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1. THE IMPORTANCE OF MEASUREMENT SCIENCE 

The importance of measurement in natural science and 
technology is undeniable. Measurement is the essential tool of 
scientific investigation and discovery, and it enables the 
complex phenomena of the universe to be described in the 
precise, concise and universal language of mathematics, without 
which it would, in general, be impossible to deduce laws from 
scientific observation or to formulate useful theoretical 
constructs. In technology, the increasing complexity and speed 
of many modern processes and machines, make automatic 
control essential, and such control is not possible without 
satisfactory means of measurement. 

The last three decades have seen spectacular advances in the 
technology of measurement of physical quantities. The 
development of electrical sensors and electronic data handling 
have vastly extended the range of what can be measured. 

Measurement is also making spectacular advances in areas in 
which it had not hitherto been fruitfully or extensively applied. 
The social, political, economic and behavioural sciences are to 
an increasing extent adopting quantitative techniques. The size 
and complexity of modern society provides difficult problems 
of planning and control and such activities require data derived 
from measurement which modern computers make increasingly 
possible to acquire and handle. 

Yet in spite of the general recognition of the importance of 
measurement, the progress in its techniques and the spread of 
its practical application, there is widespread neglect of its 
fundamental problems. We have not seen a development of 
Measurement Science as a widely recognised, distinct branch of 
knowledge. The teaching of the principles of measurement is 

neglected in many academic curricula and this neglect is, if 
anything, increasing. 

The question must be asked whether a Measurement Science 
as an organised, systematic body of knowledge setting out to 
embrace all aspects and fields of measurement is needed, and, if 
needed, whether it is possible to build one. 

It might appear superficially that the impressive 
development of the technology of measurement achieved by 
pragmatic approaches shows that a theoretical structure of 
Measurement Science is to a large extent superfluous. The 
opposite, however, is true. The very wealth of subject matter 
and the explosive growth of scientific information in the field 
mean that this material must be systematically organised and 
general principles derived. Without a theoretical framework 
measurement technology would be just a catalogue of 
techniques and instruments, which a student would find too 
vast to assimilate, while the practising scientist or engineer 
would find it impossible to retrieve the right information to 
lead him to optimal solutions of problems. Studies of 
measurement without a firm theoretical basis do not have the 
intellectual rigour to justify their place in the academic 
curriculum, which their practical importance demands. 

Granted that there is a need for a Measurement Science, is it 
possible to formulate principles and methods which have 
general application to all measurement and which are not trivial 
platitudes? The answer must be, that any measurement problem 
requires a scientific understanding of the particular 
phenomenon or process under investigation, and generally the 
bringing together of a wide range of technologies to its solution 
such as fine-mechanics, electronics, nucleonics and the like. 
But, while each field of measurement has its own peculiar 
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features, and while measurement in one or other of its 
applications involves virtually all other technologies, a general 
principle of measurement, which are valid and useful, can be 
formulated, and indeed, have been, developed to a high degree 
of sophistication. 

The principles of measurement are scattered in the literature 
of a variety of fields: Philosophy of Science, Statistics and, 
above all, that body of knowledge which is becoming known as 
Systems Science and Engineering. It is important to collect 
these principles together, to synthesize them into a coherent 
whole, and to bring them to bear in a fruitful way on the 
problems of the Technology of Measurement. 

2. SCOPE AND NATURE OF PRESENT SURVEY 

Current development of Measurement Science by engineers 
has in the main proceeded along two major lines. One is the 
treatment of measurement information by the methods of 
information and signal theory. The other is the systemic analysis 
of measuring instruments and systems using the approach of 
dynamic systems analysis and of general network theory. The 
essence of these approaches is the concept that measuring 
systems operate by the transformation according to a 
prescribed functional relation of a measurand into an 
observable. 

It would be tempting to try to survey the general structure of 
Measurement Science as it stands at present. Such an approach, 
however, would be too superficial to be useful. It is proposed 
therefore to examine one aspect of the subject only, its logical 
foundations and epistemology. The paper will attempt to review 
our understanding of the way in which we create an image of 
reality in terms of numbers and signals, a step which must 
precede the subsequent processing of the information. 

Even the relatively limited topic tackled is too wide to be 
treated in this review with absolute rigour nor can all 
controversial philosophical points be critically discussed. All 
that is proposed is to outline key concepts as they are seen by 
the author. 

For detailed discussions and comprehensive bibliographies 
readers are referred to references [1-7]. 

3. HISTORICAL DEVELOPMENT OF THE EPISTEMOLOGY OF 
MEASUREMENT 

The logical foundations of measurement – the relation 
between the material universe and mathematics – have been 
studied since the dawn of science. One may perhaps date 
interest in the subject from Pythagoreans and their view that all 
things are number. Aristotle presented the first analysis of the 
philosophical problems of measurement in his Metaphysics. 
Plato made a distinction between pure arithmetic and. its 
application to the real world and this greatly influenced 
subsequent thinkers. Platonic idealism diverted attention from 
the problems of logical analysis of measurement. A major 
landmark in the progress of understanding of the relations 
between numbers and the real world has been the establishment 
by Descartes of the connection between algebra and geometry. 
Newton was also concerned with the logical foundations of 
measurement in his development of the theory of fluents. 

The foundations of the modern study of the epistemology 
of measurement with reference mainly to Physics have been laid 
down by Helmholtz [8] in the last century. This work has been 
extended and developed in the twenties of this century in the 
lucid writings of Campbell [9, 10]. 

Mathematicians concerned with the logical basis of their 
subject have naturally been concerned with the axioms of 
quantification. Russell [11], Frege [12], Hoelder [13] and Wiener 
[14] have among others explored this topic. 

Philosophers of science have also given measurement their 
attention in recent times within the general context of their 
subjects. It may be invidious to single out particular 
contributions but one can perhaps mention the work of Carnap 
[15], Cohen, Nagel [16], Suppes, Zinnes [7] and Ellis [1]. 

The logical foundations of measurement have been 
involved in the studies of the theory of dimensions by such 
writers as Bridgman [17], Wallot [18], Stille [19] and others. 

The principal problems that have motivated the modern 
development of the study of the logical foundations of 
measurement have been above all the need to develop the 
methods of measurement in psychology, with which the 
classical approach of Helmholz could not deal, since it was 
based on the possibility of additive combination of quantities, 
which cannot be achieved in the case of say psychophysical 
responses to stimuli. The work of Stevens [20], Thurstone [21], 
Torgerson [22], Suppes and Zinnes [7] among others, have in 
dealing with psychological problems extended the frontiers of 
our understanding of measurement against, often, the 
conservative opposition of physical scientists. 

Another area where the need for quantification is growing is 
that of Econometrics and Utility Theory. This has led among 
others to the work on measurement theory of Pfanzagl [2]. 

This brief historical note is not intended to be 
comprehensive or to evaluate critically the individual 
contributions of the various workers but merely to provide a 
sketch of the antiquity of the problem, and the wide circles of 
workers concerned with it, to give credit to some of the 
principal contributors and to mention a few key publications. 

4. EPISTEMOLOGY OF MEASUREMENT AND THE TECHNICAL 
SCIENCES 

In spite of the importance of measurement in technology 
logical analysis of measurement has received virtually no 
treatment in the literature of technical measurement. 
Discussions of the subject by engineers are rare. The view is 
often held that the problems of epistemology of measurement 
are of no practical interest in technology since the nature of 
technical measurement is self evident and satisfactorily 
understood. 

It is important to assert the opposite in this survey. In 
automation of industrial processes one of the outstanding 
practical problems is the monitoring by automatic means of 
complex product properties, such as flavour of foods or 
appearance of a decorative surface. It is by no means obvious 
how one can express such qualities in numbers. The practical 
solution of the problem depends upon the proper application 
of the epistemology of measurement. 

Again in the design of engineering systems especially in 
technical cybernetics it is commonly necessary to formulate 
performance criteria which quantify various system 
characteristics and combine these quantities with different 
weightings so as to form a measure of the total utility of the 
design. A sound approach to this neglected problem requires an 
understanding of the fundamental nature of quantification. 

Finally in the problem of error analysis and especially in the 
Bayesian approach, the crucial question is the determination of 
measures which express correctly the unsatisfactoriness of 
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erroneous estimates. This requires again an understanding of 
the philosophy of measurement. 

5. DEFINITION OF MEASUREMENT 

Measurement is the assignment of numbers to entities in 
such a way as to describe them. 

I propose to define a number in the sense in which I am 
going to use the word, as an element n of a set of symbols N, 
which has a structure or set of relations defined on it. 

Consider a set of extra mathematical entities Q and a set of 
numbers N. Measurement is an operation which assigns to an 
element Qiq  , an element Nni  , such that relations 

between different elements Nni   and Nnj   are isomorphic 

to empirical relations between the corresponding elements of 
Q, qi and qj. 

6. CONCEPTUAL BASIS 

Measurement presupposes something to be measured. Both 
in the historical development and logical structure of scientific 
knowledge, measurement requires a clear operational defining 
concept of the class of entities described by it, that is a rule for 
determining whether an entity is a member of the class. Unless 
there exists such a clear concept, we cannot start to measure. 

As precise knowledge derived from measurement 
accumulates, this usually leads to a clearer and more satisfactory 
concept definition. The process is iterative and the 
development is an ascending spiral. 

In some cases the concept of an entity arises from 
numerical laws, arrived at by measurement, and the entity is 
best thought of in such mathematical terms, but in general one 
attempts to arrive at some qualitative conceptual framework for 
it, if possible. 

One of the principal problems of scientific method is to 
ensure that the scale of measurement established for a class of 
entities yields measures, which in all contexts, describe the 
entity in a manner which corresponds to the underlying concept 
of the class. 

7. DIRECT MEASUREMENT 

Direct measurement is the process of measuring an entity 
by comparison with entities of the same class and without 
reference to the measurement of any other class of entities. It 
relies on the establishment on the class of entities Q, upon 
which a scale of measurement is to be defined, of a system of 
empirical relations R, which have a formal similarity to relations 
among members of the class of numbers N. 

It is proposed to explain the process of direct measurement 
by examples. 

The simplest form of R is  Q,R =  in which we establish 

on Q an equivalence relation  . An equivalence relation is one 
which is reflexive ( qq  ), symmetrical (if 21 qq   then 

12 qq  ) and transitive (if 21 qq  and 32 qq  then 31 qq  ). 
An equivalence relation has the formal properties of equality. 

Given  Q,R =  a set of differing entities Qsi   may be 

selected to form a standard set  k21 ,...ss,sS= . 

Numerals or other symbols Nni   are assigned to each  

is , the same symbol not being assigned to two different 

standards. In measurement entities Qq  are compared with 

elements of S and those which bear the relation   to a 

standard are assigned the same symbol as the standard. This 
assignment constitutes nominal measurement. An example of 
such measurement is the use of a colour chart based on the 
empirical relation of “colour matching”. 

Class inclusion is an equivalence relation. Consider that Q 
can be divided by empirical operations into n classes QQi   

such that QQ i
n

1i ==  and  =ji QQ  if ji   and each 

subset Qi is assigned a unique number say “i”. Then if we can 
determine by an empirical operation that any element Qq  

belongs to a particular subset iQq , it is assigned the 
characteristic symbol or number of the subset “i”. The subset 
Qi may itself often be divided into further subsets, iji, QQ  , 

iji,
n

1j QQ ==  and  =ki,ji, QQ  if kj  . The subsets ji,Q  

are assigned unique numbers, say “ij”. An element for which we 
assign the class inclusion relation ji,Qq  , is assigned the 

symbol “ij” which denotes its membership of iQ  and ji,Q . 

This can be continued to an even finer subdivision. 
Classificatory schemes of this kind such as decimal library 
classifications constitute a form of nominal measurement. 

It is often disputed whether the processes just described can 
in fact be called measurement. Measures on a nominal scale 
merely describe whether two entities are identical or different. 
It is immaterial whether we term nominal measurement proper 
measurement or not, provided we recognise its similarity, to 
more sophisticated forms of quantification. It is very different 
from naming, which is labelling without description. Two 
individuals may have the same name without being in any way 
similar, but two entities with the sane nominal measure are 
related. 

More elaborate than the nominal is the ordinal scale based 
on the establishment on Q of an empirical order system 

  ,,Q,R= .   is an equivalence relation. The set of 

relations is complementary, that is for any Qq,q 21  , one and 

only one of the following must hold: 21 qq  , 21 qq   or 

21 qq  .   and   are converse (that is if 21 qq   then 

12 qq  ), irreflexive (that is we cannot have qq  ) transitive 

and asymmetrical (that is if 21 qq   then not 12 qq  ). The 

relation system  ,,Q,R =  enables entities of class Q to be 
arranged in an ordered series. Entities that can be so arranged 
may be called quantities. 

We can now select a number of differing standard entities 
Qsi   and arrange them in an ordered standard series 

 k21 ,...ss,sS= . Numerals, are assigned to each si, say i, in 
such a way that the order of numerals corresponds to the order 
in the standard series of the standards to which they are 
assigned. Any entity Qq  can then be measured by 
comparing it with the elements of S in the same way as in 
nominal measurement. If q bears the relation   to any element 

Ssi   it is assigned the numeral of is . If an entity is not 
equivalent to any of the standards it is possible to determine 
between which two standards the measured entity would lie in 
the standard series. It is then assigned a numeral lying in 
between those of the two standard entities. The best example of 
an ordinal scale of measurement is the Mohs’ scale of hardness 
of minerals. 
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Neither nominal nor ordinal measurement as described here 
constitute entirely satisfactory measurements. In general 
measurement scales are designed to define a distance concept 
on the scale of entities to be measured. 

The analysis and axiomatisation of the problem of defining 
such a distance concept has received much attention in the 
literature. Those interested are referred to the works listed in 
the bibliography. It is proposed here to outline the classical 
approach originating from the work of Helmholtz. 

Basically this depends upon defining on the class Q, in 
addition to an order relation system   ,,Q,R= , a binary 
operation C which combines two entities of the class to form a 
third entity of the class: 

   321 qq,qC   

 2313 qqqq   
The combination must be commutative: 
    1221 q,qCq,qC   
and associative: 
      321321 q,q,qCCq,qC,qC   
These are the formal properties of addition for the class of 

real numbers. 
For two masses, for example, rigid connection is a form of 

combination which meets the requirements specified above, 
and the equiarm balance is the means by which the relations 
‘greater than’, ‘less than’ and ‘equal to’ are established. 

When such a method of combination has been found, a 
single entity Qs1   is chosen as standard and assigned the 

number 1. Another entity Qs1
1   such that 1

1
1 ss   is then 

sought and   21
1
1 ss,sC   is assigned the number 2. 

We then proceed to form   312 ss,sC   and assign it the 
number 3 and so on. Fractional standards are generated by 
making or seeking two entities Qs,s 1

2/12/1   such that 
1

2/12/1 ss   and   1
1

2/12/1 ss,sC   and assigning to 2/1s , the 

number 1/2. Thus we generate an extended set of standards: 
  ... ,s ,s,...sS 212/1=  

Any quantity Qq  can then be measured by seeking the 

element si to which it bears the relation  . q is assigned the 
number corresponding to si. 

Thus we can see that using the above procedure we have 
established a process of assigning numbers to entities in such a 
way that the numbers tell something of the extent by which one 
entity differs from another. 

The above argument has eschewed rigour for the sake of 
simplicity, but the procedures described can be rigorously 
axiomatised. 

Scales based on additive combination represent the classical 
view of fundamental measurement. They give an accurate and 
penetrating insight into measurement in Physics but in many 
areas of science they cannot be applied. The principal advances 
of modern theory of measurement have been to show that 
other methods of arriving at direct scales establishing a distance 
concept on a class of extra-mathematical entities with the same 
properties as those described above, are equally valid. One way, 
for instance, of establishing a scale is by the process of 
assigning to any pair of psychophysical stimuli a third stimulus 
judged to be equidistant from them. 

The essence of all direct measurement scales is an 
establishment of an isomorphism between empirical relations 

on the class of measurands and the relations on a class of 
numbers are not confined to particular isomorphisms. 

8. INDIRECT MEASUREMENT 

While a wide variety of conceptual entities are capable of 
direct measurement, there are others which are not. These must 
be measured by scales which rely upon relations which the 
entities to be measured bear to other measurable quantities. 
This is termed indirect measurement. 

Two forms of indirect measurement can be distinguished. 
The first of these is derived measurement. Consider a case in 
which all systems S associated with a member of the class of 
entities Q, for which we are to define a scale, are also associated 
with quantities x, y, z ... which can be measured. Let there be a 
numerical law P(x, y, z) = kq in which kq is a constant. Let us 
further suppose that whenever the systems S are arranged in the 
order of Q, they are also arranged in the order of kq. Then kq 
can be taken to be a derived measure of Q. 

Density is an example of a physical quantity measured by a 
derived scale. For all objects of one material the ratio ρ  of 
mass to volume of the object is a constant. Whenever objects 
are arranged in order of density as qualitatively defined, they are 
also arranged in order of ρ , which is thus a measure of density. 

The other form of indirect measurement is associative. 
Consider that all systems S, associated with a member of class 
Q, are also associated with some other measurable quantity x. 
Further suppose that whenever the systems S are ordered 
according to Q they are also arranged in the order of x. We can 
then define f(x) as an associative measure of Q, where f( ) is an 
arbitrary, single-valued, monotonic function. 

All practical temperature scales are of the associative kind. 

9. SCALES OF MEASUREMENT 

It should be clear from what has been said that it is not 
adequate in measurement merely to speak of units, one should 
speak of scales of measurement, that is of the triplet Q, M, N 
where Q is a class of entities, N is a class of numbers and M is a 
procedure of relating members of 0. to members of N. 

10. SCALE CLASSIFICATION 

Forms of scale can be classified according to mathematical 
transformations which leave the scale invariant. 

Thus if we transform the number n on the scale to a 
number n’ we have: 

 
Permissible Transformation Scale Type

n’ = f(n) where f any one to one 
substitution 

Nominal

n’ = f(n) f any monotonic function Ordinal
n’ = an + b a   0 Interval
n’ = an a   0 Ratio
 
A permissible transformation is one which only changes 

that which has been arbitrarily chosen. Thus the scale of mass is 
a ratio scale because the only thing arbitrarily chosen is the unit 
mass. Similarly associative scales are generally ordinal. 

11. MEASURE AND CONCEPT 

The point has already been made that the measure of an 
entity must constitute a description which corresponds to the 
defining concept of the entity. Thus there must be 
isomorphism between any empirical relations among quantities 
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measured and corresponding relations between their measures. 
One basic test of this correspondence can be proposed. If, 
whenever systems associated with an entity of class Q are 
placed in an order according to our quantitative concept of Q, 
the order is the same as that in which the systems would be 
arranged by the order of some measure of Q, the measure can 
be considered satisfactory. 

12. MEANINGFULNESS 

The problem of the meaningfulness of statements made 
about measures of an entity is important. 

A statement is meaningful if its truth is unchanged by a 
permissible transformation of the scales of measurement. We 
say that a k-ry relation S is meaningful if: 

 S(m(q1) ... m(qk)) = S(m’(q1) ... m’(qk)) 
where m → m’ is a permissible transformation. 
Thus, as a very simple example, it is meaningful to speak of 

the ratio of two masses, since that ratio is invariant with respect 
to changes of the unit of mass, but it is not meaningful to speak 
of the ratio of two hardnesses measured on the Mohs’ scale, 
since that ratio would be changed by a monotonic 
transformation of the scale. 

Another view is that only such statements are meaningful 
which can be logically traced to the empirical operations on 
which the measurement is founded. 

13. SYSTEMS OF SCALES IN PHYSICS DIMENSIONS 

There is much that is arbitrary in the choice of scale forms. 
The guiding principle is that scales are so chosen as to result in 
the greatest simplicity of the resulting mathematical 
descriptions of the laws of nature. Hence, for instance, the 
attempt to make practical temperature scale coincide with the 
thermodynamic temperature scale. 

In Physics we attempt to reduce to the minimum the 
number of quantities termed primary the scales of which are 
independently defined. 

Scales for the measurement of other quantities are termed 
secondary and they are obtained as derived scales from primary 
quantities by a chain of simple proportionality laws [1, 19]. 

Two points need to be made. There is nothing intrinsically 
fundamental in the primary quantities: mass, length, time, 
current and luminous intensity, they are merely conventionally 
chosen for reason of the practical convenience of the definition 
of their scales. Secondly, the dimension of a quantity in no way 
embodies any metaphysical essence. It merely denotes the way 
in which the conventionally chosen scale of the quantity relates 
to the conventionally chosen scale of the primary quantities and 
could conceivably be altered by different choice of scales. 

14. MULTIDIMENSIONAL QUANTITIES 

Certain entities cannot be described by a single measure, but 
require an array of numbers for their specification: 

 M(q) = n = [n1, n2, ... nk] 
Such measures are known as vector or multi-dimensional. 

Thus force is described by three numbers: a magnitude and two 
direction angles, or three components. Patterns may be 
described by an array of numbers specifying features. 

n may be viewed as specifying a point in a vector space and 
we may seek to define a metric for a vector space, that is a 
relation D, such that for any three vectors n1, n2, n3 we have: 

 D(n1, n2) = 0 
 D(n1, n2) = D(n2, n1) if n1  n2 

 D(n1, n2) + D(n2, n3) > D(n1, n3) 
D( ) represents a measure of distance in the vector space. 
The problem of representing some aspects of n by a single 

real number is important especially in decision and optimisation 
theory where we wish to place multidimensional utilities in 
some order. A typical method is to determine: 

 m2 = n A nT 
where A is a positive definite weighting matrix. It is 

important to establish logically what correspondence exists 
between m and the entity q measured by n. 

The problems of multidimensional measures offer many still 
unresolved problems. 

15. MEASUREMENT AND UNCERTAINTY 

The essential assumption underlying the logic of 
measurement is that the operation M forms a single image of q 
only, and that M is invariant. However, any practical operation 
defining a scale represents a probabilistic and not a 
deterministic transformation. M is associated with a probability 
distribution, which must be specified with it. 

This subject has not been adequately discussed in the 
literature. 

16. PURPOSE AND USES OF MEASUREMENT 

While measurement is generally recognised to be the 
foundation of science, in the context of a review of its 
fundamental concepts there is a need to analyse the purpose 
and uses of measurement critically. 

The advantages of measurement as a form of description 
can be summarised as follows. 

Firstly, measurement represents a description of an entity 
which is concise, telling us in a single number information 
which would otherwise need many words. Measurement is also 
a description which is precise, pinpointing by a single number a 
particular entity where the same verbal description indicates a 
range of similar but differing things. 

Measurement is objective rather than subjective, that is, it 
constitutes a description invariant with respect to the observer 
making it. 

The language of measurement is universal and commonly 
understood, though this demands much effort in the 
establishment and maintenance of good and generally accepted 
scales and standards. 

Quantitative description involves an ability to make 
distinctions and to describe relations among entities of the same 
kind. In particular the ability of ranking objects in an order 
according to some measure of a relevant attribute, say, size, 
coat, or efficiency, enables us to make decisions about them in 
a logical and systematic manner. 

A measure of an entity gives us an ability to express facts 
and conventions about it in the formal language of 
mathematics. Without the convenient notation of this language, 
the complex chains of induction and deduction by which we 
describe and explain the universe, would be too cumbersome to 
express. We could not make our thoughts clear either to 
ourselves or to others. It follows from what has been said that 
the description of entities by numbers is not good in itself. The 
only value of measurement lies in the use to which the 
information is put. Science is not just the amassing of numerical 
data, it depends upon the way in which the data are analysed 
and organised. 

Finally in relation to technical cybernetics the essential 
feature of measurement is that it enables the measurand to be 
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expressed in signals which can be handled by machines. 
Qualitative information is not machine intelligible. 

17. CONCLUSIONS 

The basic conclusions of the present review can be simply 
stated. 

The basic concepts of measurement form an essential 
foundation stone for the erection of a sound Measurement 
Science. They now have a sound logical basis which is 
compatible with the methods of information science. Their 
understanding is essential for the solution of a range of 
important practical engineering problems. 
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