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1. INTRODUCTION 

The categories of evolution in theoretical metrology, 
mentioned in [1], among which developing and substantiating 
mathematical models should be particularly noted, are still 
holding their truth today.   

The geometrical approach plays a special role among other 
approaches to the understanding of fundamental categories of 
measurement.  In the “Encyclopedia of Mathematics” [2],  the 
role of Geometry is defined as follows: “The development of 
geometry, its applications, development of the geometric 
perception of abstract objects in different areas of mathematics 
and natural science give evidence of the importance of 
geometry as one of most drastic and productive means of 
reality cognition in terms of produced ideas and methods”.  

It is underscored in [3], that the geometric representation of 
analytic concepts has an infinite heuristic value; it also mentions 
that geometry “becomes more and more important in . . . 
physics, simplifying mathematical formalities and deepening 
physical comprehension. 

This renaissance of geometry influenced not just special and 
general theories of relativity, known to be geometrical in their 
essence, but also other branches of physics, where geometry of 
physical space is being replaced by the geometry of more 
abstract spaces”. 

This article offers for consideration a geometrical 
representation  of  a  fundamental  concept  in  metrology – the  

 

 
 
 

physical quantity. Also, a geometric representation integrates 
uncertainty into the concept of the physical quantity. 

2. DEFINING THE PROBLEM 

Let a quantity x characterize an object, that allows it to 
change from xa to xb. This very situation actually takes place in 
reality, for not a single physical parameter in an imperfect world 
can be defined by a single value. There is always a probable 
turn-down range, that exists either due to transition from one 
kind to another, or due to external conditions change, or due to 
inaccuracy of a measurement.  

The mean value and the range of uncertainty characterizes 
different properties of a quantity (one is indicating the location 
on the numerical axis, the other – dispersion around this 
location). On the other hand, a physical quantity contains both, 
quantitative as well as qualitative aspects.  

Both of these dualities suggest an idea that a representation 
of a quantity, naturally combining this duality, would be 
necessary.  

This research attempts to represent any physical quantity as 
a two-dimensional vector of a given abstract space. 

3. PHYSICAL QUANTITY AS A VECTOR, CHARACTERIZING ITS  
UNCERTAINTY  

The following suggestion was proven in [4]:  
 

ABSTRACT 
The aim of this research was an attempt of the finding of a mathematical model for a physical quantity organically including its degree 
of  uncertainty.  The  basic  method  is  an  application  of  the  geometrical  approach.  As  the  starting  point  the  basic  equation  of 
measurement  is  accepted. Result was  a presentation of  a physical quantity by  a  vector of  the pseudo‐Euclidean plane.  Four new 
matters appearing by such presentation are discussed. 



 

ACTA IMEKO | www.imeko.org  December 2015 | Volume 4 | Number 4 | 5 

A collection of logarithms of physical quantities in any power (integer 
and fractional) plus Zero defines a Vector Space. 
 

Each vector of this vector space, per basic equation of 
measurement  x = {x}[x], where x is a physical quantity, {x} is 
its numerical value, [x] is its unit, can be decomposed into two 
portions, formed up after taking the logarithm of this equation 
(strictly speaking, this simple notion is, of course, not an 
equation): 

ln x = ln {x} + ln [x] .   (1) 

Expression (1) is usually considered lacking mathematical 
rigor and leading to contradictory statements, for it is 
commonly adopted that transcendent functions of denominate 
quantities do not make sense, whereas the units of quantities 
are exactly what make them as such.  

Nevertheless, formal operation (1), obviously, can be carried 
out, and we will show that they are not just formal.  

We shall distinguish between the fundamental possibility of 
assigning a coordinate system and the method of determining 
the values of these coordinates.  

Taking the logarithm produces a coordinate system. 
As for the values of coordinates, multiple approaches are 

possible. First of all, it is necessary to acknowledge that for as 
long as the unit of a quantity may have different values, this 
unit in itself bears a quantitative meaning. This meaning, 
however, remains indeterminate, for the entire quantitative side 
of a physical quantity is a result of comparing this quantity with 
unity.  

Therefore logarithmic transformation can be used.  
Secondly, as it will be shown later, by using the immutable 

fact of uncertainty of value of a quantity, it will become 
possible to make sense of ln [x]. 

And finally, we can consider ln [x] to be simply a symbol of 
a coordinate, a sign of direction, whereas αi shall be considered 
the coordinate itself. 

Assuming medxxx ba  , corresponding vectors may be 

drawn as illustrated in Figure 1, where a0 is the axis of 
numerical values logarithms. We will choose the metric on this 
plane in such a way, that it reflects the fact of the presence of x 
in given limits. This can be done on the condition that the 
vectors magnitudes within their domain of definition were real, 
and outside the domain of definition - imaginary.  

As a result, we shall arrive to: 

0 | |  ba xx lnln ,                                                             (2) 

i.e. corresponding vectors turn out to be isotropic.  

All vectors, located to the left as well as to the right from the 
isotropic ones, including those, directed alongside the numerical 
axis, have imaginary lengths. The latter statement meets our 
condition, whose meaning is clear: what falls short of reality – is 
imaginary. 

As abstract numbers don’t exist in nature, a numerical axis 
must be imaginary. Such metric happens to be pseudo-
Euclidean. 

Every point A of this plane characterizes an equivalent-kind 
physical quantity, taken in any power and varying within certain 
limits. We shall name it a representing point.  In that case, the 
meaning of the points population, forming a pseudo-Euclidean 
plane, becomes clear if one can imagine few possible reasons 
for transitioning from one point to another, i.e. movements in 
this plane. These reasons are mathematically expressed by 
parameters, whose variations cause the end of the vector of 

quantity trace a certain trajectory. It is possible to specify three 
types of such parameters: coverage probability, power of the 
quantity and external factors. 

In such metric 

 2med0
2

med  | | aa x  xx lnln .  (3) 

This leads to 

|ln xmed| = ab – amed = amed – aa ,  (4) 

and 

  22
med  | | meda xx lnln .  (5) 

Substituting (4) into (5) and taking into consideration that 

2med
ba aa

a


 ,                                                                   (6) 

we obtain: 

  baaax ln . (7) 

This result is of fundamental importance. It shows that the 
vector norm, representing the unit of a quantity, is not a 
permanently set value, but rather is a geometric average of 
logarithms of the limit values for a given quantity.  After simple 
transformations we also arrive to: 

   axxb aaaa  00   xln . (8) 

 
Figure 1. Vector representation of a physical quantity. 
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As a result of this concept, new entities are coming to life. 
The first of them – vector norm   x ln . 

4. VECTOR OF A UNIT 

The vector norm of a unit generally is not equal to Zero 
since it is not a “logarithm of one” in its common sense, but 
rather is thought to be a logarithm of a certain qualitative 
content of the quantity. This notion fully agrees with the 
concept, stating that the numerical value and unit for a quantity 
reflect its quantitative and qualitative component, respectively.  

Being expressed as a vector, laid in a pseudo-Euclidean 
plane, the unit of quantity thus has two dimensions. One of 
them is ordinary, with logarithmic coordinate at 0, characterizes 
the size of the commonly adopted unit. Another dimension also 
gives the size of the unit, except this unit is related to the 
applicable physical system, and it is defined by the range xa, xb. 

5. THE FULL VECTOR OF A QUANTITY 

Another new entity, appearing in connection with the 
geometrical concept of a physical quantity - the length of its full 

vector x ln . As it can be seen from (6), when either  a0x = aa, or  

a0x = ab  , x ln  = 0. 

It can be explained only on the condition that a0x is located 
at the center of a corresponding probability distribution.  In this 
case, if the center of distribution coincides with its limit, 
dispersion becomes Zero (for there aren’t any values at either 
side from the center); then a0x becomes constant. No other 
interpretation is capable to give an informatively sound 
explanation of this exceptional nature of limit values for a0x .  

Moreover, we can also determine the class of distribution 
center for a quantity, represented by the coordinate a0x in a 
given model.  

Since the numerical axis is “common for everyone”, i.e. all 
values for distribution centers for all physical quantities are 
being located along it, these centers shall be added up 
algebraically while the summation itself is a vector addition.  

It is worth to mention here, that this rule of addition is 
applicable in case of dealing with population means.   

Consequently, a0x is the population mean of logarithms of 
quantity x.  

It is necessary to notice, that in each and every single 
pseudo-Euclidean plane, characterizing a certain quantity, any 
of known characteristics of the probability distribution center 
may act as coordinate a0x .  

Having said that, if the quantities are multiplied (which is the 
same as vector sum of their logarithms), then a rule that 
governs addition of their logarithmic probability distribution 
centers shall be defined. 

Likely, this will require establishing different numerical axes 
for different quantities. In this article, however, we will skip this 
issue.  

Let's notice that the reason for a physical quantity to be 
represented as a two-dimensional entity lays in the fundamental 
uncertainty of its value. Such uncertainty causes the averages of 

a0x and  x ln  to have different absolute values. 

The length of the quantity vector expresses the degree of its 
uncertainty in a format of geometric average of the two greatest 
possible deviations of quantity value logarithms from their 
center of distribution. 

Let's re-write (8) in the following format: 

 
 

 
  a

b

a

b

x

x

x

x

x

x

x

x
lnlnlnln xln , (9) 

where  x = exp a0x. If the quantity’s variation within the limits 
xa – xb  is reasonably small (owing to say, measurement errors), 

then the quotients  
x

xb  and 
ax

x
 are approaching 1.  

Then, expanding the logarithms into Taylor series and limit 
the expansion to the first two members, we arrive at: 
















  11 

a

b

x

x

x

x
xln ,  (10) 

where γ+ and γ- - are positive and negative estimates of the 
error, respectively. Quite often γ+ = γ- = γ [5], consequently 

x ln . (11) 

Quantity variation limits of xa and xb define a level of 
confidence, specified with a certain probability. Consequently, 
the entire model built as a pseudo-Euclidean plane turns out to 
be probabilistic. 

6. THE ANGULAR CHARACTERISTIC OF MEASURABLE 
PROPERTY OF A PHYSICAL OBJECT 

The third new entity that needs much thinking, is the 
pseudo-Euclidean angle between the vector of quantity’s unit and the 
full vector of the quantity. See Figure 2. Each point on a straight 
line, coinciding with the vector of quantity x, including the 
point, that belongs to x in a fractional power, expresses the 
same property of the object in both, qualitative and 
quantitative, terms. For example, electric resistance R, R2, 
conductivity R-1, and so on express the same property of a 
conductor, though in various terms. But then vector ln x , as 
well as any other vector co-linear to it, such as ln x2, 
characterizes just one image of this general property. It is 
natural to assume, that there should be a characteristic that 
unites all of these images. This characteristic, obviously, is the 
angle at which the line u crosses some chosen direction; for 
example, the direction of the quantity’s unit vector, as shown in 
Figure 2. The angle between these straight lines, just as the 
quantity x itself, characterizes the object in the adopted system 
of measurement; however, more general and more sustainable. 
It is certainly not the angle that can be seen, but rather a 
pseudo-Euclidean angle. Thus, we are forced to consider the 
angle as a characteristic of a measurable physical property of an 
object.  

Figure 2. Further elaboration of the physical quantity concept. 
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For the purpose of making the notes look simpler, we shall 

write: ln x = x*; ln [x] = [x]*; medlx *
med ; 

 
xa

x


e

*

, where e 

is a unitary vector, directed along  [x]*. 
To begin with, let’s define the angle θβ between the unitary 

vector and the geometric average vector. Corresponding 
transformations show: 











a

b

a

a
ln

2

1
 . (12) 

In other words, the pseudo-Euclidean angle between the 
unitary vector and the geometric average vector for this object 
is determined by the logarithm of ratio of quantity’s limit 
values. 

Formula (7) establishes the degree of difference between 

 *x  and lmed  and it is significant in the sense that xmed  can also 

be considered a system unit.  
Now let’s define the angle θφ between the vector of 

geometric average and the full vector of the quantity x, an angle 
shown in Figure 1 as φ. We find: 

xb

ax

aa

aa

0

0ln
2

1




 . (13) 

In this case, the logarithm is taken from a prime relation, 
that includes three points - aa, a0x, ab – all lying on the same line, 
a. k. a. an affine invariant. 

Finally, the formula for the angle between the vector of the 
unit and the full vector of the quantity is expressed as 



























0

0
:ln

2

1
ln

2

1

0

0

0

0

b

a

xb

ax

xb

ax

a

b

a

a

aa

aa

aa

aa

a

a
  . 

Here the logarithm is taken from a complex relation of four 
points - aa, ab, a0x, and 0 , representing a principal projective 
invariant.  It is remarkable that the last formula exactly matches 
the formula defining the length 0 - a0x in hyperbolic and elliptic 
geometries. It is analogous to the Laguerre formula  

 2121ln
2

uujj
i

 ,  (14) 

where ψ is the Euclidean angle in a complex Euclidean space; u1 

and u2 are two real straight lines; j1 and j2 are two isotropic 
imaginary straight lines, whereas all four straight lines pass 
through the  same  point;  2121 uujj  is the complex relation of 
four aforementioned straight lines. In our case, the complex 
relation of four points, obviously, is equal to the complex 
relation of the straight lines coinciding with vectors *

ax , *
bx , x*  

and [x] *. Out of these four, the first two are also isotropic. 

7. CONCLUSIONS 

The concept representing a physical quantity as a vector of 
the pseudo-Euclidean plane means knowing the center of 
probability distribution and degree of uncertainty for this 
quantity. This possibility of natural and, in essence, necessary 
combination of the center of probability distribution and the 
degree of uncertainty for a quantity, is a reason to favor this 
geometrical concept of representing physical quantities. 

The suggested approach allows to express a certain property 
of the physical object, that in particular may be expressed via a 

physical quantity, through a pseudo-Euclidean angle. This 
approach is a natural development of representing a physical 
quantity as a numerical axis. 

Here comes the question: how exactly shall we use this 
representation in describing physical processes? In other words, 
what is a practical value of these results? 

Since the combination of the center of distribution and 
dispersion around this center for a given quantity is defined by 
a two-dimensional vector, the equations of interest shall operate 
with these vectors instead of otherwise commonplace 
quantities. An example in the appendix illustrates such 
approach. 

APPENDIX 

Example 
The sensitivity of an induction sensor to magnetic induction 

is described by the formula: 
S = wA , 
where  - cyclic frequency of induction varying, w – number of 
windings in the coil, A – projection of the coil’s area on the 
plane, perpendicular to induction. Let  lay in the range of 
(5970 ÷ 6590) s-1, with a probability of 0.95; let also w = 1293. 
In the end, let us take it as given that A lays in the range of 
(1.22 ÷ 1.24)10-3 m2 with 0.95 probability for different sensors 
of the same model. The formula for sensitivity in vector form 
will look as 

ܖܔ ࡿ ൌ 	 ൅ܖܔ ࢝ܖܔ ൅  (I) . ࡭ܖܔ

For the sake of simplicity, let us call: ܖܔ ܖܔ ,*S = ࡿ ൌ *, 
 A*. Then let’s break each vector down into = ࡭ܖܔ ,*w =࢝ܖܔ
components, one of which is directed along the numerical axis 
and another – along the full vector of the quantity. The result 
of this transformation is 

a0S + S* = a0 +	* + a0w + w* + a0A + A* , 

i.e. each quantity is represented by the sum of the distribution 
center and expanded uncertainty. It can be said that 

a0S = a0 + a0w + a0A  

is an algebraic sum of the logarithmic expected values, and 

S* = * + w* + A*  (II) 

is a vector sum of the expanded uncertainties. (I) and (II) are, 
obviously, identical; however it is important to keep in mind 
that vectors in (I) are full vectors, whereas in (II) the same 
vectors become coordinate vectors, should the coordinate 
system change.  

Let us determine the relative expanded uncertainty S, taking 
into account that w = const. According to the vector addition 
formula: 

S = |ܵ∗| =	ඥ|߱∗|ଶ ൅ ଶ|∗ܣ| ൅ 2݃ఠ஺|߱∗||ܣ∗| , 

where	݃ఠ஺ is the coordinate of the metric tensor of the model 
space. This tensor, according to [6], is determined by the 
distribution type for  and A, coverage probability, and ratio of 
the uncertainties of  and A. To find |߱∗| and |ܣ∗|, see (11). 
Assuming normal distribution for  and uniform for A , when 
aforementioned coverage probability and variables are present, 
following the value tables for the metric tensor developed by 
one of the authors in [6], we arrive at ݃ఠ஺ ≅ 0.05. As a result, 
it turns out that	|ܵ∗| ൌ 0.051.  

Here is where methodology from [7] becomes handy. As it 
follows from earlier stated values for  and A, their relative 
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expanded uncertainties are 0.05 and 0.01, respectively. Matching 
standard uncertainties at coverage factors of 1.96 and 1.65 are 
found to be 0.026 and 6.110-3 respectively.  The standard 
uncertainty of S therefore can be found as 

ඥ0.026ଶ ൅ ሺ6.1 ∙ 10ିଷሻଶ ൌ 0.027. The assumption of a 
normal distribution for S will produce	ߛௌ ൌ 0.027 ∙ 1.96 ൌ
0.053, that in all practicality equals the result, obtained earlier. 
It is important to notice that we made a supposition regarding 
the type of resulting distribution.  

Applying the Monte Carlo method does not require such 
supposition; however, it requires a considerable increase of 
computing power. In this case, when statistical sampling of 
10,000 values is exercised,  S  = 0.052, i.e. a comparable result 
yet again. 
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