
20th IMEKO TC4 International Symposium and

18th International Workshop on ADC Modelling and Testing

Research on Electric and Electronic Measurement for the Economic Upturn

Benevento, Italy, September 15-17, 2014

Software Product Quality: Some Thoughts about

its Evolution and Perspectives

Luigi Buglione
1

1
GUFPI-ISMA (Gruppo Utenti Function Point Italia – Italian Software Metrics Association),

luigi.buglione@gufpi-isma.org, Luigi.buglione@eng.it

Abstract – From the mid ‘70s on, a plenty of attention

was devoted to evaluate and measure software quality.

As Tom Demarco said: “you cannot control what you
cannot measure”. But coming back, it’s also true that

“you cannot measure what you cannot define” and

again “you cannot define what you don’t know”.

Thus, moving from definition is the priority for any

activity and creates also measures from a common,

shared definition. The FCM (Factor-Criteria-Model)

was the first ‘quality model’ in 1977 by the US Air

Force trying to state a “three-tier” model for defining

what quality could be for a software product. Later,

Boehm (1978) and ISO (1991) with its first version of

the 9126 model (now evolved into the 25010:2011 one,
in the SQuARE standard series, did the same exercise.

Again, maybe less known, other models and

taxonomies have been created and proposed in the

technical literature (e.g. FURPS+, ECSS-E-10A, ISO

21351:2005, etc.) for the same purpose.

What a very few do is to understand (and deal with,

accordingly) that ‘quality’ means ‘non-functional’ (or

at least, a large part of the ISO definition of NFR –

Non-functional Requirements). From a measurement

perspective it means to deal with a very (relative)

unexplored area, with a plenty of possible

developments. In fact, a FUR (Functional User
Requirement) is something about the ‘what’ a

software can do by its functionalities and FPA

(Function Point Analysis) - whatever the variant

adopted – in a single number tries to relate a sizing

unit expressing such ‘functional dimension’.

Dealing with NFR and Software Quality is a very

complex work, because of the large number of

attributes composing ‘quality’. Each category in one

of the aforementioned quality models could be a

separate issue as well as now is the ‘functionality’ one.

Taking into account several attributes at the same
time and determining a ‘quality profile’ for a certain

type of software will be one of the next decade

challenges. Estimators will need to understand better

and better which NFR-related (quality) measures to

include (at least 2+ ones) as independent proxies in

estimation models, allowing estimators to reduce

MRE (Mean Relative Error) figures as much as

possible, saving project resources and improving the

overall project value for its stakeholders.

In order to do that, this paper will try to discuss from

an evolutionary perspective what software quality has
been, is and should/could be perceived and defined

during next years, by a measurement perspective.

Keywords – Software Quality, Quality Models, Non-
functional Requirements, FPA, SNAP, ISO 25010, GQM.

 I. INTRODUCTION

‘Quality’ is a risky and misleading term because

including so many meanings and attributes – even if often
seen simply as ‘defectability’ - within a single word that

often in assessments and evaluations it besides in the

‘qualitative’ side more than be extended also in the

‘quantitative’ one, finding proper measures for

quantifying it. Thus, questions such as ‘which is the value

for quality? How to measure quality?’ are typical also in

the Software Engineering community. It can be quite easy

to count something but less to evaluate its quality side,

because difficult to express the core question (“what does

it mean quality”?).

Tom Demarco said that “you cannot control what you

cannot measure”. But coming one step back, it’s also true

that “you cannot measure what you cannot define”.

Coming one step back again, “you cannot define what

you don’t know”. Thus, it’s a knowledge problem and the

priority is to move from a common, shared definition.

Reading these three statements in the opposite order, (1)

if you know something, you’re able to properly describe

it and share such definition with others; (2) if you’re able

to share definitions, it’ll be easier to quantify such ‘thing’

in the same way (looking at metrology, two measurers

should vary very few counting/evaluating the same

‘thing’ � repeatability); (3) if you’re able to measure
something in a proper way, understanding what

attribute(s) you’re measuring, you can have information

and should be sufficiently aware for taking decisions. Just

a short example for better expressing the need and value

when having (or not) a clear and not ambiguous

definition: asking what is a LOC (Line of Code), possible

answers could be: (a) a physical statement; (b) a logical

statement; and both could be complemented (c) with or

(d) without commented lines. Thus, counting LOCs for a

ISBN-14: 978-92-990073-2-7 744

software system, numbers could vary a lot just applying

slightly different definitions1. Another short example with

Function Points (FP): the IFPUG method till v4.2

formally included the so-called VAF (Value Adjustment

Factor), expressing 14 non-functional attributes

‘adjusting’ the initial functional size value. Thus, AFP

(Adjusted FP) formula included also VAF, while UFP

(Unadjusted FP) not. But what should it mean the solely
FP acronym? Which should be the right number of

Function Points to count and declare for such activity? As

in Figure 1, since any ‘thing’ to be evaluated is a mix of

quantity and quality and each side has different

parameters for being evaluated (in terms of productivity,

costs and so on), it’s fundamental to deeply analyze the

‘quality’ side – that has been right now the less explored

(also because more complex) part of the ‘yin-yang’

representation.

Fig. 1. Quantity and Quality – a ‘Yin-Yang’ representation2

The paper is organized as follows: Section 2 will

propose a short history of quality models (QM) from mid

‘70s on. Section 3 will discuss the stakeholders’ issue: the

inclusion (or not) for an attribute in a QM could be also

due to the viewpoint faced and the stakeholders included

(or not) in the analysis. Moving from the historical

perspective shown, Section 4 will propose perspectives

about how QM are evolving and should still evolve for
properly catching the value for software quality during

next years.

 II. A SHORT HISTORY OF QUALITY MODELS (QM)

Our core question is: what is quality? ‘Quality’ is a multi-

facet term because it’s an aggregator for multiple

attributes. If you should express why you’ve appreciated

a certain food, you would start to list a series of

‘attributes’ such as: flavour, taste, way to be presented,

freshness of ingredients, the quality/price ratio, etc. Next

step would be their quantification, trying to find a shared

1 According to Jones [13] , there could be variability till 500% between

extremes.
2 Another way to express the same concept is using a coin: quality and

quantity are the two faces of a coin. It’s not possible to obtain a

comprehensive evaluation not dealing with both faces. But each one has

its own properties (attributes) and measures.

way to ‘count’ them. That’s the application of the well-

known Goal-Question-Metric (GQM) paradigm [20]. The

same happened (and still happens) in Software

Engineering with Quality Models (QM). If the ‘quantity’

side expresses the functionalities (what the software

product – not the software project! - is asked to do), the

‘quality’ side should express the non-functionalities (how

those functions should work for satisfying its users-
clients). Thus a QM can be defined as a shared list of

attributes/characteristics that an entity of interest (EoI)

can own, expressing its non-functional side (‘how’). A

QM can be articulated in one or more tiers: in the second

case, there will be a hierarchy of attributes with high-

level and low-level attributes. For ‘completing’ a QM,

typically a further tier is added with measures that help in

quantifying a certain attribute. Now a list of more known

QM will be presented, trying to stress their peculiarities

for catching useful elements for improving the next

generation of QMs.

 A. FCM (Factor-Criteria-Model)

This is the first QM, produced in the mid ‘70s within the
Air Navy [1].

Fig. 2. Factor-Criteria-Model

It contained 11 factors (the first layer-tier) and 23 criteria

(the second layer). Each factor was linked to 2+ criteria.

Of course, as in any QM, each element needs to have a

clear definition with unambiguous statements. Factors

745

were classified into three moments in time along the

software life cycle (SLC): product operation, product

revision, product transition.

 B. Boehm Quality Model.

One year later, Boehm proposed his own QM, with 7

high-level characteristics (1st level) and 12 primitive

characteristics (2nd level) [2]. Also here a high-level char

could be linked to 2+ primitive characteristics. Introduced

the ‘utility’ concept, splitting the ‘as-is utility’ and the

‘maintainability’ for software products.

Fig. 3. Boehm’s Quality Model

 C. ISO 9126:1991

Moving from such early QMs, ISO decided – after the
realising of the first 9001 version in 1986 – to release its

own QM [3]. The model included 6 characteristics and 18

sub-characteristics. Here each high-level characteristic is

subdivided in a more refined list, with no-crossed links.

Fig. 4. ISO 9126:1991

IEEE 1061-1992 replied the content of ISO 9126:1991,

including such list of ‘attributes’ in the Appendix A. In

1998, IEEE 1061-1998 deleted such list, considering an

open list of values and not a closed list of attributes.

 D. ISO 9126-1:2001

After 10 years, ISO refined its view on quality and

proposed the new version for the 9126 QM [4].

Introduced the concept of different viewpoints by

different stakeholders: internal, external and quality in

use viewpoints. Here the first two ones, with 6

characteristics and 26 sub-characteristics. Each low-level
characteristic was linked with 1+ process(es) from the

ISO/IEC 12207 process model for any related process

improvement activity.

Fig. 5. ISO 9126-1:2001 – External/Internal Quality views

And here the quality in-use view, with the four additional

characteristics.

Fig. 6. ISO 9126-1:2001 –Quality in-use view

 E. ISO 25010:2011

After 10 year more, ISO revised again its view on quality

and evolved 9126 into the SQuaRE (Software product

Quality Requirements and Evaluation) 25000 series with
the new 2501x block of standards [5].

Fig. 7. ISO 25010:2011

ISO 25010:2011 now includes 8 characteristics and 38

sub-characteristics. Refined some characteristics (e.g.

Usability evolved into Operability, stressing more the

Accessibility issue than before) and introduced others as

Security.

746

 F. Other QMs and NFR-related approaches

Other possible QM are:

• FURPS(+): FURPS is the acronym for a software
product quality taxonomy – as well as ISO 9126 - by

Grady & Caswell [8] and refined with more

attributes into FURPS+ [9]. FURPS stands for

Functionality (to be split into: Feature Set,

Capabilities, Generality, Security), Usability (Human

Factors, Aesthetics, Consistency, Documentation),
Reliability (Frequency/severity of failure,

Recoverability, Predictability, Accuracy, Mean time

to failure), Performance (Speed, Efficiency,

Resource consumption, Throughput, Response time),

Supportability (Testability, Extensibility,

Adaptability, Maintainability, Compatibility,

Configurability, Serviceability, Installability,

Localizability, Portability). The “+” addition

represents an aid for remembering concerns such as:

Design requirements, Implementation requirements,

Interface requirements and Physical requirements.
• ECSS-E-10A + ISO 21351:2005: ECSS (European

Cooperation for Space Standardization) is an

initiative established to develop a coherent, single set

of user-friendly standards for use in all European

space activities. Among the several standards

produced, ‘technical requirements’ are diffusely

treated. ECSS-E-10A [6] was used for creating ISO

21351:2005 [7].

• IFPUG VAF: from Albrecht’s initial study till

IFPUG CPM v4.2, the FPA method proposed a

‘value adjustment factor’ (VAF) based on 14 non-
functional attributes (GSC – General System

Characteristics), mostly referred to the software

product, some others to the software project entity.

The 14 GSC are: Data Communication, Distributed

Data Processing; Performance; Heavily Used

Configuration; Transaction Rate; Online Data Entry;

End-User Efficiency; Online Update; Complex

Processing; Reusability; Installation Ease;

Operational Ease; Multiple sites; Facilitate change.

The aim of VAF was to ‘adjust’ the product

functional size by a series of quality attributes for

‘optimizing’ the statistical relationship in historical
series of adjusted product functional size vs project

effort. In 1998 ISO decided to keep of such element

from any FSM (Functional Size Measurement)

method, because not proportional to the product

functional side, stating that non-functional

requirements (NFR) must be evaluated apart from

FUR in a different way. In the current IFPUG CPM

v4.3 such list has been maintained in Appendix C

[11].

• IFPUG SNAP: more recently, IFPUG proposed a

new separate methodology from FPA named SNAP
(Software Non-functional Assessment Process).

From the analysis of product NFR, the method

calculates the number of SNAP Points (SP). The

current v2.2 [12] includes 14 sub-categories grouped

into 4 categories. As in FPA, each sub-category has

2+ complexity parameters for deriving for each SCU

(SNAP Counting Unit) the associated number of SP.

Here the list of categories and sub-categories that

could be used also as a QM, not considering the SP

calculation algorithm: Data Operations (Data Entry
Validation; Logical & Mathematical Operations;

Data Formatting; Internal Data Movements;

Delivering Added Value to Users by Data

Configuration); Interface Design (UI Changes; Help

Methods; Multiple Input Methods; Multiple Output

Methods); Technical Environment (Multiple

Platform; Database Technology; Batch Processing

System); Architecture (Component Based Sw Dev

(CBSD); Multiple Input/Output Interface).

 III. POSSIBLE CRITERIA FOR A QM

Analyzing the proposed QM it is possible to derive the

following considerations in order to understand the value

to be provided by a QM:

• Stakeholders – as stressed in well-recognized

management guides such as PMBOK [17] or ITIL

[18], it is fundamental to understand from the

beginning which are the right stakeholders to involve

for creating a good QM. For instance, users are

fundamental but often have been considered only for

providing final feedback (customer/user satisfaction),

not for driving assessment criteria. Remember that a

customer (the business) is not necessarily the user,

but could be separate people. Remember also to

involve those secondary stakeholders (e.g. foreign

tourists could be useful for describing how to
improve a mobile touristic app for a certain city

providing a different viewpoint than a citizen from

that city).

• Grouping criteria – quality represents the ‘how’ a

product should be realized according to initial

requirements. Thus, several criteria should be

considered. For instance (a) Time: a lifecycle view

should be included and/or linked to a QM (e.g. ISO

9126-1:2001 inserted the related process(es) from

ISO 12207 and target audience for any sub-

characteristic). It could be useful for improving the
product during its lifetime for maintainability

purposes. (b) Viewpoint/Stakeholder positioning:

internal, external and quality in-use viewpoints, as

proposed by ISO from 2001 with 9126-1 and now

with the 25010 standards; (c) Viewpoint/Context-

Content: the wider the list of attributes and sub-

attributes, the more comprehensive the analysis of a

product by its QM. As in the Balanced Scorecard

(BSC) approach, it’d be desirable to have at least 4-5

perspectives (e.g. time, cost, risk, quality, ethics,

etc.) against which grouping quality attributes.

747

 IV. QUALITY MODELS AND THE NEXT DECADE

Looking at the content of the presented QM against the

period they were produced, it is possible to list a series of

thoughts, possibly useful for designing QM for the next

decade:

• Content: a number of product attributes in a QM is

useful for better describing and evaluating a product,
but as usual – the right number of attributes is in the

middle (not too many, not too few). Product

observation is fundamental for listing what is needed

and it could change along time. For instance,

smartphones have created a different way to describe

and define ‘operability’ and/or ‘usability’ against

mobile software produced just 3-4 years ago because

of the ‘touching’ interaction on the screen. Again,

sustainability can be a new product quality attribute

to consider for new systems/software [14] because of

a ‘greener’ perspective on software.

• Usage: QM can be used not only for a ‘retrospective’

evaluation but also in early SLC phases as simple

checklists for understanding the level of

completeness for a product design, moving from a

‘wishing list’. Another way to use QM is for

estimation purposes: since QM express NFR,

estimators can use needed NFR-related (quality)

measures to be included (at least 2+ ones) as

independent proxies in estimation models, allowing

the reduction of MRE (Mean Relative Error) figures

as much as possible, saving project resources and
improving the overall project value for its

stakeholders (e.g. ISO 9126 parts 2-3-4 define a

plenty of measures to be read and applied).

• Perspectives/Viewpoint: a stakeholders’ analysis is

needed for understanding if the proper number of

viewpoints in included (or not) in a QM. If too few

perspectives have been included when designing a

QM, feedbacks could be lower than expected at the

delivery stage. A more comprehensive design can

reduce maintenance costs along the product expected

lifetime.

• Measurement: last but not least, the measurement
issue, that’s the lower level in a multi-tier model as a

QM is. People less skilled in measurement typically

affirm that not anything can be measured. But, as in

the introduction, if you are able to describe an entity

of interest, you’ll be also able to measure it (e.g.

using the GQM approach). ISO 15939 [10] refined

the GQM paradigm proposing MIM (Measurement

Information Model) template that could be a good

way to start defining how to monitor & control a

non-functional (quality) attribute for a product. The

suggestion is to follow a revised version of the well-
known 5W+H approach (who, why, what, when,

where, how), adding a second ‘H’ (how much), that

could represent ‘targets – thresholds’ for checking

the process-in levels for that measure.

 V. CONCLUSIONS AND NEXT STEPS

Quality Models (QM) represent a good way in Software

Engineering for evaluating software products from their

initial concept till their realization and in-use stage. Non-

functional requirements (NFR) are composed from

quality and technical requirements; thus quality is one the

two sides, maybe the more complex to analyze. Since
quality is a multifaceted concept, it’s very difficult to find

a complete and stable definition for it: quality definition

can evolve along time related to newer ways users could

request, of course influenced by technology (e.g.

smartphones, cloud computing, etc.). QM can help

sharing the view on products and be used both in a

qualitative (checklists) and quantitative way (measuring

low-level attributes with 1+ related measures).

This decade will consolidate some new technology

paradigm and will propose new ones: the important thing

will be to observe more interesting trends for proposing
evolutions and integrations of new, emerging facets for

quality more than creating new models at all. Again, even

if trivial, we need to clearly define which the entity to be

analyzed (product, process, project, organization,

resources) in order to avoid effort/cost estimation issues

[15]. Evolution, not revolution, can be the right way to

understand more about the ‘how’ realize better software

systems.

REFERENCES

[1] McCall J.A., Richards P.K. & Walters G.F., Factors in

Software Quality, Voll. I, II, III: Final Tech. Report,
RADC-TR-77-369, Rome Air Development Center, Air
Force System Command, Griffiss Air Force Base, NY,
1977

[2] Boehm B.W., Brown J.R., Kaspar H., Lipow H.,
MacLeod G.J. & Merritt M., Characteristics of Software

Quality, Elsevier North-Holland, 1978

[3] ISO/IEC, IS 9126:1991 - Information Technology -

Software product evaluation – Quality characteristics and
guidelines for their use

[4] ISO/IEC, IS 9126-1:2001 - Software engineering --
Product quality -- Part 1: Quality model

[5] ISO/IEC, IS 25010:2011 Systems and software

engineering -- Systems and software Quality
Requirements and Evaluation (SQuaRE) -- System and
software quality models

[6] ECSS, Space Engineering – System Engineering: Part 6.

Functional and Technical Specifications, European
Cooperation for Space Standardization, ECSS-E-10 Part
6A rev.1, October 31 2005, URL: www.ecss.nl

[7] ISO, 21351:2005 - Space systems -- Functional and
technical specifications

[8] Grady R. & Caswell D., Software Metrics: Establishing a
Company-Wide Program, Prentice Hall, 1987, ISBN

0138218447.

[9] EELES P., Capturing Architectural Requirements, IEEE
DeveloperWorks, 2005, URL: www-
128.ibm.com/developerworks/rational/library/4706.html

[10] ISO/IEC 15939:2007 - Systems and software engineering

748

-- Measurement process

[11] IFPUG, Function Points Counting Practices Manual

(release 4.3.1), International Function Point User Group,
Westerville, Ohio, January 2010, URL: www.ifpug.org

[12] IFPUG, SNAP (Software Non-Functional Assessment
Process) APM v2.2, June 2014, URL: www.ifpug.org

[13] Jones C., Applied Software Measurement: assuring
productivity and quality, 2/e, McGraw-Hill, 1996

[14] Lami G., Buglione L., Measuring Software Sustainability
from a Process-Centric Perspective, Proceedings of
IWSM-MENSURA 2012, 22th Int.Workshop on Software
Measurement and 7th Int. Conference on Software Process
and Product Measurement, Assisi (Italy), October 17-19
2012, pp.53-39

[15] Buglione L., Ebert C., Estimation, Encyclopedia of
Software Engineering, Taylor & Francis Publisher, June

2012, ISBN: 978-1-4200-5977-9

[16] ISO, IS 21351:2005, Space Systems – Functional and

Technical Specifications, May 19, 2005, URL: www.iso.ch
[17] PMI, Project Management Body of Knowledge

(PMBOK), 5th ed., 2013, www.pmi.org
[18] AXELOS, ITIL v3 – IT Infrastructure Library, Refresh

2011, 2014, www.itil-officialsite.com

[19] Kaplan R., Norton D., The Balanced Scorecard:
Translating Strategy Into Action, Harvard Business School
Press, 1996, ISBN 0875846513

[20] Basili V.B., Caldiera G. & Rombach H.D., The Goal
Question Metric Approach, Encyclopedia of Software
Engineering. Wiley 1994, URL:
www.cs.umd.edu/projects/SoftEng/ESEG/papers/gqm.pdf

749

