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1. INTRODUCTION 

The assessment of the variance of a component of 
measurement error by statistical means is known as Type A 
evaluation of measurement uncertainty. The principal form of 
Type A evaluation discussed in the Guide to the Expression of 
Uncertainty in Measurement, (the GUM) [1], [2], relates to the 
estimation of a quantity by the averaging of ݊ individual results 
regarded as having been independently drawn from a normal 
distribution with mean equal to the quantity of interest. The 
analysis there does not explicitly acknowledge that it assumes 
the sample size ݊ to be determined without reference to the 
data, as if it had been fixed before the analysis. Yet many 
laboratory experiments involve sample sizes that are not known 
in advance. Typically, an experimental scientist will continue to 
make observations until he or she is satisfied with the results, so 
that the final sample size is affected by whether the growing 
dataset makes sense and appears adequate for the 
experimenter's purpose. It is therefore important to study 
whether the accuracy of the GUM's process of Type A 
evaluation is affected by such practice.  

 

 
 
 

There are several relevant results from the theory of classical 
statistics. Let ௜ܺ be the random variable for the ݅th value drawn 
independently from the normal distribution with unknown 
mean ߤ	and unknown variance 	ߪଶ. Define 

തܺ ≡ ଵ
௡
෍ ௜ܺ

௡

௜ୀଵ

 

and 

ܵଶ ≡ ଵ
௡ିଵ

෍ሺ ௜ܺ െ തܺሻଶ.

௡

௜ୀଵ

 

So തܺ and ܵଶ are the random variables for the sample mean and 
sample variance when an independent sample of fixed size n is 
taken. The results of fundamental importance are italicized in 
the following statements. 

1. The distribution of തܺ is normal with mean ߤ and variance 
 ଶ/݊, (and these expressions for the mean andߪ
variance of തܺ are correct even if the distribution is not 
normal).  
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2. The expected value of ܵଶ is ߪଶ, (and this is the case even 
if the distribution is not normal). So ܵଶ is called an 
‘unbiased estimator’ of ߪଶ. Consequently, the 
realization or outcome of ܵଶ, which is a number 
denoted ݏଶ, is called an unbiased estimate of  ߪଶ.  

3. The sample-mean random variable തܺ is independent of every 
function ݃ሺ ଵܺ,⋯ܺ௡ሻ for which ݃ሺ ଵܺ,⋯ܺ௡ሻ ൌ
݃ሺ ଵܺ ൅ ܽ,⋯ܺ௡ ൅ ܽሻ for every constant ܽ [3].  

4. The random variable ሺܺ	 െ -ሻ/ሺܵ/√݊ሻ has the tߤ
distribution with ݊ െ 1	degrees of freedom. So, with 
 ఔ,௣  denoting the p-quantile of the t-distribution withݐ
 degrees of freedom, the random interval ߥ

ܳ ≡ ൤ തܺ െ
௡ିଵ,଴.ଽ଻ହܵݐ

√݊
, തܺ ൅

௡ିଵ,଴.ଽ଻ହܵݐ

√݊
൨ 

has probability 0.95 of covering ߤ whatever the values of 	ߤ and 
 % ଶ. Therefore, this random interval is a ‘95ߪ	
confidence interval’ for ߤ. The corresponding 
numerical interval  

൤̅ݔ െ
ݏ௡ିଵ,଴.ଽ଻ହݐ

√݊
, ݔ̅ ൅

ݏ௡ିଵ,଴.ଽ଻ହݐ

√݊
൨ 

can be called a ‘realized 95 % confidence interval for ߤ’ 
or an ‘evaluated 95 % confidence interval for ߤ’. 
(Regrettably, there are two slightly different definitions 
of a confidence interval that can be found in 
authoritative encyclopedias of statistics. Following the 
International Dictionary of Statistics [4], we take the term 
confidence interval to refer to the estimator, not the 
estimate. Therefore the confidence interval itself is ܳ 
and the adjective ‘realized’ or ‘evaluated’ is added when 
referring to the numerical interval that is the resulting 
estimate of ߤ. In this, we differ with the Encyclopedia of 
Statistical Sciences [5], which takes the confidence 
interval itself to be the numerical interval.) 

Result 1 tells us that the standard uncertainty to be 
associated with the observed sample mean ̅ݔ should be an 
estimate of ߪ/√݊, which is the standard deviation of the 
measurement error. Result 2 is important because many 
measurement processes involve combining estimates of several 
‘input quantities’, and the law of propagation of uncertainty 
involves summing the estimates of the variances of the errors. 
The ensuing estimate of the variance of the total error will be 
unbiased if the component estimates are unbiased, 
(notwithstanding the effect of approximating the measurement 
equation by a locally linear function). Result 3 implies that തܺ is 
independent of any statistic that provides no information 
about	ߤ. In particular, it implies the well-known result that തܺ 
and ܵଶ are independent.  Result 4 is important because it 
implies that 95 % of the ‘95 % confidence intervals’ evaluated 
in a long series of problems will enclose the unknown actual 
values of the measurands. This gives a practical and 
unambiguous meaning to the output of an uncertainty analysis.  

Now consider a situation where the sample size is not fixed 
but is somehow chosen by the experimenter in response to the 
data. The sample size ݊  is now the numerical value taken by a 
discrete random variable ܰ. The point estimators of ߤ and 	ߪଶ 
become 

തܺே ≡
ଵ
ே
෍ ௜ܺ

ே

௜ୀଵ

 

and 

ܵே
ଶ ≡ ଵ

ேିଵ
෍ሺ ௜ܺ െ തܺேሻଶ,

ே

௜ୀଵ

 

and the confidence interval for ߤ (which is the interval 
estimator of ߤ) becomes 

ܳே ≡ ൤ തܺே െ
ேିଵ,଴.ଽ଻ହܵேݐ

√ܰ
, തܺே ൅

ேିଵ,଴.ଽ଻ହܵேݐ
√ܰ

൨. 

With the sample size being random, the estimator ܵே
ଶ  does 

not necessarily behave in the same way as ܵଶ, so we cannot say 
that the expected value of ܵே

ଶ  is equal to ߪଶ. Similarly, the 
random intervals ܳே	and ܳ are different entities, so while it is 
known from theory that ܳ has probability 0.95 of covering ߤ, 
the probability that ܳே	will cover	ߤ at different values of ߤ  and 
 is not known. To be more specific, we do not know the ߪ
minimum probability over all possible values of ߤ and ߪ, which 
is the ‘confidence coefficient’ or ‘confidence level’ of ܳே. As 
shall be seen, the expected value of ܵே

ଶ  and the confidence 
coefficient of ܳே depend on the rule that the experimenter uses 
to decide when to stop making observations, which is called the 
‘stopping rule’. We will find that, if the stopping rule is 
particularly unfavourable, ߪଶ can be underestimated by 
approximately 45 % on average and the confidence coefficient 
of ܳே	can be reduced to approximately 88 %.  

With the sample size being random, we must also recognise 
that the variance of the measurement error, which is equal to 
the variance of തܺே, is no longer a constant. However, our 
interest lies in estimating not the unconditional variance of the 
measurement error but the variance conditional on the 
observed sample size, i.e. conditional on the event ܰ ൌ ݊. We 
cannot take it for granted that this conditional variance is equal 
to ߪଶ/݊, so we cannot assume that the conditional standard 
deviation of the measurement error is given by ߪ/√݊. More 
importantly, we cannot even take it for granted that തܺே is an 
unbiased estimator of ߤ and, therefore, we cannot assume that 
the sample mean is the preferred estimate of the quantity 
measured. (The estimator would not be unbiased, for example, 
if our rule was to stop sampling when the sample mean reached 
a certain level.) Thus there are some basic questions to answer 
about തܺே before we examine the behaviours of ܵே

ଶ  and ܳே. 

1.1. The conditional distribution of the measurement error 

We have just hinted at the fact that the distribution of the 
sample mean തܺே on the condition that the sample size is ݊ 
could conceivably differ from the normal distribution with 
mean ߤ and variance ߪଶ/݊. If so, using the sample mean as the 
estimate of the quantity measured and taking our estimate of 
 .as the standard uncertainty might be misguided ݊√/ߪ
However, as now shown, there is no cause for alarm if our 
stopping rule depends only on the spread of the data and not 
on the location of the data with respect to any origin. 

We would like our stopping rule to be such that the 
distribution of തܺே on the condition that ܰ ൌ ݊ is the normal 
distribution with mean ߤ and variance ߪଶ/݊. Result 3 above 
implies that, for a fixed sample size ݉, the sample mean 
random variable തܺ௠ is independent of every function of the ௜ܺ 
variables that gives us no information about location. So if the 
decision to stop is made according to the value of some such 
function then the conditional distribution of തܺே at any point is 
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unaffected by whether sampling stopped at that point or not; 
i.e., knowing that our stopping criterion will be first met by a 
sample of size ݊ would give us no extra information about the 
mean of those ݊ observations. It follows that the distribution of 
തܺே on the condition that ܰ ൌ ݊ is equal to the normal 
distribution with mean ߤ and variance ߪଶ/݊, as required. 

The only stopping rules we discuss in the rest of this paper 
meet this condition, and so our principal task remains the 
unbiased estimation of ߪଶ, from which we obtain a 
(conditional) unbiased estimate of ߪଶ/݊ simply by dividing by 
݊. We would then seek an estimate of this to use as the square 
of the standard uncertainty, ݑଶሺ̅ݔሻ, for potential use in the ‘law 
of propagation of error’. Consequently, our performance 
measure of relative bias in ܵଶ/݊ retains its relevance. 

1.2. Sequential statistics and stopping rules 

The idea that the sample size depends in some way on the 
data is the key idea of sequential statistics. Perhaps the best 
example of a situation involving sequential statistics is where 
the efficacies of two treatments are to be compared in patients 
recruited to a medical trial. It is unethical to subject people to a 
treatment known to be sub-optimal, so the trial should be 
stopped as soon as the identity of the preferred treatment 
becomes clear. Yet the overall procedure must maintain its 
statistical rigour for the comparison to be scientifically 
acceptable. This requires the development of a formal stopping 
rule that preserves the statistical integrity of the conclusion. In 
our context of Type A evaluation, such integrity relates to the 
conditional distribution of the estimator of ߤ, (which we have 
just discussed), to bias in the estimator of ߪଶ and to the 
probability that the procedure generates an interval enclosing 
 which is an event that can be called ‘success’. Whatever ,ߤ	
stopping rule is put into place, our estimate of ߪଶ should not be 
negatively biased and the minimum probability of success 
should be at least 95 %. 

In addition to the idea of having a fixed sample size, there 
are at least two broad possibilities for the way in which an 
experimenter might decide to cease making observations: 

1. stop when the result is deemed to be sufficiently 
accurate, i.e. when the measurement uncertainty is 
sufficiently low; 

2. stop when the data suggests that the experimental 
procedure is behaving as expected. 

As written, these two ideas are somewhat vague. We need to be 
more specific when describing a stopping rule because if there 
is no formal criterion by which an experimenter decides to 
finish sampling then there is no well-defined procedure whose 
statistical properties can be determined or claimed, either using 
theory or simulation. So let us now describe the basic situation 
in mathematical terms. Observations of a single quantity are 
made one by one, the results being ݔଵ, ⋯,ଶݔ ,  ௡, and afterݔ
obtaining ݔ௞ the figures 

௞ݔ̅ ≡
ଵ
௞
෍ݔ௜

௞

௜ୀଵ

 

and 

௞ݏ
ଶ ≡ ଵ

௞ିଵ
෍ሺݔ௜ െ ௞ሻଶݔ̅
௞

௜ୀଵ

 

are calculated. The process is stopped when the growing dataset 
of ݔ௞, ̅ݔ௞ and ݏ௞

ଶ values satisfies some well-defined condition, 

one possibility being a condition that reflects a minimum 
required level of measurement accuracy and another possibility 
being a condition that relates to the general appearance of the 
dataset. The sample size ݊, which is the outcome of a random 
variable N, is the final value of ݇. 

2. VARIOUS STOPPING RULES AND THEIR EFFECTS 

Let us now examine the effects of different procedures on 
the aspects of performance described, which are (i) the extent 
of any bias in the estimation of ߪଶ	and (ii) the extent of any 
reduction in the probability that the confidence interval 
contains ߤ. We focus on the idea of stopping when the 
measurement is deemed sufficiently accurate for the 
experimenter’s purposes, which in essence is when the figure 
 ௞/√݇ is sufficiently small. Other criteria for stopping areݏ
discussed only briefly.  

2.1. Stopping at a predetermined level of accuracy 

Consider the notion of making observations only until a 
predetermined level of accuracy is reached. When the quantity 
that is measured is just one input to a broader measurement, 
(which is the primary context of the GUM), this implies 
stopping when the corresponding figure of standard 
uncertainty, ݏ௞/√݇, first drops beneath a predetermined 
maximum value ݃. In contrast, when the measurement stands 
alone, it implies stopping as soon as ݐ௞ିଵ,଴.ଽ଻ହݏ௞/√݇ ൑ ݄, 
where ݄ is a predetermined maximum half-width for the 95 % 
uncertainty interval. These are different stopping criteria, and 
we will indicate them by G and H respectively. 

The performances of these procedures will also depend on 
any initial sample size. With ߪ being unknown, the smallest 
possible sample size is two. However, we can also envisage a 
situation in which the experimenter is never prepared to use a 
sample of less than three, or maybe a larger number still. The 
rule of starting with a sample of size two and stopping as soon 
as ݏ௞/√݇ ൑ ݃ can be called Gሺ2, ݃ሻ, while the rule of starting 
with a sample of size three and stopping as soon as 
݇√/௞ݏ௞ିଵ,଴.ଽ଻ହݐ ൑ ݄ can be called Hሺ3, ݄ሻ. The general forms 
of these rules are: 

Gሺ݊ଵ, ݃ሻ: stop if ݇ ൒ ݊ଵ and ݏ௞/√݇ ൑ ݃  

Hሺ݊ଵ, ݄ሻ: stop if ݇ ൒ ݊ଵ and ݐ௞ିଵ,଴.ଽ଻ହݏ௞/√݇ ൑ ݄.  

In this paper, ݊ଵ always indicates a predetermined minimum 
sample size. 

The solid lines in Figure 1 show the relative bias of ܵே
ଶ	for 

various stopping rules of the G kind. The bias is a function of 
 ,alone: the results were obtained by simulation where ݃/ߪ
without loss of generality, ݃ was set to unity. For each rule, 105 
replications were conducted at each value of ߪ/݃ indicated by 
the markers. Figure 1 shows that if we use Gሺ2, ݃ሻ and the true 
unknown value of ߪ is approximately 2.5݃ then there is a 
negative bias of 45 %, i.e. the expected value of 
ܵே
ଶ		is as low as 0.55	ߪଶ. If there were many uncertainty 

components and each was affected in this way then the result 
would be the quotation of an uncertainty interval that was 26 % 
shorter than the appropriate interval.  

The solid lines in Figure 2 show the probability that ܳே 
encloses ߤ for stopping rules of the H kind. The probability is a 
function of ߪ/݄ alone. For each rule, 105 replications were 
conducted at each value of ߪ/݄ indicated by the markers. 
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Figure 2 exhibits the same general pattern as Figure 1, but the 
scale differs in the x-direction because ݄ needs to be larger than 
݃ for comparable results. The success rate of ܳே  with Hሺ2, ݄ሻ 
can be as low as 88 %, and this occurs when ߪ ൎ 2݄.  

These results should be of some concern to any scientist whose 
practice is to measure and average the results until the 
uncertainty is ‘small enough’. That practice entails stopping at a 
point where the sample estimate of variance tends to be smaller 
than average at that sample size, and the validity of the 
statistical inference becomes affected. Performance levels can 
be improved, but are not able to be fully corrected, by using 
larger values of the initial sample size, ݊ଵ. 

Restoring performance levels  
Performance can be restored somewhat by involving an 

‘effective sample size’ smaller than the actual sample size. 
Accordingly, the dashed lines in Figures 1 and 2 show the 
results obtained when using the figure ܰܵே

ଶ/ሺܰ െ 2ሻ as the 
estimator of ߪଶ instead of ܵே

ଶ . So the effective sample size for 
the estimation of the variance is deemed to be ܰ െ 2  not  ܰ. 
The two corresponding rules are: 

G*ሺ݊ଵ, ݃ሻ: stop if ݇ ൒ ݊ଵ and ݏ௞/√݇ െ 2 ൑ ݃  

H*ሺ݊ଵ, ݄ሻ: stop if ݇ ൒ ݊ଵ and ݐ௞ିଷ,଴.ଽ଻ହݏ௞/√݇ െ 2 ൑ ݄.  

After applying either of the rules, the sample size ݊ is equal 
to ݇, the standard uncertainty to be quoted with ̅ݔ௡ as an 

estimate of the quantity measured is ݑሺ̅ݔ௡ሻ ൌ ݊√/௡ݏ െ 2 and 
the realized 95 % confidence interval to be quoted for ߤ is   

൤̅ݔ௡ െ
௡ݏ௡ିଷ,଴.ଽ଻ହݐ
√݊ െ 2

, ௡ݔ̅ ൅
௡ݏ௡ିଷ,଴.ଽ଻ହݐ
√݊ െ 2

൨. 

This is the outcome of the confidence interval 

ܳே
∗ ≡ ൤ തܺே െ

ேିଷ,଴.ଽ଻ହܵேݐ
√ܰ െ 2

, തܺே ൅
ேିଷ,଴.ଽ଻ହܵேݐ
√ܰ െ 2

൨. 

(In accordance with usual relationship between the sample size 
and the number of degrees of freedom, the method uses the 
multiplier ݐ௡ିଷ,଴.ଽ଻ହ instead of ݐ௡ିଵ,଴.ଽ଻ହ.) 

The dashed lines in Figures 1 and 2 show the performances 
of G*ሺ݊ଵ, ݃ሻ and H*ሺ݊ଵ, ݄ሻ	. The minimum possible sample 
size is three with a G* rule and four with an H* rule. Using 
G*ሺ3, ݃ሻ in place of Gሺ3, ݃ሻ reduces the worst negative bias 
from -31 % to -8 % and using H*ሺ4, ݄ሻ	instead of Hሺ4, ݄ሻ 
increases the confidence coefficient from 91½ % to 94½ %. 
The conservatism at low values of ߪ/݃ and ߪ/݄ is of little 
consequence; at these points in the parameter space, the 
absolute bias and the width of the confidence interval will be 
small. (The relative bias at ߪ/݃ → 0 approaches 100ሼ2/ሺ݊ െ
2	ሻሽ	%, so the dashed line for G*ሺ3, ݃ሻ	on Figure 1 approaches 
the y-axis at the value 200 %.)   

The rule G*ሺ4, ݃ሻ has a worst negative bias of 5½ % and 
attains a confidence coefficient of 94½ %, (which is not shown 
graphically). These levels of performance might be regarded as 
acceptable, so it is suggested that the rule G*ሺ4, ݃ሻ be used 
when measuring for a prescribed level of accuracy in this way. 
Thus, the minimum sample size suggested is four. 

Conditional confidence and conditional bias 
The confidence coefficient is the minimum probability that 

the procedure generates an interval containing ߤ. We have seen 
that the nominal 95 % estimation procedure involving Hሺ4, ݄ሻ 
has confidence coefficient 88 %, which seems too low for the 
label ‘95 % uncertainty interval’ to be acceptable. But perhaps 
we should be more interested in the minimum probability 
conditional on the observed value of the random variable ܰ, i.e. 
conditional on the event ܰ ൌ ݊. In other words, perhaps we 
should prefer to generate 95 % ‘conditional confidence 
intervals’, where the relevant probability statement holds on the 
condition that ܰ takes its observed value. That is, if a random 
interval ܫሺ തܺே, ܵேଶ, ܰሻ satisfies 

Prሼܫሺ തܺே, ܵே
ଶ, ܰሻ ∋ ܰ|ߤ ൌ ݊ሽ ൌ 0.95 

then ܫሺ തܺே, ܵேଶ, ܰሻ on the condition that ܰ ൌ ݊ is a ‘95 % 
conditional confidence interval for ߤ’. In this way, we would be 
making more use of the available information, and potentially 
generating a narrower uncertainty interval.   

The availability of a conditional-confidence procedure seems 
to depend on the availability of an ancillary statistic [6], which is 
a statistic whose distribution does not depend on the value of 
the parameter being studied. With stopping rule Gሺ݊ଵ, ݃ሻ, for 
example, the variable ܰ is not ancillary when estimating ߪଶ 
because its distribution depends on ߪ/݃. Further analysis of 
these ideas of ancillarity and conditional inference is outside the 
scope of this paper. 

2.2. A two‐stage procedure for a predetermined standard 
uncertainty 

We now give two methods where the total sample of size ݊ 
is formed from an initial sample of predetermined size ݊ଵ and a 

Figure  1.  Bias  of  ܵே
ଶ   (solid  lines)  and ܰܵே

ଶ/ሺܰ െ 2ሻ  (dashed  lines)  in  the
estimation of ߪଶ using stopping rules Gሺ݊ଵ, ݃ሻ and G

*ሺ݊ଵ, ݃ሻ respectively.  

Figure  2.  Probability  that  intervals ܳே	(solid  lines)  and ܳே
∗   (dashed  lines)

enclose	ߤ using stopping rules Hሺ݊ଵ, ݄ሻ and H
*ሺ݊ଵ, ݄ሻ respectively. 
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second sample of a size ݊ଶ chosen using the data in the initial 
sample. So ݊ ൌ ݊ଵ ൅ ݊ଶ. The first method is found in the 
following paragraphs and the second method is given in 
Section 2.3. Both methods rely on the fact that the sample 
variance ݏ௡భ

ଶ  obtained after a fixed number of observations ݊ଵ 
is an unbiased estimate of ߪଶ. Therefore, on the condition that 
the total sample size is ݊, the figure ݏ௡భ

ଶ /݊  is an unbiased 
estimate of the figure sought, ߪଶ/݊.  

Suppose that the requirement of Section 1.1 is met. Also, as 
in Section 2.1, suppose that there is a predetermined figure ݃ 
that would be a maximum acceptable value for the standard 
uncertainty of the measurement. Set ݊∗ ൌ ௡భݏ

ଶ /݃ଶ. Then, 
notwithstanding the fact that ݊∗ will not be a whole number, 
we would set ݊ ൌ ݊∗ and the figure of standard uncertainty 
would be ݃. In practice we would set ݊ equal to the value of ݊∗ 
rounded up. Thus, an acceptable procedure is: 

1. Make nଵ	observations, calculate ݏ௡భ
ଶ  and ݊ଶ ൌ

ඃݏ௡భ
ଶ /݃ଶඇ െ ݊ଵ; 

2. If ݊ଶ ൐ 0 then make nଶ more observations, calculate 
the overall mean xത and quote ݑሺ̅ݔሻ ൌ ݃. If nଶ ൏ 0 
then calculate xത from the first sample and set ݑሺݔതሻ ൌ
 . 1݊√/1݊ݏ

This procedure is analogous to Stein's fixed-width 
confidence interval [7], which has been an influential technique 
in sequential statistics. Stein showed that a procedure for 
realizing a 95 % confidence interval of a fixed width 2݄ for the 
mean ߤ of a normal distribution is as follows: 

1. Make ݊ଵ	observations, calculate ݏ௡భ
ଶ  and ݊ଶ ൌ

ቒ൫ݐ௡భିଵ,଴.ଽ଻ହ	ݏ௡భ/݄൯
ଶ
ቓ െ ݊ଵ; 

2. If ݊ଶ ൐ 0 then make ݊ଶ more observations and 
calculate the overall mean ̅ݔ. If ݊ଶ ൑ 0 then calculate 
xത from the first sample; 

3. Quote the interval ሾ̅ݔ െ ݄, ݔ̅ ൅ ݄ሿ as a realized 95 % 
confidence interval for ߤ. 

The drawback of these procedures is that neither makes use 
of the information about the variance ߪଶ contained in the 
second sample. 

2.3. A two‐stage procedure with the standard uncertainty chosen 
after the first stage 

So far we have considered the situation where the minimum 
required level of precision represented by ݃ or ݄ is known 
beforehand. That is somewhat unrealistic, for the experimenter 
is potentially committing himself or herself to making a huge 
number of observations depending on the ratio of ߪ/݃ or ߪ/݄ 
with ߪ unknown beforehand. So now we envisage that an 
acceptable value for the standard uncertainty is identified after 
taking the first sample and that the corresponding size of the 
second sample is then calculated. 

The sample variance ݏ௡భ
ଶ  obtained after a fixed number of 

observations ݊ଵ	 is an unbiased estimate of ߪଶ based on ݊ଵ െ 1 
degrees of freedom. Thus, on the condition that the overall 
sample has size ݊ଵ ൅ ݊ଶ  and the requirement of Section 1.1 is 
met, ݏ௡భ

ଶ 	/ሺ	݊ଵ ൅ ݊ଶሻ is an unbiased estimate of the conditional 
variance of the overall sample mean, which is ߪଶ	/ሺ	݊ଵ ൅ ݊ଶሻ. 
Therefore, a valid procedure is: 

1. Make ݊ଵ	observations and calculate ݏ௡భ
ଶ ; 

2. Without paying attention to the mean of the first 
sample, choose nଶ so that ݏ௡ଵ/√݊ଵ ൅ ݊ଶ is an 
acceptable figure of standard uncertainty; 

3. Make ݊ଶ more observations, calculate the overall 
mean ̅ݔ		and define ݑሺ̅ݔሻ ൌ ௡ଵ/√݊ଵݏ ൅ ݊ଶ. 

This procedure can be improved upon if the experimenter 
accepts the possibility of the corresponding standard 
uncertainty being a little larger than the figure chosen. No 
matter how ݊ଶ is chosen, the quantity 

stwo
2 =

1
݊ଶ െ 1

෍ ቌݔ௜ െ ෍
௜ݔ
݊ଶ

௡భା௡మ

௜ୀ௡భାଵ

ቍ

ଶ

,

௡భା௡మ

௜ୀ௡భାଵ

 

which is the sample variance of the second sample, is an 
unbiased estimate of ߪଶ based on ݊ଶ െ 1 degrees of freedom. 
Therefore the pooled estimate of variance, 

poolݏ
ଶ ൌ

	ሺ݊ଵ െ 1ሻݏ௡భ
ଶ ൅ ሺ݊ଶ െ 1ሻݏtwo

ଶ

݊ଵ൅݊ଶ െ 2
 

is an unbiased estimate of ߪଶ based on ݊ଵ൅݊ଶ െ 2 degrees of 
freedom, and so has a smaller parent variance than ݏ௡భ

ଶ . Thus, 
provided that the choice is made beforehand, the third step 
above can be replaced by: 

3.   Make ݊ଶ more observations, calculate the overall 
mean ̅ݔ		and define ݑሺ̅ݔሻ ൌ pool/√݊ଵݏ ൅ ݊ଶ. 

Of the methods described so far, the method of this section 
is, perhaps, the method of choice for practical experimentation. 
It provides the experimenter with some control over both the 
final standard uncertainty and the final sample size. 

2.4. Other stopping rules 

In the course of this work a number of other stopping rules 
were examined, almost all of which appeared to lead to 
statistical exactness, as would be hoped for. The basic 
requirement for exactness, when sampling from a normal 
distribution, is that the decision to stop is not influenced by the 
observed values of the sample mean and sample variance. A 
method for preventing this, albeit one that most 
experimentalists would find unacceptable, would be as follows. 
Let ܽ and ܾ be constants whose values are chosen randomly 
and are not revealed until sampling has stopped. (We require 
ܾ ് 0.) Instead of observing ݔଵ,  the experimenter	ଶ,⋯ݔ
observes ܽ ൅ ,ଵݔܾ ܽ ൅  ଶ,⋯. With ܽ and ܾ being completelyݔܾ
unknown, the observations give no information about the 
sample mean and sample variance (of the recoverable ݔ௜ values) 
and hence no information about ߤ and ߪ. Therefore, no 
stopping rule can affect the validity of the statistical inference, 
and so the performance levels of the Type A evaluation 
procedure will not be affected.  

Perhaps the value of that somewhat impractical idea is 
greatest when it is used in a thought process. If the 
experimenter can honestly say that they would have stopped 
taking observations at the same point if they had been 
observing ܽ ൅  ௜ for all choices of ܽ and ܾ thenݔ ௜ instead ofݔܾ
the rule by which sampling was ceased does not introduce 
error. 

Last, we consider the idea of measuring until forced to stop 
simply because of time constraints. In this case, the sample size 
is not influenced by any of the data, and so this stopping rule 
does not introduce error. 
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3. BAYESIAN ANALYSIS 

Currently, there is some interest in the use of Bayesian 
statistics for the evaluation of measurement uncertainty. 
Indeed, the revision of the GUM is being carried out in line 
with some of the principles of Bayesian statistics [8], these 
principles being associated with ‘objective-Bayesian’ methods. 
So we now discuss a Bayesian understanding of the issue 
described in this paper.  

The output of a Bayesian statistical analysis depends on the 
prior distributions for the unknown parameters and the 
likelihood function for the data observed. It does not depend 
on the stopping if the stopping rule is ‘noninformative’, which 
means that the value taken by ܰ provides no information about 
the parameter being estimated beyond what is contained in the 
prior distributions and the likelihood function at that point [9], 
[10], [11]. This is a weak condition, and all the stopping rules 
discussed in this paper would be noninformative in a Bayesian 
analysis. Thus the Bayesian paradigm does not distinguish 
between the reliability of the output obtained with a fixed 
sample size and the output generated by one of the stopping 
rules we have examined. This presents the objective-Bayesian 
statistician with a number of related problems when 
considering Type A evaluation of uncertainty, as we now 
demonstrate. These problems can be added to a growing list of 
difficulties associated with the use of Bayesian ideas in the 
evaluation of measurement uncertainty [12]-[17]. 

3.1. An inconsistency and an invalid procedure  

Our measurement problem involves random sampling from 
a normal distribution with mean ߤ and unknown variance ߪଶ. It 
is well known that when the standard prior distributions are 
used in an objective-Bayesian analysis of this problem, the 
posterior distribution of ߤ after observing a sample of size ݊ is 
the distribution of ̅ݔ௡൅ܶݏ௡/√݊ where ܶ is a random variable 
with the t-distribution with ݊ െ 1 degrees of freedom. (This is 
also the distribution advocated to describe ߤ in  Supplement 1 
to the GUM [18].) The conclusion would be drawn that ‘there 
is 95 % probability that ߤ lies in the interval ൣ̅ݔ௡െݐ௡ିଵ,଴.ଽ଻ହݏ௡/
√݊,  ௡/√݊൧’, which is seen to be the sameݏ௡ିଵ,଴.ଽ଻ହݐ௡൅ݔ̅
interval realized by ܳ. This would be the case in an objective-
Bayesian analysis under any of the stopping rules we have 
discussed.  

Therefore, when the rule is to take a fixed number of 
observations, the Bayesian analysis generates the same interval 
as the classical methodology, which is known to be successful 
on 95 % of occasions. Yet when using rule Hሺ2, ݄ሻ, for 
example, the analysis is successful on less than 95 % of 
occasions, especially when the reference set of problems 
involves small values of ߪ/݄; see Figure 2. So the results of two 
procedures with different success rates are, in effect, always 
regarded by the objective-Bayesian statistician as being equally 
reliable!  

3.2. An unacceptable principle  

The idea that Bayesian inference does not depend on the 
typical stopping rule opens up the hypothetical possibility of 
abuse. For simplicity, suppose that ߪ is known exactly. After 
making ݇ observations ݔଵ,⋯ ,  ௞ the Bayesian statistician usingݔ
the flat prior distribution for ߤ (and the person adhering to 
Supplement 1 to the GUM [18]) will assign to ߤ the normal 
distribution with mean ̅ݔ௞ and standard deviation 

ఙ

√௞
. Whatever 

the value of ̅ݔ௞ and however the observation process was 

terminated, the person will feel able to state ‘Pr ቀߤ ∈

ቂ̅ݔ௞ െ
ଵ.ଽ଺ఙ

√௞
, ௞ݔ̅ ൅

ଵ.ଽ଺ఙ

√௞
ቃቁ ൌ 0.95’. If a probability of 0.05 is 

used as a threshold of plausibility, the person will consider all 
values outside that interval to be implausible as values for ߤ. 
Suppose the person is prepared to make up to 10 observations 
and, for some reason, wishes to reach the conclusion that a 
certain value ݖ is not a plausible value for ߤ. Simulations show 
that they will be able to do so with probability at least 0.195 
even if ݖ is equal to the true value of ߤ. That is, if ܫ௞ is the 
random interval 

ൣ∑ ௜ܺ ݇⁄ െ௞
௜ୀଵ ߪ1.96 √݇⁄ ,∑ ௜ܺ ݇⁄ ൅௞

௜ୀଵ ߪ1.96 √݇⁄ ൧  

then  

Prሺܫଵ ∌ 	or	ݖ ⋯  or	ܫଵ଴ ∌ ሻ	ݖ ൒ 0.195		for all		ݖ 

and, in particular, for ݖ ൌ  If the person is prepared to make .ߤ
up to 30 observations then the figure becomes 0.29.  

Worse behaviour is admitted by moving to large, albeit 
astronomical, sample sizes, as an informal argument now 
shows. After ݇ observations the objective Bayesian statistician 
will calculate a symmetric 95 % credible interval for ߤ to be 

ቂ̅ݔ௞ െ
ଵ.ଽ଺ఙ

√௞
, ௞ݔ̅ ൅

ଵ.ଽ଺ఙ

√௞
ቃ. The (frequentist) probability that the 

interval calculated after ݇ଵ observations will exclude ߤ is 0.05. 
Now let ݇ଶ be a number so much greater than ݇ଵ	that the effect 
of the first ݇ଵ	results on the mean of the first ݇ଶ	results is 
negligible. Then, in effect, the probability that the interval 
calculated after ݇ଶ observations will exclude 	ߤ is 0.05 
independently of whether the interval after ݇ଵ	 observations 
excludes ߤ. Thus, the probability that one or both of these two 
intervals will exclude ߤ is 1 െ 0.95ଶ 	ൎ 0.1. Now let ݇ଷ be a 
number so much greater than ݇ଶ	that the effect of the first 
݇ଶ	results on the mean of the first ݇ଷ	results is negligible, and 
so on. If there are ݍ stages then the probability that at least one 
of the ݍ intervals will exclude ߤ is 1 െ 0.95௤, which can be 
made arbitrarily close to 1 by making ݍ sufficiently large. 
Moreover, this argument holds even if we carry out the analysis 
with 99 % intervals, or with any other threshold for 
implausibility. Thus, by measuring enough times, (albeit an 
astronomical number of times), the objective-Bayesian 
statistician can always conclude that the true value of ߤ is 
implausible as a value for ߤ. Evidently, this is also the case for 
any other value that they wish to rule out. 

3.3. Poverty of objective Bayesian statistics  

The set ሼݔଵ, ଵݔ ൅ ⋯,ଶݔ ሽ is a sample path of a stochastic 
process ሼ ଵܺ, ଵܺ ൅ ܺଶ,⋯ ሽ. Under the assumption of 
independent sampling from a shared distribution with mean ߤ 
and standard deviation ߪ, the related stochastic process	ሼܣ௞ሽ ≡
൛∑ ሺ ௜ܺ െ ሻߤ ௞⁄ߪ

௜ୀଵ ൟ	 obeys the law of the iterated logarithm, which 
states that 

lim௞→ஶ sup
஺ೖ

ඥ௞ ୪୭୥ ୪୭୥௞
ൌ √2   with probability one.  

Therefore, lim௞→ஶ supܣ௞ √݇⁄ ൌ ∞. This implies that 

lim
௞→ஶ

sup
തܺ௞ െ ߤ

ߪ √݇⁄
ൌ ∞ 

where തܺ௞ ≡ ∑ ௜ܺ ݇⁄
௞
௜ୀଵ   is the stochastic process of the sample 

mean. And, by symmetry, lim௞→ஶ inf
௑തೖିఓ

ఙ √௞⁄
ൌ െ∞. Thus, by 
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sampling long enough, we can make the quantity 
௫̅ೖିఓ

ఙ √௞⁄
 pass 

through any value we choose, and in particular we can reach 

values ݇ଵ and ݇ଶ	such that the intervals ൤̅ݔ௞భ െ
௔ఙ

ඥ௞భ
, ௞భݔ̅ ൅

௔ఙ

ඥ௞భ
൨ 

and ൤̅ݔ௞మ െ
௔ఙ

ඥ௞మ
, ௞మݔ̅ ൅

௔ఙ

ඥ௞మ
൨ are disjoint for any finite 

predetermined value of the coverage factor ܽ, say 1.96. If the 
distribution is normal then process	ሼܣ௞ሽ is a Brownian motion, 
which has a self-similarity property. This means we can repeat 
the process ad infinitum to obtain new pairs ሺ	݇ଵ, ݇ଶሻ with this 
property. Importantly, we can choose ݇ଵ arbitrarily and then 
wait until a suitable ݇ଶ	arises.   

This phenomenon permits a whimsical but correct analysis 
of how profit can be guaranteed when betting against an 
objective-Bayesian statistician who trusts the figures of 
probability they calculate and behaves accordingly. A Bayesian 
acting as a ‘rational agent’ will always accept a bet in which they 
view the expected value of their profit as positive and will reject 
a bet in which they view the expected value of their profit as 
negative. In the current problem of estimating the mean of a 
normal distribution, we take a sample of arbitrary size (݇ଵ) and 
offer the person 1 cent against 10 cents that ߤ lies outside the 
95 % credible interval they calculate for it. They will necessarily 
accept, believing their expected profit to be 0.95 ൈ 1 െ 0.05 ൈ
10 ൌ 0.45	cents. We then continue sampling until the 
corresponding 95 % credible interval is disjoint from the 
original one, which - as has been shown - must happen at some 
point (݇ଶ), and we present the same offer with the new interval. 
Again, the person must accept if they are to be acting in a way 
consistent with their philosophy. Then we point out that they 
must be incorrect in at least one of the wagers, and we 
generously concede the other. Our profit is 9 cents. This 
process can be repeated until matters of morality and 
compassion dictate.  

There is nothing in the Bayesian theory to invalidate this 
behaviour by the objective-Bayesian statistician. It is an example 
of the incoherence admitted by using an ‘improper’ prior 
distribution in a Bayesian analysis. The same result applies in 
the case of normal sampling with ߪ unknown because the 
sample standard deviation is a consistent estimator of ߪ. 

4. TYPE A EVALUATION OF THE VARIANCE IN THE 
TECHNIQUE 

This paper has addressed Type A evaluation of measurement 
uncertainty when all the data originates in the measurement at 
hand. Accordingly, ߪଶ is deemed unknown a priori and is 
estimated only from the data obtained in the measurement. In 
this situation we are primarily concerned with obtaining an 
unbiased estimate of ߪଶ ݊⁄  where ݊ is the final sample size. The 
standard uncertainty to be quoted is then ߪො √݊⁄ , where ߪොଶ is 
some figure that in effect acts as an estimate of ߪଶ.	Usually 
ොଶߪ ൌ   .ଶݏ

However, there are many situations where ߪଶ has been 
estimated beforehand in order to ‘calibrate’ or ‘characterize’ a 
measurement process and to establish ‘the standard uncertainty 
of the measurement technique, ߪො’. This is to be contrasted with 
‘the standard uncertainty in the particular measurement result 
ොߪ √݊⁄ ’. For example, the GUM describes a situation in which 
the variability of one aspect of the procedure was estimated 
beforehand from 25 observations, so that the corresponding 

estimate of variance was based on 24 degrees of freedom [1], 
[2]. In the earlier measurement, the objective will have been to 
obtain an unbiased and sufficiently accurate estimate of ߪଶ, 
(which is a quantity that does not vary with ݊), rather than an 
unbiased and sufficiently small estimate of ߪଶ ݊⁄ . If this 
estimate of ߪଶ is subsequently used in the measurement at hand 
then the experimenter knows in advance how many 
observations must be taken to obtain a sufficiently accurate 
result. So the analysis given in Section 2 is not necessary and 
statistical exactness is maintained provided that the behaviour 
of the experimenter is not affected by the changing value of the 
sample mean.  

5. CONCLUSION 

The thought processes by which experimentalists decide that 
enough observations have been taken will be many and varied -  
and they might not be describable in rigorous form. However, 
one idea is that observations are made until the corresponding 
component of standard uncertainty associated with repeatability 
or reproducibility is, apparently, smaller than some 
predetermined level. Figures 1 and 2 show that if such a 
‘stopping rule’ is applied in Gaussian sampling and if this figure 
of standard uncertainty is obtained from the observations at 
hand then the effect is to invalidate the statement of 
uncertainty.  Without appropriate modification, the procedure 
gives, on average, too small an estimate of the measurement 
variance, the worst possible bias being -45 %. Similarly, the 
associated nominal 95 % confidence interval can have a 
confidence coefficient as low as 88 %. A simple modification 
described in Section 2.1 involving the use of an effective sample 
size two less than the actual sample size restores the 
performance to an acceptable level. An appropriate related 
stopping rule is G*ሺ4, ݃ሻ. 

Perhaps it is more realistic to envisage that the final number 
of observations made is chosen after observing the data from 
an initial set. Accordingly, Section 2.2 and Section 2.3 give two-
stage procedures that do not compromise the validity of the 
Type A evaluation. The method of Section 2.3 seems preferable 
because it gives some control over both the sample size and the 
standard uncertainty of measurement.  

One finding of this paper is that making observations until 
the corresponding standard uncertainty ‘looks small enough’ 
does not lead to a valid statistical procedure and hence does not 
lead to valid Type A evaluation of measurement uncertainty. An 
advocate of Bayesian statistical methods would disagree with 
that statement, but unacceptable results appear when the 
analysis is carried out using the standard objective-Bayesian 
prior distributions. This further calls into question the wisdom 
of adopting Bayesian ideas in the supplements to the GUM and 
in the revision of the GUM. 

The material presented in this paper relates to Type A 
evaluation of uncertainty where the variability of the 
measurement technique is assessed during the measurement at 
hand. It does not relate to the situation where the estimate of 
the variance was obtained beforehand, as when the technique is 
calibrated. 
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