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Abstract - The exact (statistical) inference frequently
require evaluation of the probability density function (PDF),
the cumulative distribution function (CDF), and/or the
quantile function (QF) of a random variable from its (known)
characteristic function (CF), which is defined as a Fourier
transform of its probability distribution function. Working
with CFs provides an alternative (frequently more simple)
route, than working directly with PDFs and/or CDFs. In
particular, derivation of the CF of a weighted sum of
independent random variable is a very simple and trivial
task (given the CFs of the random variables). However,
the analytical derivation of the PDF and/or CDF by using
the Fourier transform is available only in special cases.
Thus, in most practical situation, a numerical derivation of
the PDF/CDF from the CF is an indispensable tool. In
metrological applications, such approach can be used to
form the probability distribution for the output quantity of a
measurement model of additive, linear or generalized linear
form. In this paper we shall present a brief overview of
some efficient approaches for numerical inversion of the
characteristic function, which are especially suitable for
typical metrological applications. The suggested numerical
approaches are based on the Gil-Pelaez inverse formula
and on the approximation by discrete Fourier transform
(DFT) and the FFT algorithm for computing PDF/CDF of
(univariate) continuous random variables. We also present
a sketch of the MATLAB implementation, together with
several examples to illustrate its applicability.

Keywords: characteristic function, probability density
function, numerical inversion, Fast Fourier Transform
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1. INTRODUCTION

In metrology, a number of measurement models used
in uncertainty evaluation are, at least approximately (up to
reasonable level), of the additive linear form

Y = c1X1 + · · ·+ cnXn, (1)

where the input quantitiesX1, . . . , Xn are independent
random variables with known probability distributions,
Xj ∼ FXj

for j = 1, . . . , n, possibly parametrized by
θj , and c1, . . . , cn are known constants, andY represents

the univariate output quantity (a random variable with an
unknown distribution to be determined). For more details
and discussion on applicability of the uncertainty evaluation
methods, based on theGUM — Guide to the expression
of uncertainty in measurement[1] and itsSupplement 1 —
Propagation of distributions using a Monte Carlo method
[2], see e.g. [3, 4, 5, 6].

Here we shall discuss alternative tools to form the
probability distribution of the output quantity in linear
measurement model. We shall assume that the considered
characteristic functions (CFs)1 of the input and/or output
quantities, the random variablesX1, . . . , Xn and Y , are
known or can be easily derived. Then, by the Fourier
inversion theorem, the PDF of the random variableY is
given by

pdfY (y) =
1

2π

∫

∞

−∞

e−ity cfY (t) dt, for y ∈ R. (2)

Derivation of the CF of a weighted sum of independent
random variable is a very simple and trivial task. LetcfXj

(t)
denote the characteristic function ofXj . The characteristic
function ofY defined by (1) is

cfY (t) = cfX1
(c1t) · · · cfXn

(cnt). (3)

However, analytical derivation of the PDF by using the
(inverse) Fourier transform (2) is available only in special
cases. Thus, in most practical situation, a numerical
derivation of the PDF/CDF from the CF is an indispensable
tool.

In [7], Gil-Pelaez derived the alternative inversion
formulae, suitable for numerical evaluation of the PDF
and/or the CDF, which require integration of a real-valued
functions, only. The PDF is given by

pdfY (y) =
1

π

∫

∞

0

ℜ
(

e−ity cfY (t)
)

dt. (4)

If y is a continuity point of the cumulative distribution
function (CDF) ofY , defined bycdfY (y) = Pr{Y ≤ y},
then it is given by

cdfY (y) =
1

2
−

1

π

∫

∞

0

ℑ

(

e−ity cfY (t)

t

)

dt. (5)

1The characteristic function,cfY (t), of a continuous univariate random
variable Y ∼ FY , with its probability density functionpdfY (y) =
F ′

Y
(y), is defined as a Fourier transform of its PDF,cfY (t) = E

[

eitY
]

=
∫

R
eity pdfY (y) dy.
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Fig. 1. The probability density function (PDF) and the cumulative distributionfunction (CDF) of a random variableY =
∑

5

j=1
cjXj ,

with X1 ∼ N(0, 1), X2 ∼ tν=1, X3 ∼ R(−1, 1), X4 ∼ T (−1, 1), X5 ∼ U(−1, 1) and coefficientsc = (c1, . . . , c5) = (1, 1, 5, 1, 10),
evaluated by numerical inversion of its characteristic function by the MATLAB algorithmtdist , see the Example 1.

The inversion of the characteristic function based on
the procedure [7] have been implemented for numerical
evaluation of the distribution function of a linear
combination of independent chi-squared RVs by Imhof
in [8] and by Davies in [9]. The method was used also
for computing the distribution of a linear combination of
independent inverted gamma random variables suggested
by [10] and the distribution of a linear combination of
independent log-LambertW × χ2

ν RVs, [11].

Table 1. Characteristic functions of selected univariate symmetric
(zero-mean) distributions. Here,Kν(z) denotes the modified
Bessel function of the second kind, andJν(z) is the Bessel

function of the first kind.

Probability
distribution

Characteristic function (CF)

Gaussian
N(0, 1)

cf(t) = exp

(

−
1

2
t
2

)

Student’s
tν

cf(t) =
1

2
ν
2
−1Γ( ν

2
)

(

ν
1

2 |t|
) ν

2

K ν
2

(

ν
1

2 |t|
)

Rectangular
R(−1, 1)

cf(t) =
sin(t)

t

Triangular
T (−1, 1)

cf(t) =
2− 2 cos(t)

t2

Arcsine
U(−1, 1)

cf(t) = J0(t)

The Gil-Pelaez’s method have been successfully
implemented (by using the Gaussian quadrature for
numerical integration) in the algorithm TDIST, see [12]
and [13], for computing the distribution of a linear

combination of independent Student’st random variables
and/or other symmetric (zero-mean) random variables with
specific distributions. In particular, the algorithm includes
the Student’st, normal (Gaussian), symmetric rectangular,
symmetric triangular, and symmetric arcsine (U-shaped)
distributions.2 Such distributions are common and useful
for uncertainty evaluation based on the GUMs uncertainty
framework and itsSupplement 1, see [2]. Table 1
presents their explicit characteristic functions, which can
be numerically evaluated by standard software packages for
scientific and technical computing, as e.g. MATLAB , R,
SAS.

In this paper we also present a simple version of
an efficient approach based on approximation by discrete
Fourier transform (DFT) and by application of the FFT (fast
Fourier transform) algorithm for computing PDF/CDF of
(univariate) continuous random variables.

In general, numerical approximations of the continuous
Fourier transform by the discrete Fourier Transform, and in
particular by using the FFT algorithm, are well known and
widely used, in particular, in different fields of engineering.
However, FFT applications used for numerical evaluation
of the PDF/CDF from the characteristic function are not
so much widespread, in particular, among statisticians. An
exception in this direction is the contribution by Korczynski,
Cox, and Harris in [14], who suggested and illustrated
the use of convolution principles, implemented using the
Fast Fourier Tranform (FFT) and its inverse, to form
the probability distribution for the output quantity of a
measurement model of additive, linear or generalized linear
form. However, from the FFT/PDF-application point of
view, a more advanced field here is the field of financial
mathematics and econometrics.

2Notice that the symmetric trapezoidal distribution is a convolution of
two independent symmetric rectangular distributions.



The here considered approach for computing the PDF
and/or CDF by using DFT of the characteristic function
is based on the results and approaches recently suggested
by Hürlimann in [15]. For an alternative approach,
focused mainly on applications of the characteristic function
transform methods in financial option pricing modeling and
based on using the fractional fast Fourier transform (FRFT),
see [16] and [17, 18, 19, 20].

Finally, we would like to mentioned also another fast
growing and useful tool for numerical technical computing,
the open-source package CHEBFUN, see [21], for fast
numerical computing with functions. The CHEBFUN can be
naturally and easily integrated for further computation, e.g.
for computing CDF from PDF and QF from CDF.

2. BASIC RELATIONSHIPS BETWEEN THE CFT,
DFT, AND FFT

We shall approximate the continuous Fourier transform
(CFT), sayF (y) =

∫

∞

−∞
f(u) e−i2πuy du, by a discrete

Fourier transform (DFT). DFT can be efficiently evaluated
by using the FFT algorithm, that computes the same result
as evaluating the DFT definition directly, but much faster.
For complex numbersf0, . . . , fN−1 the DFT is defined by
the formula

Fk =

N−1
∑

j=0

fje
−i2πk j

N k = 0, . . . , N − 1, (6)

Formally, here we shall use notationFN = FFT(fN ), where
fN = (f0, . . . , fN−1) andFN = (F0, . . . , FN−1).

The relationship between the CF and the PDF is given
by the inverse CFT defined by (2). For a sufficiently large
interval (−T, T ), it is possible to approximate a PDF by
means of a numerical Fourier inversion as follows

pdfY (y) ≈
1

2π

∫ T

−T

e−ity cfY (t) dt. (7)

For simplicity, further we shall use (repeatedly) only the
most simple integral approximation, based on the left-
point rule (LPR),

∫ b

a
f(x) dx ≈ f(a)(b − a). For more

sophisticated approaches see e.g. [15].
So, let(a, b) is a sufficiently large interval, where the

distribution ofY is (mostly) concentrated. A reasonable rule
for choosing(a, b) can be, for example, the six-sigma rule:
(mean(Y )− 6 std(Y ),mean(Y ) + 6 std(Y )).

Let j, k = 0, . . . , N − 1, δy = (b − a)/N , andyk =
a+ kδy. ForN large, alsoT = π/δy is large, and from (7),
by usingt = 2πu, dt = 2π du, anddu = 1

b−a
, we get

pdfY (yk) ≈

∫ 1

2δy

−
1

2δy

e−i2πuyk cfY (2πu) du. (8)

Now, we shall approximate the integral (8) by (repeatedly)
using the approximate LPR, for each of theN sub-intervals.
Thus,

pdfY (yk) ≈
1

(b− a)

N−1
∑

j=0

e−i2πujyk cfY (2πuj), (9)

whereuj =
j−N

2

(b−a) , j = 0, . . . , N − 1. Hence, by using

eiπ = −1, the expressionsuj andyk, and the DFT defined
by (6), we finally get the formal relationship

pdf = C⊙ FFT(φ) (10)

where ⊙ denotes the dot product (element-wise
multiplication),pdf = (pdfY (y0), . . . , pdfY (yN−1)), φ =

(φ0, . . . , φN−1) with φj = (−1)
−2a
b−a

j cfY (
2π
b−a

(j−N
2 )), and

C = (C0, . . . , CN−1), withCk = (b−a)−1(−1)(
a

b−a
+ k

N
)N .

For further details and improved quadrature rules
on the FFT approximation of the PDF/CDF with known
characteristic functions see e.g. [15, 16, 17, 18, 19, 20].

3. EXAMPLES

%% EXAMPLE 1: (MATLAB ALGORITHM TDIST)
%% http://www.mathworks.com/matlabcentral/
%% /fileexchange/4199-tdist
% PDF and CDF of a linear combination of RVs
% Y = c1* X1 + c2* X2 + c3* X3 + c4* X4 + c5* X5
% with:
% X1 ~ Normal(0,1) [we set df1=Inf] with c1=1,
% X2 ~ Student's t with 1 d.f. [set df2=1], c2=1,
% X3 ~ Rectangular on (-1,1) [set df3=-1], c3=5,
% X4 ~ Triangular on (-1,1) [set df4=-2], c4=1,
% X5 ~ U-distribution on (-1,1) [df5=-3], c5=10

df = [Inf 1 -1 -2 -3];
const = [1 1 5 1 10];

[pdf,y] = tdist([],df,const, 'PDF' );
cdf = tdist(y,df,const, 'CDF' );
% plot(y,pdf)
% plot(y,cdf)

%% EXAMPLE 2: (MATLAB ALGORITHM TDIST)
%% PDF and CF of a linear combination of RVs
% Y = c1* X1 + c2* X2
% with:
% X1 ~ Student's t with 1 d.f. [set df1=1], c1=1,
% X2 ~ Rectangular on (-1,1) [set df2=-1], c2=10,

df = [1 -1];
const = [1 10];

[pdf,y] = tdist([],df,const, 'PDF' );
% plot(y,pdf)

options.isPlot = false;
t = linspace(-pi,pi,501);
cf = tdist(t,df,const, 'CF' ,options);
plot(t,cf)

%% EXAMPLE 3: (CF2PDF by FFT method)
% Characteristic function of the random variable
% Y = c1* X1 + c2* X2 + c3* X3
% with:
% c = [1,2,3]
% X1 ~ Normal(0,1)
% X2 ~ Triangular on (-1,1)
% X3 ~ U-distribution on (-1,1)



c1 = 1; c2 = 2; c3 = 3;
cf1 = @(t) exp(-t.ˆ2/2);
cf2 = @(t) min(1,(2-2 * cos(t))./t.ˆ2);
cf3 = @(t) besselj(0,t);
cf = @(t) cf1(c1 * t) . * cf2(c2 * t) . * cf3(c3 * t);

N = 2ˆ10; % Number of sub-intervals
a = -10; % Approximate lower limit of Y
b = 10; % Approximate upper limit of Y
k = 0:(N-1); % k indices 0 : N-1
j = 0:(N-1); % j indices 0 : N-1

dy = (b-a)/N; % delta_y
y = a + k * dy; % y_k
u = (j - N/2)/(b-a); % u_j

phi = (-1).ˆ(-(2 * a/(b-a)) * j) . * cf(2 * pi * u);
C = ((-1).ˆ((a/(b-a) + k/N) * N))/(b-a);
pdf = real(C . * fft(phi)); % FFT

plot(y,pdf)

4. CONCLUSIONS

Here we suggest to consider numerical methods
for derivation of the PDF/CDF from the characteristic
function. Such approach can be used to form the probability
distribution for the output quantity of a measurement model
of additive, linear or generalized linear form, and can be
considered as an alternative tool to the uncertainty evaluation
based on the Monte Carlo methods. Here we have presented
a brief overview of some efficient approaches for numerical
inversion of the characteristic function, which are especially
suitable for metrological applications. The suggested
numerical approaches are based on the Gil-Pelaez inverse
formula and on the approximation by discrete Fourier
transform (DFT) and the FFT algorithm for computing
the PDF/CDF of (univariate) continuous random variables.
We have presented simple MATLAB examples in order to
illustrate applicability of the suggested methods.
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