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Abstract  The neural network inverse model of a sensor 

with the filtration of the sequentially recovered signal is 

considered. This model allows it to effectively correct the 

dynamic measurements error due to the deep mathematical 

processing of measurement data. The result of the 

experimental data processing of the dynamic temperature 

measurements validates the efficiency of the proposed 

model and the algorithm of the dynamic measurements error 

correction. 

Keywords: dynamic measurements error, neural network 

model, inverse sensor model, recovery of sensor input 

signal, dynamic measurements data processing. 

1.  INTRODUCTION 

The automatic control theory approach allows it to 

effectively improve the dynamic measurements accuracy [1, 

2]. Along with it, the artificial neural network (ANN) 

approach to the creation of the dynamic models of 

measuring systems and algorithms for the data processing of 

dynamic measurements is one of the promising ways of the 

intelligent measuring systems development. 

2.  NEURAL NETWORK DIRECT MODEL OF A 

SENSOR 

Suppose a primary measuring transducer (sensor) is 

described by the transfer function (TF) as follows (where U  

and Y  are the sensor input and output signals respectively; 

jT1  and iT2  are time constants; j1  and i2  are damping 

coefficients; mi ...,,2,1 , nj ...,,2,1  ( nm  ); 0K  is the 

static gain; p  is the complex number frequency): 
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  (1) 

The continuous TF (1) of the sensor can be represented 

in the following way (where  022 ,, KTbb iiii   for 

mi ...,,2,1  are coefficients depending on the parameters 

of the sensor TF (1) numerator and the static gain; 

 jjii Taa 11 ,  for nj ...,,2,1  are coefficients 

depending on the parameters of the sensor TF (1) 

denominator): 
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 (2) 

The discrete analogue of the continuous TF (2) can be 

represented as follows (where )(zU  and )(zY  are the z-

transformation of the sensor input and output signals, 

respectively;  Taabb nmii ,,...,,,..., 100    for 

ni ...,,1,0  and  Taabb nmjj ,,...,,,..., 100   for 

nj ...,,2,1  are coefficients depending on the parameters 

of the sensor TF (2) and the sampling period T ): 
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 (3) 

The difference equation corresponding to the discrete TF 

(3) of the sensor is as follows (where  ku and  ky  are 

samples of the sensor input and output signals, respectively, 

at discrete times Tktk   for ...,2,1,0k ): 
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The relationship between the output and input of the 

discrete sensor model is described by the following 

recurrence equation derived from the previous one: 
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The parameters of the discrete model (3) can be 

determined on the basis of the ANN direct sensor model 

shown in fig. 1. This model is the recurrent ANN consisting 

of a single neuron with the linear activation function 

 netfa  and the zero bias 0b . The structure of this model is 

fully consistent with the recurrence equation (5). 

 

Fig. 1. Block diagram of the ANN direct sensor model 

The recurrence equation that determines the relationship 

between input and output of the ANN direct sensor model is 

as follows (where  ku  and  ky*
 are samples of the sensor 

input signal and the output signal of the ANN direct sensor 

model, respectively, at discrete times Tktk   for 

...,2,1,0k ; iw  for ni ...,,1,0  and jv  for nj ...,,2,1  

are adjustable coefficients (weights) of the ANN direct 

sensor model): 
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By means of an appropriate procedure of the input and 

target training sets formation, that reflects the relationship 

between the input and output of the discrete sensor model 

(3), the weights of the ANN direct sensor model can be 

adjusted during the training process so that the samples of 

the ANN sensor model output will be equal to the respective 

samples of the continuous sensor model (1) output for a 

given level of the accuracy. The indicated possibility 

follows from the linearity and the conformity of the discrete 

and the ANN direct models of the sensor. Indeed, if 

   kyky *
 for ...,2,1,0k , then from the equations (5) 

and (6) the following equality can be obtained: 

 

   

   











n

j
j

n

i
i

n

j
j

n

i
i

jkuwikyv

jkuiky

01

01



 (7) 

Provided the sensor input is nonzero, the last equality 

becomes the identity only when ii w  for ni ...,,1,0  

and jj v  for nj ...,,2,1 . 

The functional block diagram of the ANN direct sensor 

model training is shown in fig. 2. The procedure of the ANN 

direct sensor model training (i.e. its weights adjustment) 

consists in minimization of the training error represented as 

the aggregate standard deviation for the all 1N  samples 

of the input training set )(khu  between the target )(khy  

and actual )(* khy  outputs of the ANN direct sensor model: 
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Fig. 2. Functional block diagram of the ANN direct sensor model 

training 



3.  NEURAL NETWORK INVERSE MODEL OF A 

SENSOR 

The discussed in the previous section approach to the 

ANN direct sensor model creation for the solution to the 

problem of the sensor described by the TF (1) dynamic 

measurement error correction. Then, this problem is 

formulated as the problem of the dynamically distorted 

sensor input signal recovery on the basis of the respective 

samples of its output signal. 

Considering the indicated formulation it is necessary on 

the basis of the ANN direct sensor model and the functional 

block diagram of its training to create the ANN inverse 

sensor model and, similarly, the functional block diagram of 

its training. This ANN inverse sensor model should provide 

the recovery of the dynamically distorted sensor input 

signal, i.e. implement the inverse relationship between the 

sensor input and output. 

3.1. General representation 

The discrete model of the sensor described by the TF (3) 

is considered to obtain the structure of the ANN inverse 

sensor model. This TF is represented in the inverse form as 

follows (where 
0

0

1


  , 

0


 i

i   and 
0


 i

i   for 

ni ...,,2,1 ): 
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 (9) 

The difference equation corresponding to the inverse 

discrete TF (9) of the sensor is as follows (where  ku and 

 ky  are samples of the sensor input and output signals, 

respectively, at discrete times Tktk   for ...,2,1,0k ): 
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The relationship between the input and output of the 

inverse discrete sensor model is as the following recurrence 

equation derived from the previous one: 
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The structure of the equation (11) for the inverse discrete 

sensor model is the same as the structure of the equation (5) 

for the direct discrete sensor model. Therefore the structure 

of the ANN inverse sensor model will also be the same as 

the structure of the ANN direct sensor model. 

The block diagram of the ANN inverse sensor model is 

shown in fig. 3. This model is the recurrent ANN consisting 

of a single neuron with the linear activation function 

 netfa  and the zero bias 0b . The structure of this model is 

fully consistent with the recurrence equation (11). 

 

Fig. 3. Block diagram of the ANN inverse sensor model 

The recurrence equation that determines the relationship 

between the input and output of the ANN inverse sensor 

model is as follows (where  ky  and  ku*
 are samples of 

the sensor output signal and the output signal of the ANN 

inverse sensor model, respectively, at discrete times 

Tktk   for ...,2,1,0k ; iw  for ni ...,,1,0  and jv  for 

nj ...,,2,1  are weights of the ANN inverse sensor 

model): 
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The criterion for the ANN inverse sensor model training 

as in the case of the ANN direct sensor model training is the 

minimum of the training error represented as the standard 

deviation between the target and actual outputs of the ANN 

inverse sensor model. Obviously, both in the criterion and in 

the functional block diagram of the ANN inverse sensor 

model training it is necessary to swap the input and target 



training sets towards the criterion and the functional block 

diagram of the ANN direct sensor model training. 

3.2. Cascade representation 

In order to avoid possible problems with the stability of 

the inverse model discussed, the cascade representation of 

the ANN inverse sensor model in the form of first and 

second order sections is proposed. This approach is based on 

the representation of the direct sensor model described by 

the TF (1) in the following form of 1s  first-order and 2s  

second order cascades with the real coefficients: 
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The functional block diagram of the ANN inverse model 

of the sensor in the cascade representation is shown in fig. 4 

(where ][1 iC  are sections implementing the inverse model 

of the first-order cascades  pW i1  for 1...,,2,1 si   and 

][2 jC  are sections implementing the inverse model of the 

second-order cascades  pW j2  for 2...,,2,1 sj  ). 

 

Fig.4. Functional block diagram of the ANN inverse model of the 

sensor in the cascade representation 

Thus, the structure of the cascade ANN inverse model of 

the sensor corresponds to the structure of the sensor in the 

cascade representation. Therefore, each section is the ANN 

inverse sensor model of the respective cascade in the 

structure of the sensor described by the TF (13). 

3.3. Sequential representation 

The recovery of the input signal of the sensor with TF 

(1) is implemented by its measured output signal processing 

on the basis of the ANN inverse sensor model. This model is 

presented as the sequential connection of the correcting filter 

and the identical first-order sections [3]. Every such section 

is the ANN inverse model of a unit with the following first-

order TF: 
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pT
pW  (14) 

The value of the time constant 1T  in the TF (14) is set 

equal to such a value among the time constants jT1  in the 

TF (1), that provides the proximity of the step responses of 

units with the TFs (1) and (14). The TF )(pWcf  of the 

correcting filter is the inverse TF of the sensor, which is 

supplemented with a certain number mnq   of the TFs 

(14) to ensure the stability of the inverse model. The TF 

)(pWcf  of the correcting filter is as follows: 
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  (15) 

The recovery of the dynamically distorted input signal of 

the sensor on the basis of its ANN inverse model can be 

accompanied by the significant increase of the additive noise 

at the sensor output, as well as the internal noise of the ANN 

inverse sensor model. 

For the correct recovery of the input signal of the sensor 

it is expedient to expand the ANN inverse sensor model, 

taking into account the presence of the additive noise at the 

sensor output. This expansion can be implemented as the 

additional low-pass filtration of the recovered signal by 

means of an increase of the order of the sequential sections 

in the structure of the ANN inverse sensor model. 

The functional block diagram of the ANN inverse sensor 

model is shown in fig. 5, where d -order section  1TCd  is 

the ANN inverse model of the unit with first-order TF (14). 

 

Fig.5. Functional block diagram of the ANN inverse model of the 

sensor in the sequential representation 

The proposed sequential representation of the inverse 

sensor model allows it to implement the structure of the 

section  1TCd  as a nonrecursive ANN filter. The basic 

advantage of this structure is its guaranteed stability. 



Therefore, it guarantees stability of the ANN inverse model 

of the sensor as a whole and provides simultaneous and 

stable the sensor input signal recovery and filtration. 

3.4. Dynamic model of the first-order section 

The block diagram of the ANN section  1TCd with the 

filtration of the recovered signal is shown in fig. 6. 

 

Fig. 6. Block diagram of the ANN section Cd[T1] 

The discrete TF of the section  1TCd  is as follows 

(where dwwww ,...,,, 210  are adjustable coefficients 

(weights) of the section): 

   d
dcd zwzwwzW   ...1

10  (16) 

The elimination of the additive noises amplified during 

the sensor input signal recovery is implemented due to the 

presence of the internal filter in the structure of the ANN 

section  1TCd . The discrete TF of the internal filter in the 

structure of the ANN section  1TCd  is described by the 

following equation (where )(1 zW  is the discrete analogue of 

the continuous TF (14)): 

      zWzWzW cdfd 1  (17) 

3.5. Training procedure and training sets composition 

The block diagram of the ANN section  1TCd  training 

is shown in fig. 7. The procedure of the ANN section 

training (i.e. its weights dwwww ,...,,, 210  adjustment) 

consists in the minimization of the training error represented 

as the aggregate standard deviation for all 1N  samples of 

the input training set  khy  between the target  khu  and 

actual  khu
*  outputs of the ANN section  1TCd : 
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The algorithm of the training sets composition and their 

length evaluation for the ANN section  1TCd  weights 

adjustment during the training procedure was proposed [3]. 

 

Fig. 7. Block diagram of the ANN section Cd[T1] training 

In order to implement the possibility of the ANN section 

 1TCd  internal filter bandpass regulation by means of the 

section order d  adjusting the sinusoidal smoothing was 

applied. On its base, the samples of the target training set are 

composed according to the following equation (where T  is 

the sampling period and Nk ...,,1,0 ): 
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Then, the input training set should be composed from the 

samples of the TF (14) step response as follows (where 

Tktk   are discrete times for Nk ...,,1,0 ): 

      11 /exp1/exp1 TTkTtkh ky   (20) 

Suppose, provided 1 , starting with time TNTh   

all the successive samples of the TF (14) step response lie 

within the following range: 

   1h  (21) 

Then, the training sets can be composed in accordance 

with the equations (19) and (20). 



The use of the sensor step response as the source signal 

for the input training set composition allows it to define the 

required length of the following training sets: 

         NhhhhH uuuuu ...210  (22) 

         NhhhhH yyyyy ...210  (23) 

This consequence follows from the analysis of the 

equation (18) for the ANN section  1TCd  training in terms 

of the problem considered. 

The limiting value of the training error, where the length 

of the training sets approaches the infinity, is as follows: 
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Therefore, under conditions defined by the equation (21) 

the error of the ANN section  1TCd  training will lie within 

the following range: 
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Thus, the equation (25) shows the direct relationship 

between the deviation of the training error from its limiting 

value and the length 1N  of the training sets. 

4.  RESULTS OF EXPERIMENTAL DATA 

PROCESSING 

The algorithm for the recovery of dynamically distorted 

signals on the basis of the proposed ANN inverse sensor 

model was developed. In order to validate experimentally 

the efficiency of these model and algorithm the dynamic 

measurement of the temperature was made. The step 

response of the thermoelectric transducer (thermocouple) 

«Metran-281» by heating it from 0 °С to 800 °С was 

obtained. 

The result of the experimental data processing at d  = 66 

in the form of the plots of the thermocouple measured 

output  ty  and the thermocouple recovered input  tu*
 is 

shown in fig. 8. 

 

Fig.8. Result of experimental data processing 

The obtained result shows that the dynamic 

measurement error after the correction decreased by 40 % in 

comparison with the initial state without any additional 

correction. In addition, the time of the dynamic temperature 

measurement decreased from sT  = 306 s to dT  = 60 s, that is 

more than 5 times. These evaluations validate the efficiency 

of the proposed model and the algorithm of the dynamic 

measurements error correction. 

5.  CONCLUSIONS 

The neural network approach to the recovery of 

dynamically distorted signals allows it to effectively correct 

the dynamic measurements error caused by the inertia of the 

sensor and the additive noise at its output. 

The considered neural network inverse model of a sensor 

with filtration of sequentially recovered signal allows it to 

effectively improve the sensor dynamic behaviour due to the 

deep mathematical processing of measurement data. 

The results of the experimental data processing validate 

the considerable improvement of the sensor dynamic 

behaviour due to the application of the proposed model and 

the algorithm to the dynamic measurement of the 

temperature. 
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