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Abstract — The neural network inverse model of a sensor
with the filtration of the sequentially recovered signal is
considered. This model allows it to effectively correct the
dynamic measurements error due to the deep mathematical
processing of measurement data. The result of the
experimental data processing of the dynamic temperature
measurements validates the efficiency of the proposed
model and the algorithm of the dynamic measurements error
correction.
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1. INTRODUCTION

The automatic control theory approach allows it to
effectively improve the dynamic measurements accuracy [1,
2]. Along with it, the artificial neural network (ANN)
approach to the creation of the dynamic models of
measuring systems and algorithms for the data processing of
dynamic measurements is one of the promising ways of the
intelligent measuring systems development.

2. NEURAL NETWORK DIRECT MODEL OF A
SENSOR

Suppose a primary measuring transducer (sensor) is
described by the transfer function (TF) as follows (where U
and Y are the sensor input and output signals respectively;

T,; and T, are time constants; ¢&;j and &, are damping

coefficients; i=12,...m, j=12,...,n (m<n); K, isthe
static gain; p is the complex number frequency):
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The continuous TF (1) of the sensor can be represented
in the following way (where b, =b;(T,,&5,Ky) for
i=12,...,m are coefficients depending on the parameters
of the sensor TF (1) numerator and the static gain;
q :ai(le,glj) for j=12,...,n are coefficients
depending on the parameters of the sensor TF (1)
denominator):
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The discrete analogue of the continuous TF (2) can be
represented as follows (where U(z) and Y(z) are the z-
transformation of the sensor input and output signals,
respectively; Bi = pBi(0g,...00, 80, 85 1,T) for
i=0,1...n and aj=a;(0,...0y.a0,...2,5,T) for
j=12,...,n are coefficients depending on the parameters

of the sensor TF (2) and the sampling period T ):
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The difference equation corresponding to the discrete TF
(3) of the sensor is as follows (where u(k)and y(k) are

samples of the sensor input and output signals, respectively,
at discrete times t, =k -T for k=0,1,2,...):
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The relationship between the output and input of the
discrete sensor model is described by the following
recurrence equation derived from the previous one:
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The parameters of the discrete model (3) can be
determined on the basis of the ANN direct sensor model
shown in fig. 1. This model is the recurrent ANN consisting
of a single neuron with the linear activation function
f,(net) and the zero bias b, . The structure of this model is

fully consistent with the recurrence equation (5).
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Fig. 1. Block diagram of the ANN direct sensor model

The recurrence equation that determines the relationship
between input and output of the ANN direct sensor model is

as follows (where u(k) and y (k) are samples of the sensor

input signal and the output signal of the ANN direct sensor
model, respectively, at discrete times t, =k-T for

k=0,1,2,...; w; for i=0,1,...,n and v; for j=12,..,n

are adjustable coefficients (weights) of the ANN direct
sensor model):

(6)

By means of an appropriate procedure of the input and
target training sets formation, that reflects the relationship
between the input and output of the discrete sensor model
(3), the weights of the ANN direct sensor model can be
adjusted during the training process so that the samples of
the ANN sensor model output will be equal to the respective
samples of the continuous sensor model (1) output for a
given level of the accuracy. The indicated possibility
follows from the linearity and the conformity of the discrete
and the ANN direct models of the sensor. Indeed, if

y (k)= y(k) for k=0,12,..., then from the equations (5)
and (6) the following equality can be obtained:
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Provided the sensor input is nonzero, the last equality
becomes the identity only when g, =w; for i=0,1...,n

and o =v; for j=12,...,n.

The functional block diagram of the ANN direct sensor
model training is shown in fig. 2. The procedure of the ANN
direct sensor model training (i.e. its weights adjustment)
consists in minimization of the training error represented as
the aggregate standard deviation for the all N +1 samples

of the input training set h, (k) between the target h, (k)

and actual h; (k) outputs of the ANN direct sensor model:
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Fig. 2. Functional block diagram of the ANN direct sensor model
training



3. NEURAL NETWORK INVERSE MODEL OF A
SENSOR

The discussed in the previous section approach to the
ANN direct sensor model creation for the solution to the
problem of the sensor described by the TF (1) dynamic
measurement error correction. Then, this problem is
formulated as the problem of the dynamically distorted
sensor input signal recovery on the basis of the respective
samples of its output signal.

Considering the indicated formulation it is necessary on
the basis of the ANN direct sensor model and the functional
block diagram of its training to create the ANN inverse
sensor model and, similarly, the functional block diagram of
its training. This ANN inverse sensor model should provide
the recovery of the dynamically distorted sensor input
signal, i.e. implement the inverse relationship between the
sensor input and output.

3.1. General representation
The discrete model of the sensor described by the TF (3)
is considered to obtain the structure of the ANN inverse
sensor model. This TF is represented in the inverse form as
1 Q;
follows (where py=——, g=——- and 4 =--L for
b B " B
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The difference equation corresponding to the inverse
discrete TF (9) of the sensor is as follows (where u(k)and

y(k) are samples of the sensor input and output signals,
respectively, at discrete times t, =k-T for k=0,12,...):

M-

()3 -ulk=1)= T yyle-])  (10)

0

—
Il

The relationship between the input and output of the
inverse discrete sensor model is as the following recurrence
equation derived from the previous one:

()= 32 -ule—i)+ Sy ovk-i) (1D

The structure of the equation (11) for the inverse discrete
sensor model is the same as the structure of the equation (5)
for the direct discrete sensor model. Therefore the structure
of the ANN inverse sensor model will also be the same as
the structure of the ANN direct sensor model.

The block diagram of the ANN inverse sensor model is
shown in fig. 3. This model is the recurrent ANN consisting
of a single neuron with the linear activation function

f,(net) and the zero bias by . The structure of this model is

fully consistent with the recurrence equation (11).
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Fig. 3. Block diagram of the ANN inverse sensor model

The recurrence equation that determines the relationship
between the input and output of the ANN inverse sensor

model is as follows (where y(k) and u”(k) are samples of
the sensor output signal and the output signal of the ANN
inverse sensor model, respectively, at discrete times
ty =k-T for k=0,12,...; w; for i=0,1...,n and v; for

j=1,2,....,n are weights of the ANN inverse sensor
model):
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The criterion for the ANN inverse sensor model training
as in the case of the ANN direct sensor model training is the
minimum of the training error represented as the standard
deviation between the target and actual outputs of the ANN
inverse sensor model. Obviously, both in the criterion and in
the functional block diagram of the ANN inverse sensor
model training it is necessary to swap the input and target



training sets towards the criterion and the functional block
diagram of the ANN direct sensor model training.

3.2. Cascade representation

In order to avoid possible problems with the stability of
the inverse model discussed, the cascade representation of
the ANN inverse sensor model in the form of first and
second order sections is proposed. This approach is based on
the representation of the direct sensor model described by
the TF (1) in the following form of s, first-order and s,

second order cascades with the real coefficients:
Sy Sy
W, (p)=TTWs(p)- TTW,;(p) (13)
i=1 j=1

The functional block diagram of the ANN inverse model
of the sensor in the cascade representation is shown in fig. 4
(where C,[i] are sections implementing the inverse model

of the first-order cascades Wi;(p) for i=12,..s, and
C,[j] are sections implementing the inverse model of the
second-order cascades W (p) for j=1,2,...,5,).
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Fig.4. Functional block diagram of the ANN inverse model of the
sensor in the cascade representation

Thus, the structure of the cascade ANN inverse model of
the sensor corresponds to the structure of the sensor in the
cascade representation. Therefore, each section is the ANN
inverse sensor model of the respective cascade in the
structure of the sensor described by the TF (13).

3.3. Sequential representation

The recovery of the input signal of the sensor with TF
(1) is implemented by its measured output signal processing
on the basis of the ANN inverse sensor model. This model is
presented as the sequential connection of the correcting filter
and the identical first-order sections [3]. Every such section
is the ANN inverse model of a unit with the following first-
order TF:

1
W,(p)= 14
(p)=7 (14)
The value of the time constant T, in the TF (14) is set
equal to such a value among the time constants T;; in the

TF (1), that provides the proximity of the step responses of
units with the TFs (1) and (14). The TF Wy (p) of the

correcting filter is the inverse TF of the sensor, which is
supplemented with a certain number g=n-m of the TFs

(14) to ensure the stability of the inverse model. The TF
W (p) of the correcting filter is as follows:

Wer (p)=Ws*(p)-W,* (p) =

:Ws—l(p).( 1 qu

pT; +1

i=1 =
_ L g+ y

K m
0 H(Tzzi % +2E, Ty P +1) [1(Typ+1)

i=1 i=k+1
1

x n-m
(pTl + 1)

| 9 2 n
H(le PT+25Ty p+1)_H£le p+1) (15)
]

The recovery of the dynamically distorted input signal of
the sensor on the basis of its ANN inverse model can be
accompanied by the significant increase of the additive noise
at the sensor output, as well as the internal noise of the ANN
inverse sensor model.

For the correct recovery of the input signal of the sensor
it is expedient to expand the ANN inverse sensor model,
taking into account the presence of the additive noise at the
sensor output. This expansion can be implemented as the
additional low-pass filtration of the recovered signal by
means of an increase of the order of the sequential sections
in the structure of the ANN inverse sensor model.

The functional block diagram of the ANN inverse sensor
model is shown in fig. 5, where d -order section C4[T,] is

the ANN inverse model of the unit with first-order TF (14).
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Fig.5. Functional block diagram of the ANN inverse model of the
sensor in the sequential representation

The proposed sequential representation of the inverse
sensor model allows it to implement the structure of the
section C4[T;] as a nonrecursive ANN filter. The basic

advantage of this structure is its guaranteed stability.



Therefore, it guarantees stability of the ANN inverse model
of the sensor as a whole and provides simultaneous and
stable the sensor input signal recovery and filtration.

3.4. Dynamic model of the first-order section
The block diagram of the ANN section C, [T, |with the
filtration of the recovered signal is shown in fig. 6.
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Fig. 6. Block diagram of the ANN section C4[T4]

The discrete TF of the section Cg4[T,] is as follows

(where  wy,w;,W,,...,.wy are adjustable coefficients
(weights) of the section):
Wy (z)=wo +wy -2+, 4wy -2 (16)

The elimination of the additive noises amplified during
the sensor input signal recovery is implemented due to the
presence of the internal filter in the structure of the ANN
section C4[T;]. The discrete TF of the internal filter in the
structure of the ANN section C,4[T,] is described by the
following equation (where W, (z) is the discrete analogue of
the continuous TF (14)):

Wiq (2) =Wiq (2)- Wy (2) 17)

3.5. Training procedure and training sets composition
The block diagram of the ANN section C,4[T;] training

is shown in fig. 7. The procedure of the ANN section
training (i.e. its weights wg,w;,W,,...,.wy adjustment)

consists in the minimization of the training error represented
as the aggregate standard deviation for all N +1 samples of
the input training set h, (k) between the target h, (k) and

actual h;;(k) outputs of the ANN section C,4[T,]:
1d R
£ = 2 ) () (18)

The algorithm of the training sets composition and their
length evaluation for the ANN section C,4[T,] weights

adjustment during the training procedure was proposed [3].
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Fig. 7. Block diagram of the ANN section C4[T,] training

In order to implement the possibility of the ANN section
Cq4 [Tl] internal filter bandpass regulation by means of the
section order d adjusting the sinusoidal smoothing was
applied. On its base, the samples of the target training set are
composed according to the following equation (where T is
the sampling period and k =0,1,...,N):

1+sin(”~T-(k—dD

2 2

, 0<k<d

h, (k) = 2 (19)
1 d<k<N

Then, the input training set should be composed from the
samples of the TF (14) step response as follows (where
t, =k-T are discrete times for k=0,1,...,N):

hy(k)=1-exp(-t, /T;)=1-exp(-k-T/T;)  (20)

Suppose, provided ¢ <<1, starting with time T, =N-T

all the successive samples of the TF (14) step response lie
within the following range:

Ap=(1+¢) (21)

Then, the training sets can be composed in accordance
with the equations (19) and (20).



The use of the sensor step response as the source signal
for the input training set composition allows it to define the
required length of the following training sets:

H, = [hu (O) hy (1) hy (2) hy (N )] (22)
Hy =ly© 0@ h@) . h(N)] @)

This consequence follows from the analysis of the
equation (18) for the ANN section C[T;] training in terms
of the problem considered.

The limiting value of the training error, where the length
of the training sets approaches the infinity, is as follows:

Eo = lim E = lim E(wy, Wy, Wy, ...,Wg )=
N—w© N —0

Therefore, under conditions defined by the equation (21)
the error of the ANN section C4[T,] training will lie within

the following range:

(25)

Thus, the equation (25) shows the direct relationship
between the deviation of the training error from its limiting
value and the length N +1 of the training sets.

4. RESULTS OF EXPERIMENTAL DATA
PROCESSING

The algorithm for the recovery of dynamically distorted
signals on the basis of the proposed ANN inverse sensor
model was developed. In order to validate experimentally
the efficiency of these model and algorithm the dynamic
measurement of the temperature was made. The step
response of the thermoelectric transducer (thermocouple)
«Metran-281» by heating it from 0°C to 800 °C was
obtained.

The result of the experimental data processing at d = 66
in the form of the plots of the thermocouple measured

output y(t) and the thermocouple recovered input u’(t) is
shown in fig. 8.
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Fig.8. Result of experimental data processing

The obtained result shows that the dynamic
measurement error after the correction decreased by 40 % in
comparison with the initial state without any additional
correction. In addition, the time of the dynamic temperature
measurement decreased from T, =306 sto T; =60 s, that is

more than 5 times. These evaluations validate the efficiency
of the proposed model and the algorithm of the dynamic
measurements error correction.

5. CONCLUSIONS

The neural network approach to the recovery of
dynamically distorted signals allows it to effectively correct
the dynamic measurements error caused by the inertia of the
sensor and the additive noise at its output.

The considered neural network inverse model of a sensor
with filtration of sequentially recovered signal allows it to
effectively improve the sensor dynamic behaviour due to the
deep mathematical processing of measurement data.

The results of the experimental data processing validate
the considerable improvement of the sensor dynamic
behaviour due to the application of the proposed model and
the algorithm to the dynamic measurement of the
temperature.
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