function, which are especially suitable for 
typical metrological applications. 

3. NUMERICAL INVERSION OF THE CHARACTERISTIC 
FUNCTION 

The inverse Fourier transform (4) can be naturally 
approximated by 

pdf𝑌(𝑦) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑦
𝑇

−𝑇
cf𝑌(𝑡) 𝑑𝑡,   (5) 

where 𝑇 is sufficiently large (real) value, and the integrand is a 
complex (oscillatory) function. In general, the required integral 
can be evaluated by any suitable numerical quadrature method. 
Frequently, a simple trapezoidal rule gives fast and satisfactory 
results. However, the integrand is a highly oscillatory function if 

abs(𝑦) is a large value (from the tail area of the distribution). In 
such situations, typically a more advanced quadrature methods 
in combination with efficient root-finding algorithms and 
accelerated computing of limits of alternating series is required, 
see e.g., [21], [30]. For illustration of such integrand function 
see Figure 2.  

Here we present (only) the applications of the Gil-Pelaez 
inversion formulae and the discrete Fourier transform by using 
the FFT algorithm for computing PDF/CDF of a univariate 
continuous random variable. 

3.1. The Gil-Pelaez inversion formulae 

In [31], Gil-Pelaez derived the alternative inversion 
formulae, suitable for numerical evaluation of the PDF and/or 
the CDF, which require integration of a real-valued functions, 
only. The PDF is given by 

pdf𝑌(𝑦) =
1

 𝜋 
∫ ℜ(𝑒−𝑖𝑡𝑦cf𝑌(𝑡)) 
∞

0
𝑑𝑡.   (6) 

Further, if 𝑦 is a continuity point of the cumulative 

distribution function (CDF) of 𝑌, defined by 

cdf𝑌(𝑦) =
1

2
−

1

 𝜋 
∫ ℑ (

𝑒−𝑖𝑡𝑦cf𝑌(𝑡)

𝑡
) 

∞

0
𝑑𝑡.   (7) 
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Figure 2. Integrand functions for computing the PDF/CDF of the chi-squared 
distributed random variable, 𝑌 ∼ 𝜒1

2, at 𝑦 = 15, computed by the Gil-Pelaez 
formulae for numerical inversion of its characteristic function cfY(𝑡) =

 (1 − 2𝑖𝑡)−
1

2. The plotted integrand functions of the integrals in (6) and (7) 
are evaluated for 𝑡 ∈ (0, 𝑇), 𝑇 = 5. The red circles depict the zeros (roots) 
of the integrand functions on (0, 𝑇). 

 

By ℜ(𝑓(𝑡)) and ℑ(𝑓(𝑡))  we denote the real and imaginary 

part of the complex function 𝑓(𝑡), respectively. 
Numerical inversion of the characteristic function based on 

(6) and (7) have been successfully implemented for evaluation 
of the distribution function of a linear combination of 
independent chi-squared RVs by Imhof in [32] and by Davies in 
[33]. Further, the Gil-Pelaez's method have been implemented 

in the algorithm tdist, see [34] and [35], for computing the 
distribution of a linear combination of independent Student's t 
random variables and/or other symmetric zero-mean random 
variables, and also for computing the distribution of a linear 
combination of independent inverted gamma random variables 
suggested in [36], and the distribution of a linear combination 

of independent log-Lambert 𝑊 × 𝜒𝜈
2 RVs, [37]. In [38], the 

algorithm tdist have been suggested and applied for computing 
the 95% state-of-knowledge interval (considered as the 
approximate 95% confidence interval) for the common mean 
value in the inter-laboratory comparisons with systematic 
effects (biases). 

In general, the integrals in (6) and (7) can be computed by 
any numerical quadrature methods, possibly in combination 
with efficient root-finding algorithms and accelerated 
computing of limits of the alternating series. Frequently, (6) and 
(7) can be efficiently approximated by a simple trapezoidal 
quadrature: 

       pdf𝑌(𝑦) ≈
𝛿𝑡
 𝜋 
∑𝑤𝑗

𝑁

𝑗=0

 ℜ (𝑒−𝑖𝑡𝑗𝑦cf𝑌(𝑡𝑗)) 

 ≈
𝛿𝑡

 𝜋 
(
𝑤0 +∑ 𝑤𝑗

𝑁
𝑗=1 cos(𝑡𝑗𝑦)ℜ (cf𝑌(𝑡𝑗))

       + ∑ 𝑤𝑗
𝑁
𝑗=1 sin(𝑡𝑗𝑦) ℑ (cf𝑌(𝑡𝑗)) 

),   (8) 

 

       cdf𝑌(𝑦) ≈
1

2
−
𝛿𝑡
 𝜋 
∑𝑤𝑗

𝑁

𝑗=0

 ℑ (
𝑒−𝑖𝑡𝑗𝑦cf𝑌(𝑡𝑗)

𝑡𝑗
) 

≈
1

2
−
𝛿𝑡

 𝜋 

(

 
 

𝑤0(mean(𝑌) − 𝑦)  +                     

      +∑ 𝑤𝑗
𝑁
𝑗=1 cos(𝑡𝑗𝑦) ℑ (

cf𝑌(𝑡𝑗)

𝑡𝑗
)

       + ∑ 𝑤𝑗
𝑁
𝑗=1 sin(𝑡𝑗𝑦) ℜ(

cf𝑌(𝑡𝑗)

𝑡𝑗
) 
)

 
 

 .  (9) 

 

Where 𝑁 is sufficiently large integer, 𝑤𝑗  are the appropriate 

quadrature weights, and 𝑡𝑗 denote the appropriate (equidistant) 

nodes from the interval (0, 𝑇), for sufficiently large 𝑇.  
In particular, for the trapezoidal quadrature rule we set  

 𝛿𝑡 =
𝑇

𝑁
 or 𝛿𝑡 =

2𝜋

𝐵−𝐴
, 

 𝑤0 = 𝑤𝑁 =
1

2
, and 𝑤𝑗 = 1 for 𝑗 = 1,… , 𝑁 − 1, 

 𝑡𝑗 = 𝑗𝛿𝑡 for 𝑗 = 0,… , 𝑁, with 𝑇 = 𝑡𝑁 = 𝑁𝛿𝑡. 

Here, the interval (𝐴, 𝐵) specifies the range of typical values 𝑦, 
i.e. a large part of the distribution support of the random 

variable 𝑌.  

If the (optimum) value of 𝑇 is unknown, as  a simple rule of 
thumb, we suggest to start with the application of the six-sigma-

rule, i.e. set the typical range (𝐴, 𝐵) as an intersection of the 

natural parametric space of 𝑌 with the interval (𝐿, 𝑈) (e.g., 

(𝐴, 𝐵) = (𝐿, 𝑈) ∩ 𝑹  or (𝐴, 𝐵) = (𝐿, 𝑈) ∩ 𝑹+, with 

 𝐿 =  mean(𝑌) − 6 std(𝑌), 

 𝑈 =  mean(𝑌) + 6 std(𝑌), 
where mean(𝑌) and std(𝑌) represent the expectation and the 

standard deviation of the probability distribution of  𝑌. 
Further, for computing the leading term in (9), we use the 

result based on [34]: If the mean (expectation) of 𝑌 exists, then  

lim𝑡→0 ℑ (
𝑒−𝑖𝑡𝑦cf𝑌(𝑡)

𝑡
) =  mean(𝑌) − 𝑦.   (10) 

The required mean(𝑌) and std(𝑌) can be evaluated 
analytically, from the moments of the input variables, or 
approximately, by using numerical differentiation of the 

characteristic function of 𝑌, cf𝑌(𝑡). In particular,  

mean(𝑌) ≈
1

12𝑖ℎ
(
cf𝑌(−2ℎ) − 8cf𝑌(−ℎ)

+8cf𝑌(−ℎ) − 8cf𝑌(2ℎ)
),      (11) 

std(𝑌) ≈ (m2(𝑌) − mean
2(𝑌)), where    (12) 

m2(𝑌) ≈
1

144ℎ2

(

 
 

cf𝑌(−4ℎ) − 16cf𝑌(−3ℎ)

+64cf𝑌(−2ℎ) + 16cf𝑌(−ℎ)
−130

+16cf𝑌(ℎ) + 64cf𝑌(2ℎ)

−16cf𝑌(3ℎ) + cf𝑌(4ℎ) )

 
 
, (13) 

for any small ℎ > 0, e.g., ℎ = 10−4. 
Finally, we note that the presented quadrature method 

requires only one evaluation of the characteristic function 

cf𝑌(𝑡𝑗) for 𝑗 = 1,… , 𝑁, for any 𝑦 ∈ (𝐴, 𝐵) in required 

evaluation of pdf𝑌(𝑦) and cdf𝑌(𝑦), respectively. Moreover, the 

computation is further simplified if 𝑌 is a continuous random 
variable with a symmetric zero-mean distribution, i.e. with 
purely real CF,  

pdf𝑌(𝑦) ≈
𝛿𝑡

 𝜋 
(

1

2
+ ∑ cos(𝑡𝑗𝑦)cf𝑌(𝑡𝑗)

𝑁−1
𝑗=1

+
1

2
cos(𝑡𝑁𝑦)cf𝑌(𝑡𝑁)

) ,   (14) 

cdf𝑌(𝑦) ≈
1

2
−
𝛿𝑡

 𝜋 
(
−
𝑦

2
+ ∑ sin(𝑡𝑗𝑦)

 cf𝑌(𝑡𝑗)

𝑡𝑗
 𝑁−1

𝑗=1

+
1

2
sin(𝑡𝑁𝑦) 

 cf𝑌(𝑡𝑁)

𝑡𝑁
 

).  (15) 

http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
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A working version of the MATLAB algorithm cf2DistGP for 

computing the PDF/CDF by numerical inversion of the 
characteristic function, based on the Gil-Pelaez inversion 
formulae, is presented in the Appendix A. 

For illustration, the following MATLAB code evaluates the 

PDF and CDF of the output variable 𝑌, which is a linear 
combination of the independent random variables with a 
normal, Student's t, rectangular, triangular and arcsine 

distributions, i.e. 𝑌 = 𝑋𝑁 + 𝑋𝑡𝜈 + 5𝑋𝑅 + 𝑋𝑇 + 10𝑋𝑈, by using 

the algorithm cf2DistGP: 
 

  

 

Similarly, the PDF/CDF of the random variable 𝑌 = 𝑋𝑁 +
𝑋𝑡𝜈 + 5𝑋𝑅 + 𝑋𝑇 + 10𝑋𝑈 can be evaluated by using the 

MATLAB algorithm tdist: 
 

 

 
 

3.2. Numerical inversion of the characteristic function by using 
the FFT algorithm 

This approach for computing the PDF by numerical 
inversion of the characteristic function by using the FFT 
algorithm is based on the results by Hürlimann in [39]. 
Alternatively, for other applications based on using the 
fractional fast Fourier transform (FRFT), see [40] and also [41], 
[42], [43], [44]. 

We shall approximate the continuous Fourier transform 
(CFT), say  

𝐹(𝑦) = ∫ 𝑒−𝑖2𝜋𝑢𝑦
∞

−∞
𝑓(𝑢) 𝑑𝑢,   (16) 

by a discrete Fourier transform (DFT). DFT can be efficiently 
evaluated by using the FFT algorithm that computes the same 
result as DFT, but much faster.  

For complex numbers 𝑓0, … , 𝑓𝑁−1 the DFT is defined as 

𝐹𝑘 = ∑ 𝑒−𝑖2𝜋𝑘
𝑗

𝑁
  𝑓𝑗

𝑁−1
𝑗=0 , 𝑘 = 0,… , 𝑁 − 1.    (17) 

 
 
 

 

Figure 3. The probability density function (PDF) and the cumulative distribution function (CDF) of a random variable 𝑌 = ∑ 𝑐𝑗𝑋𝑗
5
𝑗=1 , with 𝑋1 ∼ 𝑁(0,1), 𝑋2 ∼

𝑡𝜈=1, 𝑋3 ∼ 𝑅(−1,1), 𝑋4 ∼ 𝑇(−1,1),𝑋5 ∼ 𝑈(−1,1), and coefficients 𝑐 = (𝑐1, … , 𝑐5) = (1,1,5,1,10), evaluated by numerical inversion of its characteristic 
function by the MATLAB algorithm tdist, see also the Examples. 

%% EXAMPLE (MATLAB ALGORITHM TDIST) 

% 

% TDIST at Matlab Central File Exchange: 

% http://www.mathworks.com/matlabcentral/ 

% /fileexchange/4199-tdist 

% 

% PDF and CDF of a linear combination of RVs 

% Y = c1*X1 + c2*X2 + c3*X3 + c4*X4 + c5*X5 

% with: 

% X1 ~ Normal(0,1) [we set df1=Inf] with  c1=1, 

% X2 ~ Student's t with 1 df [set df2=1], c2=1, 

% X3 ~ Rectangular on (-1,1) [set df3=-1],c3=5, 

% X4 ~ Triangular on (-1,1) [set df4=-2], c4=1, 

% X5 ~ U-distribution on (-1,1) [df5=-3], c5=10 

  

df      = [Inf 1 -1 -2 -3]; 

coefs   = [1 1 5 1 10]; 

[pdf,y] = tdist([],df,coefs,'PDF'); 

cdf     = tdist(y,df,coefs,'CDF'); 

  

figure; plot(y,pdf); grid 

figure; plot(y,cdf); grid 

 

 

%% EXAMPLE (MATLAB ALGORITHM CF2DISTGP) 

% 

% PDF and CDF of a linear combination of RVs: 

% Y = c1*X1 + c2*X2 + c3*X3 + c4*X4 + c5*X5, 

% where, 

% X1 ~ Normal(0,1) with c1=1, 

% X2 ~ Student's t with 1 df and c2=1, 

% X3 ~ Rectangular on (-1,1) with c3=5, 

% X4 ~ Triangular on (-1,1) with c4=1, 

% X5 ~ U-distribution on (-1,1) with c5=10 

  

cfN = @(t) exp(-t.^2/2); 

cft = @(t,nu) min(1,besselk(nu/2, ... 

      abs(t).*sqrt(nu),1) .* ... 

      exp(-abs(t).*sqrt(nu)) .* ... 

      (sqrt(nu).*abs(t)).^(nu/2) / ... 

      2^(nu/2-1)/gamma(nu/2)); 

cfR = @(t) min(1,sin(t)./t); 

cfT = @(t) min(1,(2-2*cos(t))./t.^2); 

cfU = @(t) besselj(0,t); 

c   = [1 1 5 1 10]; nu = 1; 

cfY = @(t) ... 

      cfN(c(1)*t) .* ... 

      cft(c(2)*t,nu) .* ... 

      cfR(c(3)*t) .* ... 

      cfT(c(4)*t) .* ... 

      cfU(c(5)*t); 

y = linspace(-50,50,201)'; 

 

[result,cdf,pdf] = cf2DistGP(cfY,y) 

 

http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
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Formally, here we shall use notation  

𝐅𝑁 = 𝐹𝐹𝑇(𝐟𝑁),       (18) 

where 𝐟𝑁 = (𝑓0, … , 𝑓𝑁−1) and 𝐅𝑁 = (𝐹0, … , 𝐹𝑁−1). 
The relationship between the CF and the PDF is given by 

the (inverse) continuous Fourier transform defined by (4). For a 

sufficiently large interval (−𝑇, 𝑇), it is possible to approximate 
a PDF by (5).  

For simplicity, here we shall use only the simplest integral 
approximation, based on the left-point rule (LPR), 

∫ 𝑓(𝑥)𝑑𝑥 ≈ 𝑓(𝑎)(𝑏 − 𝑎),
𝑏

𝑎
 or the mid-point rule (MPR), 

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑓(𝑎)+𝑓(𝑏)

2
 (𝑏 − 𝑎)

𝑏

𝑎
. For other, more sophisticated 

approaches, see [39]. 

Similarly as before, let (𝐴, 𝐵) is a sufficiently large interval, 

where the distribution of 𝑌 is concentrated. A reasonable rule 

for determining (𝐴, 𝐵) can be, for example, the six-sigma-rule. 
Let further 

 𝑗, 𝑘 = 0,… , 𝑁 − 1, 

 𝛿𝑦 =
𝐵−𝐴

𝑁
, and 

 𝑦𝑘 = 𝐴 + 𝑘𝛿𝑦, for 𝑘 = 0,… , 𝑁 − 1. 

For 𝑁 large, also 𝑇 = 𝜋/𝛿𝑦 is large, and from (5), by using 

the change of variables: 𝑡 =  2𝜋𝑢, 𝑑𝑡 =  2𝜋𝑑𝑢, and 𝑑𝑢 =
1

𝐵−𝐴
, 

we get 

pdf𝑌(𝑦𝑘) ≈
1

2𝜋
∫ 𝑒−𝑖2𝜋𝑢𝑦𝑘

1

2𝛿𝑦

−
1

2𝛿𝑦

cf𝑌(2𝜋𝑢) 𝑑𝑢. (19) 

Now, we shall approximate the integral (19) by using 
(repeatedly) the approximate integral (e.g. MPR), for each of the 

𝑁 sub-intervals. Thus,  

pdf𝑌(𝑦𝑘) ≈
1

𝐵−𝐴
 ∑ 𝑒−𝑖2𝜋𝑢𝑗𝑦𝑘𝑁−1
𝑗=0 cf𝑌(2𝜋𝑢𝑗),  (20) 

where 𝑢𝑗 =
1

2
+𝑗−

𝑁

2

𝐵−𝐴
, 𝑗 = 0,… , 𝑁 − 1. 

From that, by using 𝑒𝑖𝜋 = −1, the expressions for 𝑢𝑗  and 

𝑦𝑘 , and the DFT defined by (17), we finally get the formal 
relationship 

𝐩𝐝𝐟 = 𝐂⊙ 𝐹𝐹𝑇(𝐃⊙ 𝐜𝐟),      (21) 

where ⊙ denotes the dot product (element wise multiplication), 

 𝐩𝐝𝐟 = (pdf𝑌(𝑦0), … , pdf𝑌(𝑦𝑁−1)), 

 𝐂 = (𝐶0, … , 𝐶𝑁−1), with 

 𝐶𝑘 =
1

𝐵−𝐴
(−1)

((1−
1 

𝑁
)(
𝑁𝐴

𝐵−𝐴
+𝑘)) 

, 𝑘 = 0,… ,𝑁 − 1, 

 𝐃 = (𝐷0, … , 𝐷𝑁−1), with 

 𝐷𝑘 = (−1)
−
2𝐴

𝐵−𝐴
𝑘
, 𝑘 = 0,… , 𝑁 − 1, 

 𝐜𝐟 = (cf𝑌(𝑡0), … , cf𝑌(𝑡𝑁−1)), with  

 𝑡𝑘 =
2𝜋

𝐵−𝐴
(
1

2
+ 𝑘 −

𝑁

2
), 𝑘 = 0,… ,𝑁 − 1. 

Further, CDF is evaluated by simple cumulative sum from 
the evaluated PDF values, and QF is evaluated by interpolation 
from the CDF.  

A working version of the MATLAB algorithm cf2DistFFT for 
computing the PDF/CDF/QF by numerical inversion of the 
characteristic function, based on the FFT algorithm, is 
presented in the Appendix B.  

For illustration, the following MATLAB code evaluates the 

PDF and CDF of the output variable 𝑌, which is a linear 
combination of two independent random variables with chi-

squared distributions with 𝜈1 = 1 and 𝜈2 = 10 degrees of 

freedom, i.e. 𝑌 = 10 𝑋𝜒12 + 𝑋𝜒102 , by using the algorithm 

cf2DistFFT: 
 

 
 

Other specific versions of the algorithm for computing the 
PDF/CDF/QF of a linear combination of independent 
random variables with the Fisher-Snedecor’s F-distributions 
and the log-normal distributions, by numerical inversion of the 
characteristic function by using the FFT algorithm, are available 
at the MATLAB CENTRAL FILE EXCHANGE as the algorithm 
Fdist, file ID: 56262, and the algorithm logNdist, file ID: 56512, 
respectively. 

4. CONCLUSIONS 

Here we suggest to consider numerical methods for 
derivation of the PDF/CDF from the characteristic function. 
Such approach can be used to form the probability distribution 
for the output quantity of a measurement model of additive, 
linear or generalized linear form, and can be considered as an 
alternative tool to the uncertainty evaluation based on the 
Monte Carlo methods. Here we have presented a brief 
overview of some efficient approaches for numerical inversion 
of the characteristic function, which are especially suitable for 
metrological applications. The suggested numerical approaches 
are based on the Gil-Pelaez inverse formula and on the 
approximation by discrete Fourier transform (DFT) and the 
FFT algorithm for computing the PDF/CDF of (univariate) 
continuous random variables. We have presented simple 
MATLAB examples in order to illustrate applicability of the 
suggested methods.  
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%% EXAMPLE (MATLAB ALGORITHM CF2DISTFFT) 

% 

% Distribution of a linear combination of RVs 

% (chi-squared RVs with 1 and 10 DFs) 

% Y = 10*X_{\chi^2_1} + X_{\chi^2_10} 

  

df1 = 1; 

df2 = 10; 

cfChi2_1  = @(t) (1-2i*t).^(-df1/2); 

cfChi2_10 = @(t) (1-2i*t).^(-df2/2); 

cfY       = @(t) cfChi2_1(10*t) .* cfChi2_10(t); 

 

clear options 

options.isPositiveSupport = true; 

result = cf2DistFFT(cfY,[],[],options); 

  

% PLOT THE CF of Y 

t = linspace(-1,1,501); 

figure 

plot(t,real(cfY(t)),t,imag(cfY(t)));grid 

xlabel('t'); 

ylabel('Characteristic function'); 

title('Y = 10*X_{\chi^2_1}+X_{\chi^2_{10}}') 

http://www.mathworks.com/matlabcentral/fileexchange/56262-fdist
http://www.mathworks.com/matlabcentral/fileexchange/56512-logndist
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APPENDIX A. MATLAB ALGORITHM CF2DISTGP FOR 
NUMERICAL INVERSION OF THE CHARACTERISTIC 
FUNCTION BASED ON THE GIL-PELAEZ INVERSION 
FORMULAE 

 
 

 

if ~isempty(T) 

    dt        = T / N; 

    t         = (1:N) * dt; 

    cft       = cf(t); 

    range     = 2*pi / dt; 

    minY      = meanY - range/2; 

    maxY      = meanY + range/2; 

else 

    minY      = meanY - SixSigmaRule * stdY; 

    maxY      = meanY + SixSigmaRule * stdY; 

    range     = maxY - minY; 

    dt        = 2*pi / range; 

    t         = (1:N) * dt; 

    cft       = cf(t); 

end 

  

if isempty(y) 

    y = linspace(minY,maxY,101); 

end 

  

if any(y < minY) || any(y > maxY) 

    warning('Out-of-range'); 

end 

  

[n,m]   = size(y); 

y       = y(:); 

t       = t(:); 

cft     = cft(:); 

cft(N)  = cft(N)/2;  

E       = exp(-1i*y*t'); 

cdf     = (meanY - y)/2 + imag(E * (cft ./ t)); 

cdf     = 0.5 - (cdf * dt) / pi; 

cdf     = reshape(max(0,min(1,cdf)),n,m); 

pdf     = 0.5 + real(E * cft); 

pdf     = (pdf * dt) / pi; 

pdf     = reshape(max(0,pdf),n,m); 

 
%% RESULT 

if nargout > 2 

    result.cdf          = cdf; 

    result.pdf          = pdf; 

    result.y            = y; 

    result.meanY        = meanY; 

    result.stdY         = stdY; 

    result.minY         = minY; 

    result.maxY         = maxY; 

    result.SixSigmaRule = SixSigmaRule; 

    result.t            = t; 

    result.T            = t(end); 

    result.dt           = dt; 

    result.cf           = cf; 

    result.N            = N; 

    result.options      = options; 

end 

  

%% PLOT 

if length(y)==1, 

    isPlot = false; 

end 

 

if isPlot 

    figure 

    plot(y,pdf,'.-') 

    grid 

    title('PDF Specified by the CF') 

    xlabel('y') 

    ylabel('pdf') 

    figure 

    plot(y,cdf,'.-') 

    grid 

    title('CDF Specified by the CF') 

    xlabel('y') 

    ylabel('cdf') 

end 

end 

function [result,cdf,pdf]=cf2DistGP(cf,y,options) 

%cf2DistGP calculates the CDF and PDF from the  

% characteristic function CF by using 

% the Gil-Pelaez inversion formulae. 

% 

% SYNTAX: 

%  [result,cdf,pdf]=cf2DistGP(cf,y,options) 

  

% Viktor Witkovsky (witkovsky@gmail.com) 

% Ver.: 24-Apr-2016 17:12:15 

  

%% INPUT PARAMETERS 

narginchk(2, 3); 

 

if nargin < 3, options = []; end 

 

if ~isfield(options, 'N') 

    options.N = 2^10; 

end 

 

if ~isfield(options, 'T') 

    options.T = []; 

end 

 

if ~isfield(options, 'SixSigmaRule') 

    options.SixSigmaRule = 6; 

end 

 

if ~isfield(options, 'meanY') 

    options.meanY = []; 

end 

 

if ~isfield(options, 'stdY') 

    options.stdY = []; 

end 

 

if ~isfield(options, 'h') 

    options.h = 1e-4; 

end 

 

if ~isfield(options, 'isPlot') 

    options.isPlot = true; 

end 

  

%% ALGORITHM 

N            = options.N; 

T            = options.T; 

SixSigmaRule = options.SixSigmaRule; 

meanY        = options.meanY; 

stdY         = options.stdY; 

h            = options.h; 

isPlot       = options.isPlot; 

t            = h*(1:4); 

cft          = cf(t); 

 

if isempty(meanY) 

    meanY = real((-cft(2) + 8*cft(1) ... 

        - 8*conj(cft(1)) ... 

        + conj(cft(2)))/(1i*12*h)); 

end 

 

if isempty(stdY) 

    m2    = real(-(conj(cft(4)) ... 

        - 16*conj(cft(3)) + 64*conj(cft(2)) ... 

        + 16*conj(cft(1)) - 130 + 16*cft(1) ... 

        + 64*cft(2) - 16*cft(3) ... 

        + cft(4))/(144*h^2)); 

    stdY  = sqrt(m2 - meanY^2); 

end 
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APPENDIX B. MATLAB ALGORITHM CF2DISTFFT FOR 
NUMERICAL INVERSION OF THE CHARACTERISTIC 
FUNCTION BASED ON THE FFT ALGORITHM 

 

  

if isempty(options.isPositiveSupport) 

    isPositiveSupport = false; 

else  

    isPositiveSupport = 

options.isPositiveSupport; 

end 

 

if ~isfield(options,'isPlot') 

    options.isPlot = true; 

end 

 

if ~isfield(options,'delta') 

    options.tolDiff = 1e-4; 

end 

  

%% MOMENTS AND SUPPORT  

h    = options.tolDiff; 

t    = h*(1:4); 

cf   = cfFun(t); 

meanY = real((-cf(2) + 8*cf(1) – ... 

      8*conj(cf(1))+ conj(cf(2)))/(1i*12*h)); 

m2  = real(-(conj(cf(4)) - 16*conj(cf(3)) + ... 

    64*conj(cf(2)) + 16*conj(cf(1)) - 130 + ... 

    16*cf(1) + 64*cf(2) - 16*cf(3) + ... 

    cf(4))/(144*h^2)); 

stdY = sqrt(m2 - meanY^2); 

A    = meanY - options.SixSigmaRule * stdY; 

B    = meanY + options.SixSigmaRule * stdY; 

  

if isPositiveSupport 

    if A <= 0 && ... 

            isempty(options.isForcedSymmetric) 

        A = max(0,A); 

        isForcedSymmetric = true; 

    elseif A > 0 && ... 

            isempty(options.isForcedSymmetric) 

        isForcedSymmetric = false; 

    end 

end 

  

% Use the specified values (if available) 

if ~isempty(options.minY), A = options.minY; end 

if ~isempty(options.maxY), B = options.maxY; end 

  

% Symmetric support [-B,B] ? 

if isForcedSymmetric || isZeroSymmetric 

    B = options.SixSigmaRule * ... 

        sqrt(stdY^2 + meanY^2); 

    if ~isempty(options.maxY) 

        B = options.maxY; 

    end 

    A  = -B; 

end 

 

%% CHARACTERISTIC FUNCTION CF 

k   = (0:(N-1))'; 

t   = 2*pi * (0.5-N/2+k) / (B-A); 

cf  = cfFun(t(N/2+1:end)); 

cf  = [conj(cf(end:-1:1));cf]; 

 

% CF of the 'SYMETRIZED' distribution 

if isForcedSymmetric 

    cf = real(cf); 

end 

 

%% PDF BY the FFT algorithm 

dy  = (B-A)/N; 

C   = (-1).^((1-1/N)*(A/dy+k))/(B-A); 

D   = (-1).^(-2*(A/(B-A))*k); 

 

pdfFFT = real(C.*fft(D.*cf)); 

cdfFFT = cumsum(pdfFFT*dy); 

yFFT   = A + k * dy; 

function [result,cdf,pdf,qf] = ... 

    cf2DistFFT(cfFun,y,prob,options) 

%cf2DistFFT calculates the approximate values  

% of CDF, PDF, and QF by numerical inversion of 

% the characteristic function CF by using the  

% FFT algorithm. 

% 

% SYNTAX: 

%  [result,cdf,pdf,qf] = ... 

%    cf2DistFFT2(cfFun,y,prob,options) 

 

% Viktor Witkovsky (witkovsky@savba.sk) 

% Ver.: 24-Apr-2016 17:12:15 

  

%% CHECK THE INPUT PARAMETERS 

if nargin < 1 

    error('Too few inputs'); 

end 

 

if nargin < 4, options   = []; end 

if nargin < 3, prob      = []; end 

if nargin < 2, y         = []; end 

 

if ~isfield(options,'N') 

    options.N = 2^10; 

end 

N  = options.N; 

 

if ~isfield(options,'SixSigmaRule') 

    options.SixSigmaRule = 6; 

end 

 

if ~isfield(options,'minY') 

    options.minY = []; 

end 

 

if ~isfield(options,'maxY') 

    options.maxY = []; 

end 

 

if ~isfield(options,'isForcedSymmetric') 

    options.isForcedSymmetric = []; 

end 

 

if isempty(options.isForcedSymmetric) 

    isForcedSymmetric = false; 

else 

    isForcedSymmetric = 

options.isForcedSymmetric; 

end 

 

if ~isfield(options,'isZeroSymmetric') 

    options.isZeroSymmetric = []; 

end 

 

if isempty(options.isZeroSymmetric)     

    if isForcedSymmetric 

        isZeroSymmetric = true; 

    else 

        isZeroSymmetric = false; 

    end 

else 

    isZeroSymmetric = options.isZeroSymmetric; 

end 

 

if ~isfield(options,'isPositiveSupport') 

    options.isPositiveSupport = []; 

end 
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%% PLOT THE PDF/CDF, if required 

if options.isPlot 

    figure 

    plot(yFFT,pdfFFT,'-','LineWidth',2) 

    grid 

    title('PDF Specified by the CF') 

    xlabel('y') 

    ylabel('pdf')     

    figure 

    plot(yFFT,cdfFFT,'-','LineWidth',2) 

    grid 

    title('CDF Specified by the CF') 

    xlabel('y') 

    ylabel('cdf') 

end 

end 

 

if options.isZeroSymmetric 

    cdfFFT = cdfFFT + 0.5 - ... 

        (cdfFFT(N/2+1)+cdfFFT(N/2))/2; 

End 

% SPECIAL TREATMENT for symmetrized distribution 

if isForcedSymmetric 

    pdfFFT = max(0,2*pdfFFT(N/2+1:end)); 

    cdfFFT = cdfFFT + 0.5 - ... 

        (cdfFFT(N/2+1)+cdfFFT(N/2))/2; 

    cdfFFT = min(1,max(0,2*cdfFFT(N/2+1:end)-1)); 

    yFFT   = yFFT(N/2+1:end); 

else 

    pdfFFT = max(0,pdfFFT); 

    cdfFFT = min(1,max(0,cdfFFT)); 

end 

yMin = min(yFFT); 

yMax = max(yFFT); 

  

%% INTERPOLATE QUANTILE FUNCTION : QF(prob) 

if isempty(prob) 

    prob = [0.9,0.95,0.975,0.99,0.995,0.999]; 

end 

 

[cdfU,id] = unique(cdfFFT); 

yyU   = yFFT(id); 

szp   = size(prob); 

qfFun = @(prob) interp1([-eps;cdfU],... 

    [-eps;yyU+dy/2],prob); 

qf    = reshape(qfFun(prob),szp); 

  

% INTERPOLATE CDF/QF/PDF 

if isempty(y) 

    y = linspace(A,A+(N-1)*dy,100); 

end 

 

szy    = size(y); 

cdfFun = @(x) interp1([-eps;yyU+dy/2],... 

    [-eps;cdfU],x(:)); 

cdf    = reshape(cdfFun(y),szy); 

  

try 

    pdfFun = @(x) interp1(yFFT,pdfFFT,y(:)); 

    pdf    = reshape(pdfFun(y),szy); 

catch 

    warning('Unable to interpolate') 

    pdf = NaN*y; 

    pdfFun = []; 

end 

 

%% RESULT 

result.y               = y; 

result.cdf             = cdf; 

result.pdf             = pdf; 

result.prob            = prob; 

result.quant           = qf; 

result.cdfFun          = cdfFun; 

result.pdfFun          = pdfFun; 

result.qfFun           = qfFun; 

result.yMin            = yMin; 

result.yMax            = yMax; 

result.cdfMin          = min(cdfFFT); 

result.cdfMax          = max(cdfFFT); 

result.N               = N; 

result.Details.yFTT    = yFFT; 

result.Details.pdfFFT  = pdfFFT; 

result.Details.cdfFFT  = cdfFFT; 

result.Details.meanY    = meanY; 

result.Details.stdY     = stdY; 

result.Details.A       = A; 

result.Details.B       = B; 

result.Details.dy      = dy; 

result.Details.dt      = 2*pi/(B-A); 

result.Details.t       = t; 

result.Details.cf      = cf; 

result.Details.cfFun   = cfFun; 

result.options         = options; 

 

 



 

ACTA IMEKO | www.imeko.org Month year | Volume A | Number B | 10 

[18] D. Levin, Fast integration of rapidly oscillatory functions, Journal 
of Computational and Applied Mathematics 67, 95 (1996). 

[19] G. Milovanović, Numerical calculation of integrals involving 
oscillatory and singular kernels and some applications of 
quadratures, Computers &Mathematics with Applications 36, 19 
(1998). 

[20] A. Sidi, The numerical evaluation of very oscillatory infinite 
integrals by extrapolation, Mathematics of Computation 38, 517 
(1982).  

[21] A. Sidi, A user-friendly extrapolation method for oscillatory 
infinite integrals, Mathematics of Computation 51, 249 (1988). 

[22] A. Sidi, A user-friendly extrapolation method for computing 
infinite range integrals of products of oscillatory functions, IMA 
Journal of Numerical Analysis 32, 602 (2012). 

[23] J. Abate and W. Whitt, The Fourier-series method for inverting 
transforms of probability distributions, Queueing systems 10, 5 
(1992).  

[24] N.G. Shephard, From characteristic function to distribution 
function: A simple framework for the theory, Econometric theory 7, 
519 (1991).  

[25] L.A. Waller, B.W. Turnbull and J.M. Hardin, Obtaining 
distribution functions by numerical inversion of characteristic 
functions with applications, The American Statistician 49,346 
(1995). 

[26] R. Zieliński, High-accuracy evaluation of the cumulative 
distribution function of _-stable symmetric distributions, Journal 
of Mathematical Sciences 105, 2630 (2001).  

[27] R.L. Strawderman, Computing tail probabilities by numerical 
Fourier inversion: The absolutely continuous case, Statistica Sinica 
, 175 (2004).  

[28] M.J. Korczynski, M. Cox and P. Harris, Convolution and 
uncertainty evaluation, Series on Advances in Mathematics for Applied 
Sciences 72, p. 188 (2006).  

[29] E. Lukacs, Characteristics functions, Griffin, London (1970).  
[30] H. Cohen, F. R. Villegas and D. Zagier, Convergence 

acceleration of alternating series, Experimental mathematics 9, 3 
(2000).  

[31] J. Gil-Pelaez, Note on the inversion theorem, Biometrika 38, 481 
(1951).  

[32] J. Imhof, Computing the distribution of quadratic forms in 
normal variables, Biometrika 48, 419 (1961).  

[33] R. Davies, Algorithm AS 155: The distribution of a linear 

combinations of 𝜒2 random variables, Applied Statistics 29, 232 
(1980). 

[34] V. Witkovský, On the exact computation of the density and of 
the quantiles of linear combinations of t and F random variables, 
Journal of Statistical Planning and Inference 94, 1 (2001). 

[35] V. Witkovský, Matlab algorithm TDIST: The distribution of a 
linear combination of Student’s t random variables, in 
COMPSTAT 2004 Symposium, ed. J. Antoch (Physica- 
Verlag/Springer, Heidelberg, Germany, 2004) pp. 1995–2002.  

[36] V. Witkovský, Computing the distribution of a linear 
combination of inverted gamma variables, Kybernetika 37, 79 
(2001).  

[37] V.Witkovský, G.Wimmer and T. Duby, Logarithmic Lambert 

𝑊 × 𝐹 random variables for the family of chi-squared 
distributions and their applications, Statistics & Probability Letters 
96, 223 (2015).  

[38] V. Witkovský, G. Wimmer and S. Ďuriš, On statistical methods 
for common mean and reference confidence intervals in 
interlaboratory comparisons for temperature, International Journal 
of Thermophysics 36, 2150 (2015). 

[39] W. Hürlimann, Improved FFT approximations of probability 
functions based on modified quadrature rules, International 
Mathematical Forum 8, 829 (2013).  

[40] D.H. Bailey and P.N. Swarztrauber, The fractional Fourier 
transform and applications, SIAM review 33, 389 (1991). 

[41] P. Carr and D. Madan, Option valuation using the fast Fourier 
transform, Journal of Computational Finance 2, 61 (1999). 

[42] K. Chourdakis, Option pricing using the fractional FFT, Journal of 
Computational Finance 8, 1 (2004).  

[43] M. Held, CFH Toolbox (Characteristic Function Option Pricing). 
Matlab Central File Exchange, file 46489 (May 5 (updated Aug 
12), 2014). 

[44] Y.S. Kim, S. Rachev, M.L. Bianchi and F.J. Fabozzi, Computing 
VaR and AVaR in infinitely divisible distributions, Probability and 
Mathematical Statistics 30, 223 (2010). 

 

 


