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Abstract  - The paper deals with the definition of dynamic performance of Analog-to-Information Converters
(AICs). These components allow  of  overcoming the sampling frequency limits of the  Shannon's theorem, by
assuming that the observed signal has a sparse representation in a given domain. The paper aims to verify the
behavior of standard parameters currently defined for Analog-to-Digital Converters when applied to the AICs.
To this aim, several  simulations and experimental  tests have been carried out to study the influence, in the
frequency domain, of quantization noise and nonlinearity on the AIC dynamic parameters.

I. Introduction

Recent studies about Compressed Sensing (CS) theory demonstrate that it is possible to recover a signal from
fewer samples than those required in Shannon's theorem, when the signal  is sparse or compressible in some
transform domain [1], [2]. Based on these emerging CS techniques, some architectures of Analog-to-Information
Converters (AICs) have been proposed. They could become an alternative to conventional Analog-to-Digital
Converters (ADCs) in  applications where  the  signal  information is concentrated in a limited number of high
frequencies [3]. For example, some important radar and communication applications require high sampling rates,
but, since even high resolutions are needed, their requirements cannot be achieved by current ADCs [4].
The idea, underlying the AIC is to spread the frequency content of the input signal such that the high frequency
components are folded back to low frequencies, in order to pass the anti-aliasing filter of the subsequent ADC,
having a lower sampling frequency than that required by the Shannon's theorem for the original signal.  The
architectures proposed to realize the AIC concept are basically three, each implementing the frequency spreading
by exploiting: (i) non-uniform [5] or random sampling [6], (ii) random filters [7], and (iii) random demodulation [4]. 
The aim of the research is to define performance parameters and test methods for AICs, starting from the state of
art of research and the scientific knowledge about ADC testing. To this aim, the first step is the application to
AICs  of  standard  parameters  and  test  methods,  actually  defined  for  ADCs in  order  to  study how they  are
influenced by (i) the AIC architecture type, (ii) the AIC design parameters, and (iii) the circuit non-idealities.
In the scientific literature few papers can be found, facing the AIC testing and most of them take into account
only a reduced set of figures of merits and influencing parameters [8].
This paper has the aim of defining the performance of an AIC to reconstruct an input signal that is sparse in the
frequency domain. Therefore, the behavior of the dynamic parameters in the frequency domain, such as Signal to
Noise Ratio (SNR), Signal to Noise and Distortion Ration (SINAD), Total Harmonic Distortion (THD) and
Spurious Free Dynamic Range (SFDR) has been observed, when some of the influencing parameters are varied,
such as the ADC resolution and nonlinearity, and the test signal frequency.
To this aim, first, simulation tests have been carried out, by modeling nonlinearity and quantization of the ADC
included in the AIC. Then, experimental tests have been carried out on an AIC prototype.
The AIC architecture considered in this paper is based on the random demodulation, as it does not require a high
sampling frequency ADC. However, test methods and considerations can be easily extended to the other types of
AIC architectures.
The paper is organized as it follows: In Section II, an introduction of the random demodulation AIC architecture
is given. Then, in Section III and Section IV, the results of the simulation and experimental evaluation phases are
reported and discussed, respectively.

II.  The  random  demodulation  AIC  architecture

A block scheme of the random demodulation AIC architecture is shown in Fig.1.  Considering an observation
window with a duration ∆t, the analog signal to be acquired x(t), defined in the time window, having a Nyquist
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frequency equal  to  fp,  would  need  a  sampling  frequency  at  least  of  Fs=2fp,  if  acquired  according  with  the
Shannon's theorem, and would give in this case a vector of N= ∆t Fs samples x = [x1, …, xN].
Instead of directly sampling it, x(t) is mixed with a Pseudo-Random Binary Sequence (PRBS), having a bit rate
equal to or greater than fp. This mixing process allows of spreading the harmonic content of the signal, so that at
least a spectral replica falls within the Nyquist band ([0, fs/2] Hz) of the following ADC. Then, the mixed signal
is low-pass filtered and digitized using a sampling frequency fs lower than Fs,  giving as output a vector of M=
∆t fs samples y = [y1, …, yM], where M < N.
The low-pass filter is in charge of avoiding aliases [10]. Finally, a reconstruction algorithm allows of obtaining
an estimate x̂ , from the elements of the vector y, which represents an undersampled version of x.
The reconstruction algorithm should solve one of the following optimization problems:

x̂=argmin∥x∥1
  s. t.  y=ΦΨ x , (1)

or

x̂=argmin∥x∥1    s. t. ∥y−ΦΨ x∥∞<ε , (2)

where,  Φ  is  the matrix  modeling the mixing and  filtering blocks,  Ψ  is  the matrix  modeling the Fourier
Transform, ∥.∥1

and ∥.∥∞  are the l1 and l∞  norms.

The  former  problem  contains  an  equality  constraint  while  the  latter  problem  relaxes  the  constraint  to  an

inequality that allows of considering noise and nonlinearity. In this case, ε determines the number of frequency
components to be detected in the input signal. In order to reconstruct a sparse signal in the frequency domain, the
AIC should identify only the components of the input signal,  and discard those corresponding to noise and

nonlinearity. In this case, ε should be chosen greater than the squared root of the sum of the powers of noise and
nonlinearity [8].

III. Simulation tests

During  simulation  phase,  the  mixing  and  filtering  blocks  of  the  AIC  have  been  modeled  as  a  matrix
multiplication, as shown in [10]. Therefore, as suggested in  [10], a diagonal matrix  D, having as elements the
values of the PRBS, and a matrix H from the impulse response of the filter, have been computed. Matrix Φ  has
been then obtained as:

Φ=M D (3)

Instead, the ADC has been modeled as a sequence of nonlinearity and quantization, where the nonlinearity has
been obtained, as in [8], using the following third order polynomial function:

f (a )=
a+c3 a3

1+c3

(4)

The Dantzig selector [11] has been used as reconstruction algorithm, solving the optimization problem in (2), as it
is implemented in the l1-magic Matlab toolbox [12], for both the simulation and the following experimental phase.
In order to verify the behavior of the standard parameters in the frequency domain, simulation tests have been
performed on a sine wave acquired using 100 blocks, each with N=256 samples, by using a bit rate of the PRBS
equal to 200Mbit/s and the ADC sampling frequency equal to fs=50 MSa/s. According to the assumptions made

Fig. 1. Block diagram of the random demodulation AIC architecture.
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above this choice allows a Nyquist frequency of the equivalent ADC fp = 200 MSa/s
An  estimate  of  the  output  signal  Power  Spectral  Density  (PSD),  obtained  by  averaging  the  Fast  Fourier
Transforms (FFTs) of the 200 acquired blocks has been used to estimate the frequency domain parameters. 
Several  tests have been performed for different values of: (i) the test signal  frequency,  (ii)  the nonlinearity

parameter c3, (iii) the ADC resolution, (iv) the undersampling ratio fs/2fp, and (v) the parameter ε. Some of the
obtained results are presented in the following Sub-Sections.

A. Dynamic  figures  of  merit  vs.  test  signal  frequency
These tests have been carried out with undersampling ratio to 1/4, resolution to 10 bits, modeled using an ideal
quantizer, followed by the nonlinearity in (4), with c3 = 0.2, ε  = 0.01, and the test signal frequency ranging in the
range from 10 MHz to 90 MHz, with a step of 10 MHz.
The results, reported in Fig. 2, show a decrease of the performance around 50 MHz, due to an exact overlapping
of some signal higher order harmonics.

B. Dynamic  figures  of  merit  vs.  nonlinearity
In this case,  test signal  frequency has been fixed to 10.16 MHz, and  ε equal  to 0.1, while the nonlinearity
parameter c3 has been varied in the set {0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. Results are shown in Fig.3, for two cases,
when no quantization has been introduced (square markers)  and when a 10 bit  resolution is used (diamond
markers). A relevant aspect is that a nonlinearity increase affects not only the frequency bins where the signal
harmonics are located, but an increase of the noise floor has been observed, too, even if the quantization nois e
remains unchanged. This behavior can be easily observed in Fig.3d, where the SNR is reported, which shows a
trend very similar  to the SINAD reported in Fig.3b.  This is probably due to the spreading of the harmonic
content introduced by the mixing with the PRBS sequence. By taking into account this aspect, a redefinition of
the THD or different interpretation of its value is needed for AICs.

C. Dynamic  figures  of  merit  vs.  parameter  ε 
These tests have been carried out using a test signal frequency fixed to 21.06 MHz, nonlinearity parameter  c3

equal  to  0.2  and  ADC resolution  set  to  10  bits.  The  results,  reported  in  Fig.  4,  show an  increase  of  the
performance with  ε,   since a higher value of  ε allows discarding a greater  number of components from the
reconstructed signal.  Since,  in this case,  a single sinewave signal  is  used, the discarded components always
belong to noise and distortion.
Although in the practical case, ε should be chosen greater than the squared root of the sum of the powers of noise
and  ADC nonlinearity, it is important for the AIC testing purpose to know how the dynamic figures of merit
behaves  at  lower  values  of  ε,  in  order  to  observe  how  nonlinearity  and  noise  component  will  affect  the
component.

IV.  Preliminary  experimental  evaluation

A preliminary experimental phase has been carried out, by setting up an AIC prototype. It is composed by: (i) an
AD8342-EVALZ mixer evaluation board from Analog Devices, (ii) a Tektronix TDS5104B oscilloscope which
realizes  the  filter  and  the  Analog  to  Digital  conversion,  and  (iii)  a  laptop  computer  that  executes  the
reconstruction algorithm. The computer controls a Tektronix AWG420 Arbitrary Waveform Generator, which
generates the PRBS, and an Agilent E4438C signal generator, which generates the test signal. 
A 10 MHz reference signal has been used to synchronize the Agilent E4438C, the Tektronix AWG420 signal
generators and the Tektronix TDS5104B oscilloscope, in order to guarantee the coherent sampling condition,

Fig. 2. Simulation results of SFDR (a), SINAD (b) and THD (c) obtained
for values of the input test frequency ranging from 10 to 90 MHz.
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while  the  CH1 MARKER OUT line  of  the  Tektronix  AWG420  is  used  to  trigger  the  oscilloscope  to  the
beginning of the PRBS.
The whole laboratory setup is shown in Fig. 5. Since a minimal resolution is needed for the signal reconstruction,
the oscilloscope resolution has been increased by oversampling and averaging the samples by a factor of 25, thus
bringing the resolution to about 10.3 bits. Therefore, the sampling frequency of the oscilloscope has been set to
1.25 GSa/s, giving an equivalent sampling frequency of 50 MSa/s. The bit-rate of the PRBS has been set to 200
Mbit/s. For the test purposes, sinewave test signals have been generated with frequency ranging from 5 MHz to
95 MHz, and the figures of merit have been evaluated on spectra obtained averaging the FFTs obtained from 200
records, each 512 samples long.

A. Dynamic figures of merit vs. epsilon
In Fig. 6 the results of the figures of merit vs. the reconstruction parameter ε are shown. As it can be seen, the

Fig. 4. Simulation results of SFDR (a), SINAD (b) and THD (c) obtained by varying the reconstruction
parameter ε in the set {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1}.

Fig. 3. Simulation results of SFDR (a), SINAD (b), THD (c) and SNR (d), obtained by varying the
nonlinearity parameter c3, without quantization (square markers) and when a 10 bit resolution quantization is

applied (diamond markers).
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AIC performance increases with  ε, since a higher value of  ε allows excluding a higher number of noise and
distortion components.

B. Dynamic figures of merit vs. test signal frequency
In Fig. 7, some results, showing the trend of the AIC figures of merit versus the input signal frequency are given.
In this case, it can be noted a performance improvement with the frequency, mainly reported by the SINAD and 
the THD, due to a lowpass behavior of the system, that filters out some higher order harmonics.
It can be noted that the reduction of performance around 50 MHz, observed in simulation, is not more observable
in  experimental  results,  probably  due  to  the  noise  that  avoids  the  exact  overlapping  of  some  unwanted
components.

V. Conclusions  and  further  work

In this paper, the definition of parameters and test methods for AICs has been faced, by evaluating the behavior
of standard figures of merit when some of the AIC influencing parameters have been taken into account. The
analysis has been conducted on the random demodulation architecture, first in simulation, where it was possible
to change even the resolution and the nonlinearity of the internal ADC, and then in an experimental phase, on a
AIC prototype. The results showed that figures of merit evaluated in the frequency domain, actually defined for
ADCs, could generally be used to metrologically characterize random demodulation AICs. However, attention
should be paid to the use of the THD, since the energy of signal harmonics is not more concentrated to few
spectral lines, but is spread all over the observed band. In addition, the figures of merit should be evaluated for
several  values  of  the  reconstruction  parameter  ε,  since  high  values  of  ε  can  hide  the  effects  of  noise and
distortion.

Fig. 5. Laboratory setup  for the experimental tests.

Fig. 6. Trend of SFDR (a), SINAD (b), and THD (c), versus the parameter ε 
in the set {0.01, 0.04, 0.08, 0.12, 0.16. 0.20}.
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Further  work  is  directed  to  a  deeper  experimental  investigation,  by  using  an  ADC  circuit  instead  of  the
oscilloscope, thus removing the need of oversampling and averaging. Moreover, the analysis should be extended
to other AIC architectures, such that based on random sampling, and to the figures of merit evaluated in the time
domain.
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Fig. 7. Trend of SFDR (a), SINAD (b), and THD (c), versus the input signal frequency, 
ranging from 5 to 95 MHz.
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