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1. INTRODUCTION 

In metrology among other problems two of them represent 
general challenges [1]: 

1. Reduction of errors and uncertainties during the design 
process of measurement instrumentation and devices;  

2. Prediction of the time-behaviour of measurement 
instrumentation or standards, i.e. estimation of the 
optimal recalibration interval. 

Construction of functions based on experimental data is a 
widespread and important procedure in measurement problems 
(e.g. fitting of calibration curves for measuring instruments, or 
deduction of equations for indirect measurement methods) [2]. 
In these cases the quality of the empirical function is essential 
for ensuring the integral quality of measurement. The empirical 
function must be sufficiently precise for practical purposes and 
its estimates of the accuracy characteristics must be reliable. 
The traditional method for fitting of functions is the classical 
least squares (LS) method. The LS estimates are optimal only 
under strict conditions upon errors of data, that is, within a 
classic regression model. So, when it does not hold in practice, 
some other methods are required, so-called confluent methods. 
However,  a  general  confluent  model  is  not  appropriate  for  

 
 

practice either, since neither LS nor other data processing 
methods can provide statistically consistent estimates for 
functions. Therefore, the key problem is to construct proper 
extensions of regression models, which allow obtaining 
consistent estimates for functions [2]. The proper model should 
include additional information on data or data errors, which 
makes it possible to construct consistent estimates. Confluent 
estimates should be constructed in accordance with the type of 
the extended model. However, the most important problem for 
measurements is to study the accuracy characteristics of these 
estimates, taking into account both random and systematic 
components of data errors. In [2], several ways for expansion of 
regression models are outlined, and associated groups of 
estimates are studied. The accuracy properties of estimates are 
considered, which may be compared with the corresponding 
characteristics of classical LS estimates. This is a heuristic 
approach, but the optimisation does not work in this case. The 
main criterion for deriving confluent methods is the 
consistency as an asymptotic property of estimates. However, 
confluent estimates are used in the cases of small or modest 
volumes of data. Therefore, the accuracy characteristics of 
various confluent estimates should be also compared with the 
classical LS fitting under practical conditions [2].  
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In electrical measurements numerous examples of stochastic 
processes exist, like the electrical quantities standards time-
behaviour, [1], [3], [4], [5], and [6].  

In recent years the application of stochastic optimization 
tools for the design of electrical devices (including electrical 
instrumentation) is evident [10]-[13].  

In electrical power distribution grids, state estimation is the 
main part of the supervisory control and data acquisition 
(SCADA) system. The aim is to determine an estimate of the 
system state based on a network model and the measurements 
available. The network state consists of voltage bus magnitudes 
and angles, line flows, loads, transformer taps, active and 
reactive power, power injections and generator outputs. In a 
typical state estimation scenario, the measurement data includes 
active and reactive power flows, power injections and voltage 
magnitudes at the bus. In [3] a quasi-dynamic state estimation 
method, based on a disturbance observer is proposed. Its aim is 
to reconstruct electrical power (active and reactive) from 
available measurements. On the distribution level, where a high 
number of nodes is accompanied by a small number of 
measurements, the typical approach is to replace missing data 
with so-called pseudo-measurements. However, in this way the 
state estimation quality depends on the reliability of the pseudo-
measurements. That means that in order to improve the 
accuracy and reliability of the state estimation result, improved 
pseudo-measurement models are needed. In [3] stochastic 
models to obtain reliable pseudo-measurements and to improve 
state estimation results are investigated. The autoregressive 
moving average models (ARMA) to model the error of pseudo-
measurements are used. The employed disturbance observer 
state estimation method is then able to improve the quality of 
the pseudo-measurements based on assumed ARMA process 
coefficients.  

The optimal measurement theory arose as a branch of the 
inverse problems theory [4]. The mathematical justification of 
the algorithm for numerical restoration of the signal distorted 
by inertia and resonances in measuring transducers is presented 
in [4]. One of the directions for the development of this theory 
is mathematical justification of restoration of stochastic signals, 
in particular ”white noise”. 

Design applications generally aim to minimise 
manufacturing or material costs subject to performance criteria, 
which is an inverse problem requiring optimisation techniques 
[7]. What mathematical physics denotes as inverse problems is 
the class of problems which are fundamental in measurement 
theory and practice [8]. The main objective of such problems is 
to develop procedures for acquiring information on object and 
phenomena, accompanied by decreasing the distortion caused 
by measuring instruments [8]. In [7] the implementation of 
Levenburg-Marquardt, sequential quadratic programming, 
Nelder-Mead, simulated annealing and practical swarm 
optimisation for metrology and design with continuous models 
is reported. In [10]-[13] the genetic algorithm (GA) as stochastic 
optimization method is applied for optimal design. 

Calibration consists of two stages [15]. In stage 1 a relation is 
established between values provided by measurement standards 
and corresponding instrument response values. In stage 2 this 
relation is used to obtain measurement results from further 
response values. Polynomials of various degrees, determined by 
least squares, are extensively used as empirical calibration 
functions in metrology [9]. In this contribution an original 
computer program with embedded genetic algorithm developed 

at the Ss. Cyril and Methodius University in Skopje [6] is used 
for solving two metrological problems: 

a) Metrological optimal design of a combined instrument 
transformer; 

b) Predictions of resistance standards time drift for the 
determination of the optimal recalibration period, [16]. 

2. DESCRIPTION OF GENETIC ALGORITHM PROGRAM FOR 
METROLOGICAL OPTIMIZATION 

On one side the concept of a genetic algorithm is very 
simple as displayed in Figure 1, but on the other side it is a very 
powerful and robust computational tool.  

The GA implemented in the original computer program 
developed at the Ss. Cyril and Methodius University in Skopje 

Figure  1.  Genetic  algorithm  for  solving  problems  of  stochastic  nature  in 
metrology of electrical quantities. 
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[10] starts with the initial units (chromosomes) stochastic 
generation. Each chromosome is composed of the same 
number of genes. It is the initial population (generation).  

The size of the population is between 20 and 100. Iteration 
in the GA is the cycle of estimation, selection and reproduction 
of the population. Each unit represents the possible optimal 
solution. A possible solution for each unit is estimated 
according to the following criterion: the value of the goal function 
and each solution is assigned an adequacy measure. According to 
the comparison of all adequate measures of the units, a decision 
is made which one of them will be allowed to form the next 
generation and with which probability in the step of selection. 
The selection strategy is the “virtual roulette wheel”. All population 
units are potentially capable for reproduction. However, whether 
the unit will be selected depends on the value of the goal 
function (a sorted ranking list is formed). Finally, the virtual 
roulette wheel is formed according to the assigned number in 
the list. Conditionally, most of the “positions” in the wheel are 
assigned to the best units, and the worst units have no 
“positions”. The selected units from the “virtual roulette 
wheel” are copied into a new generation ready for generic 
operation cross-over and mutation. The elitism function is 
embedded, enabling automatic coping (cloning) of the best unit 
(according to the goal function value). Thus, the danger of 
losing the best unit during the cloning process is avoided. 

In the next step reproduction between pairs is performed, 
through simple copying of the units in the next generation. This 
is a process until the moment when cross-over and mutation 
happen according to the previously defined probability. The 
selection of units exposed to the process of cross-over is 
random. They are grouped and the spot of division of the genes 
from the two parents is random again. Through the cross-over an 
exchange and recombination of the genetic material is achieved 
which forms a new chromosome with genes from the two 
parents. The mutation is a change of a unit in the chromosome. 
The mutation is a very important factor in the evolution, 
because it introduces new genes in the process. This 
additionally increases the diversity of the units in the 
population. Pairs of chromosomes (parents) are exposed to the 
process of cross-over and the mutated units are returned in the 
population of the new generation. The cycle of estimation, 
selection and reproduction continues until a predefined 
acceptable behaviour level is achieved. If the termination 
condition is the predefined generation number, then the best 
unit in the last generation is the optimum. The population units 
(chromosomes) in each next generation are more similar to 
each other with convergence towards specific part of the search 
space. 

3. CASE STUDY NO. 1 ‐ GA OPTIMAL DESIGN OF AN 
INSTRUMENT TRANSFORMER 

Instrument transformers are of great metrological 
significance for electrical power measurements, especially in the 
field of legal metrology and trade of electrical energy. The 
accurate metrological analysis of a 20 kV combined instrument 
transformer (CIT) (voltage transformation ratio 

V3/ 100:V 3/ 20000   and current transformation ratio 100 
A: 5 A) is possible only by numerical calculation of the 
magnetic field distribution in the 3D domain [11]. The 
following four metrological parameters are relevant to the CIT:  

 voltage measurement core (VMC) voltage error pu,  
 VMC phase displacement error δu,  

 current  measurement core (CMC) current error pi,  
 CMC phase displacement error δi. 
The CIT must comply with the standard IEC 61869-4 [14]. 

It comprises two transformer systems in complex 
electromagnetic coupling: 

 a current measurement system with a regime close to a 
short circuit in the secondary winding and  

 a voltage measurement system with a regime of almost 
unloaded transformer, i.e. open-circuit regime.  

Both measurement systems are in a common housing with 
strong electromagnetic influence which significantly contributes 
to the metrological properties of the whole device. The 
geometry of the CIT is displayed in Figure 2.  

The goal during the optimal design process of the CIT is the 
minimisation of its metrological parameters pu, δu, pi and δi, as 
well as the VMC voltage error pu0,25 at 0.25 of VMC rated load, 
according to the specifications of the IEC standard [10] as 
discussed and with initial results given in [11], [12]. Also, the 
difference of the absolute values of the VMC voltage error at 
rated load and at 0.25 of the rated load should be as minimal as 
possible. The minimization requirements of all the metrological 
parameters could be contradictory. So, the process of 
metrological optimal design has to be performed by posing a 
single objective function comprising them all. This is an 
example of a multi objective optimisation problem. The 
optimization design of the 20 kV CIT, the case study in this 
paper, is made through variation of eleven input constructional 
and geometrical variables of the CIT. The program GA 
maximizes the objective function, therefore, the reciprocities of 
the errors are considered. 

The objective function can be defined with a conservative 
approach from a metrological point of view - the certain 
measurement errors expressed through the absolute values are the 
metrological objective function: 
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as combination of the VMC voltage error pu at rated load, VMC 
voltage error pu0,25 at 0.25 of the rated load and CMC current error 
pi at rated load. The phase displacement errors are constraints 
during the optimization process in order to satisfy the achieved 

 
Figure. 2. Geometry of the instrument transformer 

1. VMC iron core 
2. CMC iron core 
3., 4. VMC windings 
5., 6. CMC windings. 
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accuracy class of both measurement cores. The CIT is a highly 
non-linear electromagnetic system, with mutual electromagnetic 
influence of both cores which determines the metrological 
performance of the device. The GA optimal design is coupled to 
the results of the FEM-3D analysis of the magnetic field 
distribution in the CIT as in [11], [12]. Some of the initial results 
of the optimal design process with the goal function as defined in 
(1) are given in [11], [12]. 

According to the Guide for Expressing the Uncertainty in 
Measurements (GUM) [15], a statistical approach can be applied: 

  22
25,0

22
25,0

2
1

1
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In the objective functions (1) and (2) the phase displacement 
error u andi are constraints (a control criterion of the maximal 
allowed values of the phase displacement errors for certain CIT 
accuracy classes in the GA algorithm CIT mathematical model is 
embedded, as in [14]). The CIT optimal design starts with the 
parameters derived by classical analytical design of the CIT based 
on the T-equivalent circuit as a CIT model given in [11], [12] by 
coupling with FEM-3D modelling and calculation of the main 
electromagnetic characteristics. The chromosome comprises 11 
genes (input variables-geometrical, constructional and electrical 
parameters). The mapping range of the eleven GA input variables 
is defined according to the previously derived results by FEM-3D 
and the analytical transformer design, some most characteristic, 
are given in Table 1.  

The optimal solution is derived by the following genetic 
parameters: cross-over probability 0.65, mutation probability 0.03, 
population size 16, maximal number of generations 30000. 

In Figures 3 to 5, the changes throughout the 30000 
generations in the GA optimisation process of the current 
densities in the CIT windings, as input variables (genes) are 
comparatively displayed for both objective functions: conservative 
approach fopt1 and statistical approach fopt2. 

The main input variables in the calculation of the CIT 
metrological parameters are the equivalent T-circuit parameters, 
i.e. the winding’s resistances and the leakage reactances. 

In Figures 6 to 12, changes throughout the 30000 generations 
in the GA optimisation process of the CIT equivalent T-circuit 

parameters are comparatively displayed for both objective 
functions: conservative approach fopt1 and statistical approach fopt2. 

In Table 2 some of the optimal results (metrological 
parameters, geometrical, constructional and electromagnetic) 
derived by both the goal functions (1)-conservative approach and 
(2)-statistical approach, are compared. 

Figure. 3.   Genetic algorithm changes through the generations of the VMC
primary winding current density. 

 

Figure. 4.   Genetic algorithm changes through the generations of the CMC 
secondary winding current density. 

 

Figure. 5.   Genetic algorithm changes through the generations of the VMC
secondary winding current density. 

Table 1. Input variables for CIT optimal design (mapping range).

Input variable  Minimum Maximum  Initial value 
(analytical) 

VMC primary winding 
number of turns  

23584  24000  24000 

VMC primary winding 
current density [A/mm

2
] 

1.5  3.0  2.04 

VMC secondary winding 
current density [A/mm

2
] 

2.0  3.0  2.61 

VMC magnetic core outside 
length [mm] 

183  193  185 

CMC secondary winding 
number of turns  

115  125  120 

CMC primary winding 
current density [A/mm

2
] 

1.0  1.6  1.36 

CMC secondary winding 
current density [A/mm

2
] 

2.0  3.0  2.55 

CMC magnetic core outside 
length [mm] 

136  162  142 
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Figure. 6.   Genetic algorithm changes through the generations of the VMC 
primary winding resistance per turn. 

 

 

Figure. 7.   Genetic algorithm changes through the generations of the VMC
secondary winding resistance per turn. 

 

 

Figure. 8.   Genetic algorithm changes through the generations of the CMC 
secondary winding resistance per turn. 

 

 

Figure. 9.   Genetic algorithm changes through the generations of the VMC
primary winding leakage reactance per turn. 

 
Figure. 10.  Genetic algorithm changes through the generations of the VMC 
secondary winding leakage reactance per turn. 

 

 
Figure. 11.  Genetic algorithm changes through the generations of the CMC 
primary winding leakage reactance per turn. 

 

 

 
Figure. 12.  Genetic algorithm changes through the generations of the CMC 
secondary winding leakage reactance per turn. 

 
Table  2.  Comparison  of  the  CIT  metrological,  electromagnetic  and 
constructive  parameters  derived  by  goal  function  with  conservative  and 
statistical approach. 

GA derived CIT 
parameter 

Conservative 
approach 

Statistical 
approach 

pu [%]  ‐0.795  ‐0.625 

pu0,25 [%]  0.795  0.855 

pi [%]  0.0  10
‐7
 

δu [min]  ‐69.43  ‐61.62 

δi [min]  ‐10.45  2.30 

Bmu [T]  0.424  0.336 

Bmi [T]  0.539  0.165 

mFe [kg]  35.18  46.58 

mCu [kg]  12.02  13.57 
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4. CASE STUDY NO. 2 ‐ GA FOR PREDICTION OF RESISTANCE 
STANDARDS TIME DRIFT 

The estimation of the optimal moment for calibration of the 
standards is a challenge for most of the metrological 
laboratories [16]. The decisions are made based on the empirical 
experience of the laboratory staff, the behaviour history and the 
conditions of the standard [16]. The trend lines are usually 
extrapolated to predict the time-behaviour of the standards by 
using the classical least squares method, as in [5]. However, 
these models do not take into account the random nature of the 
calibration results and uncertainties.  

In this contribution a new model of a time-drift trend line of 
resistance standard derived by using the Lagrange polynomial 
(LP), coupled with genetic algorithm optimization, is presented. 
The time points of the performed calibrations and the gained 
values of standard resistance are input data. The final model of 
the trend line using five input experimental values can be 
reduced to a polynomial of fourth order: 

R(t)=a0t 4 + a1t 3 + a2t 2 + a3t + a4 (3) 

where t is the time, R is the resistance and ai, i=0,...,4 are the LP 
coefficients, depending on the values of the resistance at five 
calibration moments. The LP model is derived on the basis of 
the experimental data of calibrations of 1  standard in time 
intervals from 1996 to 2005 year as in Table 3. 

The goal function of the optimization process by the genetic 
algorithm (GA) is the minimum difference between the 
theoretical resistance value, derived by the LP, and the 
experimental value of the resistance at certain time moment 
(2007-04-20). The original GA program maximizes the goal 
function and the following goal function fopt is given in the 
optimization process: 

exp661

1

RR
f opt




  

  (4) 

where R6=R2007 is the resistance of the standard derived by the 
LP, determined by GA, at the time moment 20. 04. 2007 and 
R6exp is the resistance of the standard derived by experimental 
calibration on 2007-04-20. 

A verification of the gained model with known experimental 
data is done (for the time point 2010-06-14). The verification 
criteria k is: 

 
exp77

exp77

RR ss

RR
k






   

(5) 

where R7=R2010 is the resistance of the standard derived by the 
LP, determined by GA, at the time moment 2010-06-14 and 
R7exp is the resistance of the standard derived by experimental 

calibration on 2007-06-14, sR7 and sR7exp are the respective 
uncertainties. The optimal solution is for the following genetic 
parameters: cross-over probability 0.65, mutation probability 
0.03, population size 10, maximal number of generations 10000. 

The resistance standard values in the five time points 
derived from the process of genetic algorithm optimization are 
given in Table 4.  

The derived GA results after 10000 generations for the 
Lagrange polynomial coefficients are given in Table 5. 

The value of the 1 Ω standard resistance in 2007 derived by 
the LP coupled with the GA optimization process is R2007 
=0.999992349 Ω.  

The verification of the method is done through comparison 
of the theoretical standard resistance in 2010, with the 
experimentally derived value through calibration. The 
theoretical value of the standard resistance on 2010-06-14, 
gained by the LP trend line and through the GA process, is 
0.9999916844, with difference of 7.7710-7 , which is the 
same order of uncertainty as the input variable with highest 
uncertainty R1996.  

The experimental input values of the 1 Ω resistance standard 
are compared in Figure 13 to the resistance values in different 
time points derived by the Lagrange polynomial coupled to the 
genetic algorithm optimization process.  

The uncertainties of the theoretical values are compared to 
the measurement uncertainties of the experimental data and 
overlapping of the both uncertainties interval exists. The 
overlapping is satisfactory for the point in 2010, which is a 
verification point of the methodology. 

Table 4. Resistance standard values at five time points derived from the GA 
optimization process. 

R1996 []  R1998 []  R2000 []  R2003 []  R2005 [] 

0.99999245  0.99999242  0.9999923  0.9999923  0.99999235 

Table 5. The GA output data for the LP model.  

LP coefficient  GA derived value 

a0 [Ω/month
4
]  0.00000000000 

a1 [Ω/month
3
]  0.00000000000 

a2 [Ω/month
2
]  ‐0.00000000025 

a3 [Ω/month]  0.00000000378 

a4 [Ω]  0.999992438 

Figure.  13.    Comparison  of  the  GA  derived  LP  time‐trend  line  and  the 
experimentally derived time‐drift of 1 Ω resistance standard. 

Table 3. The experimental GA input data for the LP model.  

Date  R []  Uncert. of R [] 

1996‐09‐26  0.999992300  ±510‐7 

1998‐10‐23  0.999992450  ±310‐8
 

2000‐12‐28  0.999992330  ±610‐9
 

2003‐04‐08  0.999992306  ±610‐9
 

2005‐05‐09  0.999992353  ±110‐8
 

2007‐04‐20  0.999992349  ±110‐8
 

2010‐06‐14  0.999992461  ±110‐8
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5. CONCLUSIONS 

In this paper the stochastic optimization method-genetic 
algorithm is applied for gaining a solution of two different, but 
challenging problems in metrology of electrical quantities: 

1.  Reduction of errors and uncertainties during the design 
process of an instrument transformer;  

2.  Prediction of the time-drift of a resistance standard. 
One original and universal GA software solution is used for 

two problems of diverse nature. The derived results are 
satisfactory and verified. It can be concluded that lots of 
options exist, i.e. the genetic algorithm further to be applied for 
gaining other optimal solutions in different metrology areas and 
problems of stochastic nature. 
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