
ACTA IMEKO 
ISSN: 2221‐870X 
September 2015, Volume 4, Number 3, 53 ‐ 58 

 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 53 

Estimation of stepping motor current from long distances 
through cable‐length‐adaptive piecewise affine virtual sensor 

Alberto Oliveri1, Mark Butcher2, Alessandro Masi2, Marco Storace1 

1 Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture (DITEN), University of Genoa, Via Opera Pia  
11a, 16145, Genova, Italy 
2 Department of Engineering, CERN, 1211 Geneva, Switzerland 

 

 

Section: RESEARCH PAPER 

Keywords: virtual sensor; estimation; FPGA; piecewise‐affine functions 

Citation: Alberto Oliveri, Mark Butcher, Alessandro Masi, Marco Storace, Estimation of stepping motor current from long distances through cable‐length‐
adaptive piecewise affine virtual sensor, Acta IMEKO, vol. 4, no. 3, article 9, September 2015, identifier: IMEKO‐ACTA‐04 (2015)‐03‐09 

Editor: Paolo Carbone, University of Perugia, Italy 

Received February 13, 2015; In final form May 29, 2015; Published September 2015 

Copyright: © 2015 IMEKO. This is an open‐access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited 

Funding: Work supported by the University of Genoa. 

Corresponding author: Marco Storace, e‐mail: marco.storace@unige.it 

 

1. INTRODUCTION 

The LHC (Large Hadron Collider) at CERN is a circular 
particle accelerator which, as all machines of this kind, needs a 
collimation system to block highly energetic particles flying off 
their trajectories. If these particles are not properly collected, 
they can seriously damage the accelerator. The module that 
collects these potentially harmful particles is called collimation 
system and comprises some moving parts that need to be 
actuated with high precision inside the tunnel. Hybrid stepper 
motors are often used as the actuators in the collimation system 
because of their high positioning repeatability and open loop 
control [1]. These motors, and their electronic drives, are 
subject to a number of requirements that are relatively unique 
to accelerators. The environment surrounding the motors is 
highly radioactive and driver electronics are damaged by this 
radioactivity, then the drivers are placed in radiation-safe zones 
at a distance of up to 1 km from the motors. They must 
therefore be connected to the hybrid stepper motors via long 
cables, as shown in Figure 1. 

 

 
Pulse Width Modulated (PWM) control voltages are largely 

used to increase power efficiency; however, they generate 
significant electromagnetic interference (EMI) emissions, which 
can affect neighbouring electronics. High-frequency PWM 
chopping frequencies must therefore be used to shift the 
emissions to higher frequencies. These high-frequency voltage 
signals, nonetheless, cause the long cables to act as transmission 
lines, and produce a ringing phenomenon in the currents on the 
driver-side of the cable, the only side where measurements are 
possible. Figure 2 shows a comparison of the current in the 
driver-cable-motor circuit for a single motor phase. 

Good motor positioning repeatability is of great importance 
and requires to have real-time knowledge of the motor’s 
position, in order that compensatory action can be taken to 
correct any misalignments (i.e., steps losses). Radiation-hard 
resolvers are used to measure the motor position and to detect 
lost steps. It is, nonetheless, desirable to have sensor 
redundancy. Additionally, even if the stepping motors work at 
nominal torque, chosen by design to be at least twice the 
nominal load torque, having an estimate of the real load torque 
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can be useful to warn about degradation of the mechanical 
parts of the collimation system. 

A sensorless driver, based on an extended Kalman Filter 
(EKF), which can work with arbitrarily long power cables 
between the driver and motor has been developed in [2]. 

In order to use exclusively the motor model in the EKF, the 
algorithm’s inputs and measurements should be the motor-side 
voltages and currents, respectively. However, as previously 
stated, these signals are not directly available in ordinary 
operation since measurements can only be made on the drive 
side of the cable. In [2] a cable model is used to obtain a 
transfer function relating the motor-side current to the driver-
side current. The current is therefore estimated by means of a 
digital filter whose coefficients can be easily adapted to the used 
cable. 

A physical sensor is a hardware device that converts physical 
phenomena into electric signals. A virtual sensor, instead, uses 
mathematical models (usually obtained through a black box-
approach) and the reading of other physical sensors to 
indirectly estimate a given physical variable. Virtual sensors are 
basically nonlinear functions of past inputs and measured 
outputs of the considered system. They can be useful when 
some variables are not easily observable or measurable for 
various reasons, such as availability, cost or maintenance of a 
physical sensor. In summary, a virtual sensor can be used to 
estimate an unmeasurable system variable, without needing the 
knowledge of a mathematical model of the system. 

A procedure for the design of a virtual sensor is described in 
[3], which relies on choosing a suitable set of basis functions, so 
that the resulting virtual sensor satisfies the assumptions 
required to apply the theoretical results in [4]. In 0, [6] and [7], 
PWAS functions (i.e. PieceWise Affine functions defined over a 
Simplicial partition) have been proposed as basis functions for 
the design of virtual sensors. The main advantage of using 
PWAS functions is that they can be implemented very 
efficiently in digital programmable circuits such as FPGAs, 

providing low power consumption, fast response times, and, at 
least for high-volume applications, low cost. Moreover, 
convergence and optimality properties of the general approach 
[3] are maintained. 

In 0 a single PWAS function is used to obtain the estimate 
(standard virtual sensor), but if a relatively large number of inputs 
or measurable outputs is available, or if a large number of past 
data are used, the exponential increase of the complexity (curse 
of dimensionality) makes the approach impractical. An 
alternative solution (reduced-complexity virtual sensor) leading to a 
complexity reduction has been proposed in [6] and [7]. The 
method used for estimation of the motor-side currents in [2] is 
based on an approximation of a first principles model of the 
dynamical system relating the drive-side current to the motor-
side current. It therefore requires multiple, time intensive steps 
of modelling, parameter estimation and approximation to 
produce a real-time implementable, reduced-order estimator.  

In [8] the reduced-complexity PWAS virtual sensor has been 
used for the estimation of the motor-side current with a fixed 
cable length of 720 m. Here we generalize the sensor in order 
to make it cable-length-adaptive. The sensor is indeed designed 
(trained) starting from measurements obtained with cable 
lengths of 180 m, 360 m and 540 m while the validation is 
performed on measurements related to a 720 m long cable. 

A circuit architecture suitable for FPGA implementation has 
been also designed and simulation results considering fixed-
point data representation effects are shown. 

2. PWAS VIRTUAL SENSOR 

In this section the PWAS virtual sensor approach is briefly 
summarized. 

Consider the following nonlinear discrete-time dynamical 
model: 

ାଵݔ ൌ ݃ሺݔ,  ሻݑ

ݕ ൌ ݄௬ሺݔሻ 

ݖ ൌ ݄௭ሺݔሻ 

where ݔ ∈ Թೣ is the state vector, ݑ ∈ Թೠ is the exogenous 
input vector of manipulated variables, ݕ ∈ Թ is the vector of 
measurable outputs, and k denotes the discrete-time instant. 
Vector ݖ ∈ Թ collects a set of variables to be estimated. We 
assume that the vector ݖ can be measured by a real sensor for 
݇ ൌ 0,… , ܭ െ 1. A portion of these measurements, from 
݇	 ൌ 	0 to ݇	 ൌ ௧ܭ	 െ ௧ܭ ,1 	൏  is considered as a training set ,ܭ	
and is used to design the virtual sensor, which will operate 
without measuring ݖ; the remaining data, from ݇	 ൌ  ௧ toܭ	
݇	 ൌ ܭ	 െ 1 is used as a validation set to verify the estimation 
capabilities of the virtual sensor. We aim to construct a virtual 
sensor that estimates ݖ for ݇   when the real sensor is no ,ܭ
more available. The functions ݃ሺ∙,∙ሻ: Թೣ ൈ Թೠ → 	Թೣ , 
݄௬ሺ∙ሻ: Թೣ → 	Թ and ݄௭ሺ∙ሻ: Թೣ → 	Թ are assumed to be 
unknown. For the sake of simplicity, we assume ݊௭ 	ൌ 	1; non-
scalar ݖ can be easily estimated component-wise. 
Since the actual variables ݑ ,ݕ and ݖ at past time instants are 
not available, the noisy measurements of them are assumed to 
be: 

ݑ ൌ ݑ  ݇					௨,ߟ  0									 

ݕ ൌ ݕ  ݇					௬,ߟ  0									 

ݖ̃ ൌ ݖ  0					௭,ߟ  ݇ ൏  ܭ

Figure 1. Illustration of the connection of a 2‐phase hybrid stepper motor to
its driver via a long cable, with the corresponding phase currents. 

Figure 2. Comparison of  the current  in  the driver‐cable‐motor circuit  for a
single motor phase: Driver‐side (blue) and Motor‐side (red). 
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where ߟ௨, ߟ௬ and ߟ௭ are unmeasured stochastic variables. For 
given values of ܯ௨, ܯ௬ and ܯ௭, the inputs of the virtual sensor 
will be noisy sequences of measurements of ݕ and ݑ, and a 
vector of past values of ̂ݖ, namely 

෩ܷ ≜ ିெೠାଵݑൣ
் ିெೠାଶݑ			

் ݑ			⋯		
்൧
்
								 

෨ܻ ≜ ቂݕିெାଵ
் ିெାଶݕ			

் ݕ			⋯		
்ቃ
்
								 

መܼ ≜ ିெݖ̂ൣ
் ିெାଵݖ̂			

் 		⋯			 ିଵݖ̂
் ൧

்
								 

The values of ܯ௨, ܯ௬, ܯ௭ are generally considered as tuning 
parameters. 

2.1. Standard virtual sensor 

The standard virtual sensor is obtained by estimating ݖ in 
the following way: 

ݖ̂ ൌ ݂ௐௌ൫ ෩ܷ, ෨ܻ, መܼ൯																																																															ሺ1ሻ 

݂ௐௌ being a PWA function defined over a simplicial partition 
made up of ௦ܰ vertices and represented through the ߙ-basis, 
i.e., 

݂ௐௌሺݔሻ ൌ 	ݓߙሺݔሻ.

ேೞ

ୀଵ

																																																										ሺ2ሻ 

By denoting as ݒ, ݆ ൌ 1,…  the vertices of the ݏ_ܰ,
simplicial 
partition, functions ߙሺݔሻ are PWAS functions such that 

൯ݒ൫ߙ ൌ 1,	 if 		݅ ൌ ݆ 

൯ݒ൫ߙ ൌ 0,	 if 		݅ ് ݆ 

Once the basis functions and the simplicial partition are 
selected, weights ݓ uniquely define ݂ௐௌ and, in case the ߙ-
basis is used, they correspond to the value of the function in 
the partition vertices, i.e., ݓ 	ൌ 	 ݂ௐௌሺݒሻ. A detailed 
discussion about PWAS functions can be found in [9]. 
Weights vector ݓ	 ൌ 	 ሾݓଵ  ேೞሿܶ is obtained by solving theݓ…
following optimization problem: 

min
௪

ቐൣ̃ݖ െ ݂ௐௌ൫ ෩ܷ, ෨ܻ, መܼ൯൧
ଶ
 Γw்ݓߪ

ିଵ

ୀெ

ቑ																ሺ3ሻ 

 the ߪ ,௧ being the number of elements in the training setܭ
Tikhonov regularization parameter and 
	ܯ ൌ maxሺܯ௨,ܯ௬,ܯ௭ሻ. 

The first term can be reformulated as a quadratic function of 
 and takes into account the square error between the value of ݓ
the PWAS function (i.e., the estimated data) and the actual data 
 . The second term performs a Tikhonov regularization thatݖ̂
depends on the structure of Γ. In the simplest case, Γ ൌ  ܫ
provides the zero-order Tikhonov regularization. First-order (or 
higher order) Tikhonov regularizations can be obtained 
alternatively by considering the gradient of the PWAS function 

݂ௐௌ (or higher order derivatives) in constructing	Γ. The 
choice of the regularization parameter ߪ is quite critical since it 
can highly influence the performances of the virtual sensor. A 
low value may lead to an ill-conditioned problem, i.e. the 
solution is sensitive to small changes in data. A high value may 
lead to an inaccurate estimate of the unmeasurable output. 

The regularized least squares problem (3) can be recast as an 
unconstrained quadratic programming (QP) problem in the 
form: 

min
௪

ݓܪ்ݓ 
1
2
 ሺ4ሻ																																																																			ݓ்݂

A rigorous convergence analysis of the standard virtual 
sensor is reported in 0. 

2.2. Reduced‐complexity virtual sensor 

The reduced-complexity virtual sensor approach expresses 
the estimate ̂ݖ as a sum of lower-dimensional PWAS functions, 
in order to mitigate the effects of the curse of dimensionality, 
which prevents the applicability of the standard virtual sensor in 
many applications. For the sake of compactness, henceforth the 
input of the virtual sensor is referred to as 

Ξ ≜ ൣ ෩ܷ
்					 ෨ܻ

்					 መܼ
்൧
்
																																																																ሺ5ሻ 

where ݊క ≜ ௨݊௨ܯ  ௬݊௬ܯ ܯ௭. Assume to split vector Ξ 
into ߥ ∈ Գ subsets Ξଵ, Ξଶ, … , Ξఔ, such that all elements of Ξ are 
included in one and only one of these subsets. Each subset Ξ 
(݆	 ൌ 	1, … , has dimension equal to ݊ (ߥ ,	such that 1  ݊ 
݊క and ݊ଵ 		݊ଶ 	 ⋯		݊ఔ 	ൌ 	݊క. The ݊ elements of each 
Ξ are denoted as ߦ,ଵ, ,,ଶߦ … , -. The proposed reduced	,ೕߦ
complexity virtual sensor is defined through a sum of PWAS 
functions ݂ௐௌ

 , ݆	 ൌ 	1, … ,  each being the weighted sum of ,ߥ

ܰ PWAS basis functions: 

ݖ̂ ൌ ݂ௐௌሺΞሻ ൌ ݂ௐௌ


ఔ

ୀଵ

൫Ξ൯ ൌݓ,ߙ,ሺΞ
ሻ

ேೕ

ୀଵ

ఔ

ୀଵ

		ሺ6ሻ 

where ݂ௐௌ:	Թ
 → Թ (for fixed ݓ), ߙ, denotes the ݅-th ߙ-

basis of the ݆-th PWAS function and ܰ is the number of basis 
functions in each domain Ξ . Also, 

ݓ ≜ ଵ,ଵݓൣ ଶ,ଵݓ	ଵ,ேభݓ⋯ ଶ,ேమݓ⋯ ఔ,ଵݓ	⋯ ఔ,ேഌ൧ݓ⋯
்
															ሺ7ሻ 

The vector of parameters ݓ (which determines the shape of 

݂ௐௌ) is obtained, as for the standard virtual sensor, by solving 
the least-squares problem 

min
௪

ቐሾ̃ݖ െ ݂ௐௌሺΞሻሿଶ  Γw்ݓߪ

ିଵ

ୀெ

ቑ																													ሺ8ሻ 

The regularized least squares problem (8) can be recast again 
as an unconstrained QP problem in the form (4). A rigorous 
convergence analysis of the reduced-complexity virtual sensor is 
reported in [7]. 

3. DESIGN OF THE SPECIFIC VIRTUAL SENSOR 

In this section, the specific virtual sensor design is described. 

3.1. Virtual sensor architecture 

We exploited the capabilities of MOBY-DIC Toolbox for 
MATLAB [10] to train a reduced-complexity PWAS virtual 
sensor for the cable-length adaptive estimation of the motor-
side current, starting from measurements of the drive-side 
current. The same tool also allowed the automatic generation of 
VHDL files describing a circuit architecture for the FPGA 
implementation of the sensor. The block scheme of the 
architecture, described in detail in [7], is shown in Figure 3. At 
each sampling time, the values of the system inputs ݑ and 
measurable outputs ݕ are loaded into First-In-First-Out 
(FIFO) blocks which behave as buffers, storing the data at 
current and past time instants (i.e. ෩ܷ

் and ෨ܻ
்). Once the FIFO 
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blocks are full, the computation of the estimated output is 
performed by the PWAS_i (݅ ൌ 1,… ,  blocks, which are (ߥ
responsible for the evaluation of the ߥ PWAS functions. A 
detailed description of these blocks is available in [11]. Each 
PWAS_i block communicates the end of its computation with a 
ready_i signal; as soon as all ready_i signals are active, the results 
of each function evaluation (fpwas_i) are added up by an adder 
block, which provides the estimation of the unmeasurable 
output ݖ, and a global ready signal is set to logic value ‘1’ 
indicating that the result is available. If ܯ௭  0, the estimation 
is brought back to the FIFO_z block and is used as input for 
next estimations. An affine scaling of ̂ݖ (performed by block 
SCALE_z) is necessary to bring the value to the correct range 
needed by circuit inputs. The architecture, has a latency of 9 
clock cycles (i.e., 180 ns at 50 MHz). 

In our case we have ݊௨ 	ൌ 	0, ݊௬ 	ൌ 	2 and ݊௭ 	ൌ 	1, in 
particular ݕ contains the drive-side current and the cable length 
and ݖ is the motor-side current. We designed the sensor by 
heuristically setting ܯ௬ 	ൌ 	1 and ܯ௭ 	ൌ 	2. The domain of the 
PWAS functions constituting the virtual sensor has been 
partitioned by using two subdivisions along the axis 
representing the drive-side current and only one subdivision 
along the axis representing the cable length. 

3.2. Experimental dataset 

A dataset made up of 2,000,000 samples of the drive-side 
current and the corresponding motor-side current, sampled at 
500 kS/s was employed. The samples correspond to 4 different 
cable lengths: 180 m, 360 m, 540 m and 720 m (500,000 
samples for each length). Figure 4 shows the drive-side currents 
for the different cable lengths. 

In order to acquire simultaneously both the drive-side and 
motor-side currents, two channels of an 8-bit oscilloscope were 
used to oversample the signals at 10 MS/s to avoid aliasing. 
Current probes based on combined Hall Effect and Current 
Transformer technologies were used as the sensors. The scope 
has an effective resolution of 64 mA, which corresponds to a 
quantization noise variance of 0.0642/12 = 0.000341 A2. The 
probes have a 3σ accuracy of 0.25 A. Considering the noise 
sources to be independent, the combined variance can be found 
by summing the individual variances in quadrature. This sum 
leads to an effective standard deviation of 85.4 mA, which can 

be considered acceptable compared to the 2√2 A amplitude of 
current waveform. 

The 10 MS/s sampled data is then low pass filtered to 
attenuate all frequency components above 250 kHz to below 
the quantization level before downsampling the signals to 500 
kS/s. This lower rate is high enough to capture the significant 
PWM-excited harmonics, but low enough to be sampled by 
standard drive ADCs, using analog anti-aliasing, thereby 
allowing real-time estimator implementation. 

The samples corresponding to cable lengths of 180 m, 360 
m and 540 m have been used as a training set, to derive the 
weights ݓ. The remaining 500,000 samples (corresponding to 
cable length 720 m) have been used to validate the virtual 
sensor. 

The weights ݓ defining the PWAS virtual sensor, see (6), are 
shown in Table 1. 

4. RESULTS 

Figures 5 and 6 show the measured motor-side current of 
the validation dataset (blue) and the estimated current obtained 
by the FPGA in fixed-point precision (red). The root mean 
squared (RMS) estimation error obtained is 0.0858 A in fixed 
point precision and 0.0794 A in MATLAB double precision, 
whilst the overall current waveform has an RMS value of 2 A. 
In [8] a lower RMSE value was obtained by employing the 
PWAS virtual sensor, nevertheless that sensor was trained with 
measurements taken with a 720 m long cable, while here the 
training is performed with data referred to different cable 
lengths, and the cable length is a sensor input. This solution is 
therefore more general, since it is cable-length-adaptive. 

The motor-side estimated current obtained with the 

Figure 4. Drive‐side currents for different cable lengths. 

 
Figure 3. Block scheme of the circuit implementing the reduced‐complexity 
virtual sensor. 

Table 1: Weights of the three PWAS functions constituting the reduced‐
complexity virtual sensor. 

wଵ,ଵ wଵ,ଶ wଵ,ଷ wଵ,ସ  wଵ,ହ wଵ,

െ0.3474 െ0.1560 0.6341  0.2473  െ0.1559 0.0123
 

ଵ,ଵݓ  ଵ,ଶݓ  ଵ,ଷݓ
െ9.9865 0.1665  10.0544 

 
ଵ,ଵݓ  ଵ,ଶݓ  ଵ,ଷݓ

3.9596 െ0.0135  െ3.7117 
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estimator in [2] in MATLAB double precision is shown in 
Figure 7 for comparison. The RMS estimation error is 0.0454 
A. Despite being lower than that obtained with the proposed 
method, it requires significantly more effort to obtain the 
estimator. Depending on the application, this extra effort may 
not be worth the small increase in estimation precision. 

Figure 8 shows the estimation errors for both estimators, 
PWAS virtual sensor (blue curve) and estimator in [2] (red 
curve). Mean value and variance are -0.017 and 0.007, 
respectively, for the PWAS case and 2.5 10-3 and 2.1 10-3, 
respectively, for the case in [2]. 

5. CONCLUSIONS 

We designed a piecewise-affine virtual sensor for the 
estimation of motor-side current of hybrid stepper motors, 

starting from measurements of drive-side currents through 
cables of different length. This sensor is therefore cable-length-
adaptive. A circuit architecture has also been designed for the 
implementation of the virtual sensor. The proposed solution 
exhibits slightly poorer performances compared with the ones 
obtained by standard model-based estimators, but results in a 
much faster and simpler design, since the identification of a 
model is not required. Furthermore, even this slightly higher 
estimation error is negligible compared to the waveform 
amplitude and so allows the desired current levels to be tracked 
such that a negligible effect occurs on the motor position and 
torque.  This latter is usually chosen to include a significant 
safety margin anyway. 
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