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1. INTRODUCTION 

In Mechanical systems, the application of bearings performs 
a crucial role in developing the efficiency of mechanical systems 
completely and minimizing frictional losses [1]. With the 
improvement in the machining and materials bearing, the 
authenticity of the bearings is progressively established. 
Performing bearings in the machinery of wind power and mining 
in frigid environments are exposed to the threat of particle 
contaminants, resulting in the devastating defeat of the rolling 
bearings [2]. Rolling element bearings are an integral portion of 
the rotating machines. Machine performance may fail if the fault 
of bearings is not properly detected. It is very necessary to detect 
the bearing fault for the continuous functioning of the machine 
[3]. In rolling components, tear and wear harm the joining zone 

of the rolling elements with ease. In the present day, bearings are 
one of the admirable innovations that perform a crucial function 
in the wear reduction of all rotating components. Bearings are 
categorized into three types: roller bearings, ball bearings, and 
bushed bearings. Of these, based on performance and durability, 
ball bearings were frequently used [4]. Ball bearings are 
composed of three components, i.e., balls, an inner ring, and an 
outer ring. Their rotational friction is less and produces 
minimum heat when compared to the other bearings. The good-
condition bearings will maintain the rotating parts in a significant 
pattern with one another and impede the development of 
abnormalities. The performance and results of the machine are 
affected by the faulty bearing [5]. Particle breakage results from 
the friction pair's slow formation of a shear zone that is inclined 
to the left as the granular materials become compressed and 
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sheared. The particle breaking causes the friction coefficient to 
rise and the load-bearing capacity to decrease [6]. The inner film's 
dynamic coefficients and static performance parameters are 
significantly impacted by the clearance ratio, while the outside 
film is unaffected. On the other hand, both the inner and outer 
films are affected by the vertical load [7]. Tribology is the science 
of friction, lubrication, and wear. It plays a critical role in 
understanding and optimizing the performance of thrust ball 
bearings. Bearing dynamics deal with the forces, motions, and 
vibrations experienced by the bearing. Some studies have 
concentrated on the tribology’s intersection action and bearing 
dynamics [8]. The rotor system in the rolling bearing is broadly 
exploited in rotating mechanical equipment [9]. Their 
performance impacts the maintenance period of the entire 
machine. Hence, the study of bearing lubrication action and the 
dynamic execution of rotors assisted by bearing.  

Elastohydrodynamic Lubrication (EHL) film denseness 
formulation is used to attain a graphing solution to evaluate the 
quality of lubrication. The elastohydrodynamic lubrication 
establishment appears in the rolling bearings providing rise to 
small contact of arbitrary shapes between the raceway and ball 
[10]. The rolling bearings are utilized in so many different types 
of devices; therefore it is imperative that any issues are found as 
soon as possible. While vibration analysis is frequently employed 
in rolling bearing diagnosis, an acoustic emission (AE) procedure 
mentioned in [11] may be able to identify the breakdown of these 
bearings early. The electrical ball bearing damage evolution can 
also be measured using surface characteristics as a quantitative 
damage scale [12]. In the last decade of years, machine learning 
algorithms have been described as the efficient method for 
identifying the robustness and the fault of the machine 
equipment [13].  

In order to analyse and identify the various fault severities of 
the outer race bearing fault in an induction motor, machine 
learning, and artificial intelligence are used. Because it retains the 
most discriminative and useful information, which leads to a 
high-performance condition characterization, linear discriminant 
analysis is significant. Additionally, a classifier based on neural 
networks enables the validation of the efficacy of fusion data 
from various physical magnitudes to address the diagnosis of 
several fault severities that manifest in the outer race of the 
bearing [14]. Related algorithms are frequently employed in the 
diagnosis and identification of rotor problems in conjunction 
with other signal-processing techniques. A novel multi-source 
vibration signal fusion technique is presented to address the issue 
of a single sensor's vibration signal being too solitary [15]. The 
majority and broad use of the commercial methodology for 
detecting a fault, estimating acoustic, and analysing vibration 
signals. Here, the fault detection is based on combining the 
Hilbert transmute, autocorrelation, and the wavelet packet. For 
estimating acoustic sound pressure, sound intensity, and the 
acoustic emission method are used. Analysing vibration signals is 
acquired by the shock pulse method, frequency, and vibration in 
time. [16] In the event of an equal weight distribution, the load, 
interaction stress, and interface deformation of this ball exceed 
those of all the other balls. It restricts a practical bearing's ability 
to support loads in relation to its theoretical static load rating [17] 
Two types of precursor were found, which most likely caused 
pitting or spalling during the subsequent rolling contact. One is 
the surface imperfections, like heavy machining marks, scratches, 
and slag holes, on the rolling ball or the raceway. The other is a 
machining-induced Nano-crystalline layer in the outermost layer 
surrounding the raceway's surface [18]. Also determines that a 

common high-speed thrust angular associate ball bearing is 
sorted. The assembled facet standard of rolling components and 
the raceway were characterized. Bearings use lubrication to 
reduce friction and wear between moving parts. Insufficient 
lubrication and elevated operational issues could increase 
friction, overheating, and wear [19]. It leads to surface damage 
such as scoring, corrosion, and galling. Fault identification in 
rolling bearings is critical for avoiding catastrophic failures, 
decreasing downtime, lowering repair costs, and maintaining 
machinery integrity and safety. Considering these demerits, the 
rolling bearing is considered for this study. The key contributions 
of this work are described as follows, 

• Initially, The thrust ball bearing dataset is trained in the 
MATLAB system  

• Then a novel ZbRBPM was introduced with the needed 
prediction features for predicting the fault. 

• Accordingly, the thrust ball bearings' actions like wear and 
friction were evaluated and gathered. 

• To achieve the finest optimal result, features like MO are 
added and the wear and friction are computed one more 
time. 

• Moreover, to obtain the best tribological criteria, the zebra 
fitness is adjoined to the radial basis Prediction mechanism 
classification. 

• The tribological criteria attached to the fitness activity are 
tuned up to the most feasible range. 

• Finally, the performance criteria such as Accuracy, 
precision, Recall and F score, wear, and friction were 
calculated and compared with other models. 

This research paper includes the related work in section two, 
the system model in section three, the proposed method in 
section four, the performance validation for the proposed model 
determined in section five, and the work conclusion in section 
six. 

2. RELATED WORK 

A few recent associated works are described as follows; 
Wu et al. [19] described to development of the essentials of 

rolling bearings and three texture types were improved on the 
surface leading to the thrust ball bearing. Three textures 
developed namely gradient groove texture, groove texture, and 
dimple. The results of the vibration of gradient groove textured 
and non-textured bearings are made a comparison among them 
and it outcomes decrease by 49.1 % and 24.6 % respectively. The 
frequency analysis results showed that the textures concealed the 
intermediate the inflated frequency decreased by 65.3 % and the 
friction torque was reduced by 10.5 %. 

Bhardwaj et al. [20] have implemented the tribodynamic 
accomplishment manners of the thrust ball bearing engaging 
micro-grooves in the static uppermost ring. It is determined by 
utilizing grease and oil lubricants. The operation takes place in 
light loads and the speed range varies from 1.8 to 4.0 m/s. The 
consequences of the microgroove static races are a rise in 
temperature, bearing vibrations, and frictional torque. The bulk 
rise in temperature of 14-26 %, bearing vibrations of 7-34 %, and 
frictional torque of 14-21 % were obtained from the 
microgroove. As a result, the microgroove oil lubricated in 
tribodynamic gets significant development when made a 
comparison to the grease lubricated of functioning specification.  

Lu-Minh et al. [21] describe the execution estimation by 
utilizing a fretting tribometer for the mechanical transmission of 
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three greases. In the standard ASTM D4170, the thrust ball 
bearings were determined to evaluate the load diffusion relying 
on the upper or lower or angular position. Later 5 h solely, 30 Hz 
of frequency at room temperature and 2450 N of load is 
reported. The lower position thrust ball bearing is worn more 
than the top position. The mass loss with the grease obtained in 
the lowest position was utilized in food industries. 

Shan et al. [22] demonstrate inside the ball bearing the oil air 
multistep flow attributes are exposed by contract for difference 
and ball bearing analysis of the lubrication model. Here, the ball 
bearing is developed by the complex bearing of boundary shape. 
The model is separated into mesh density and the hexahedron 
elements close to the connection zone increase, elevating the 
accuracy and the convergence. The outcome describes the 
appropriate size of clearance and it improves the internal flow 
and the ball bearing performance. Moreover, the Voltage-
Induced Damage Progression of Thrust ball bearing [23], and 
Self-Lubricating Polytetrafluoroethylene cages and Surface-
textured raceways (SLPS) [24] are the recent methodologies that 
attains good bearing resistance [25], regarding wear [26], friction 
torque [27] and energy consumption in bearing application [28]. 

For fault identification and visualization, Mahesh et al. [29] 
discussed the 1D Convolutional Networks and t-distributed 
Stochastic Neighbour Embedding (t-SNE) outperform 
conventional signal processing techniques and machine learning 
models. They can improve fault detection performance in noisy 
environments by extracting features from raw sensor data, 
learning features at several levels, differentiating between fault 
types and severity levels, and modelling nonlinear data 
connections. Because they are scalable, resilient to noise, and 
flexible enough to adjust to complicated fault patterns, their 
complexity usually makes them harder to understand. 

Pham et al. [30] described a generalized adversarial neural 
technique that uses AE monitoring signals in a 2-D spectrogram 
to diagnose bearing faults. In contrast to low-sample, 
unbalanced, and noisy datasets, the architectures and training 
strategy enhance convolution network-based classifier 
performance. On ten trial datasets, the approach performs better 
than Decision-based generalized networks and other deep 
learning techniques. The enhanced technique is a viable strategy 
for intelligent factories in actual working contexts since it 
achieves great precision and quick convergence. However, 
generalized network-based techniques can be a resource and 
computationally intensive, especially while they're being trained. 

Nemani et al. [31] presented a feature weighting technique 
based on principles of physics to mitigate the degradation of the 
model due to variations in data distribution. It predicts bearing 
health class by using vibration signals to create an envelope order 
spectrum. The controller-based convolutional network model, 
which consists of Convolutional networks plus a feature 
weighting layer, gives discriminative fault features larger weights 
and is resistant to speed variations. The approach is versatile and 
simple to use with a variety of models. However, in these realistic 
industrial contexts, this approach performs ineffective and 
erroneous diagnoses. 

In order to detect problems, Xingchen et al. [32] suggested a 
novel Modified tuned convolutional network model that analyses 
three-axis vibration data from an accelerometer inside rollers. 
After training on radial vibration data using dual-channel 
Decision networks, the model has demonstrated no 
misclassification between problematic and normal bearings. At a 
noise ratio of less than 10 dB, it attains accuracy levels of 
95.44 %, 95.52 %, and 90.08 %. Additionally, the model 

outperforms three-channel Decision-based convolutional 
networks in terms of accuracy, achieving values that are 26.06 %, 
11.23 %, and 17.12 % higher. Nevertheless, this approach does 
not prioritize robustness and transferability to the TBM 
engineering site. 

In addition, the demerits of the discussed literature are 
insufficient feature selection and predictive behaviour that 
reduce the prediction accuracy. Also, the vibration signal of the 
bearing is more noisy and is not readable by the traditional neural 
network principles. Also, the speed of the fault prediction system 
is too low with a high error rate due to insufficient features. So, 
the optimized deep network is considered for this study. 

 The key objective of this study is to find the faulty signal from 
the thrust ball bearing using the vibration image data. Second, 
the tribological behaviour was optimized to the desired level. 
These two problems were mainly solved using the Zebra fitness 
solution.  

3. SYSTEM MODEL WITH PROBLEM 

Thrust ball bearing plays an essential role in modern 
technology. In this, it is essential to find out the faults in the 
thrust ball bearing. Identifying and maintaining the component's 
fault is very important to accelerate the functioning efficiency. In 
the past, the prediction mechanism based on mathematical and 
optimization models was implemented for predicting the bearing 
faults, but a suitable outcome was not attained. The issues that 
were recorded by the traditional prediction model are described 
in Figure 1. In addition, a few step processes such as pre-
processing, feature extraction, and prediction were executed for 
detecting the fault signal. If the above-suggested process is not 
done properly by the traditional models due to feature 
limitations, that has reported wrong prediction.  

Hence, this present proposed research has designed a novel 
optimized deep network for identifying faults from the visualized 
data. 

4. PROPOSED METHODOLOGY 

A novel Zebra-based Radial Basis Prediction Mechanism 
(ZbRBPM) was introduced in this study to recognize the fault 
from the visualized data and tune the parameters. The proposed 
model ZbRBPM is optimized to enhance tribology criteria like 
wear and friction. Further Mineral oil (MO) was added to 
develop the bearings functions. The vibration signal has been 
observed on the designed model. The performance validation for 
wear and friction is noted. Finally, the fault is identified based on 

 

Figure 1. Fault identification with issues.  
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the trained saved features. Then the performance parameters are 
calculated.  

The proposed model explained in Figure 2, is used to identify 
faults from the visualized data. It depicts the process carried out 
in the designed ZbRBPM. The model analysed the tribological 
parameters from the input data to detect and classify the fault 
types in the thrust ball bearing. The performance criteria such as 
F-score, accuracy, time, wear, and friction were calculated. The 
F-score sometimes referred to as the F1 score or the F-measure, 
is a metric used to assess how well a machine learning model 
performs. The following sections have detailed the completed 
work process layers of the proposed model.  

4.1. Layers of proposed ZbRBPM 

The displayed novel ZbRBPM has been developed in the 
concept of zebra fitness and radial basis prediction mechanism. 
Zebra fitness is used because of its high fitness value in the 
optimization function. A high fitness value in the Zebra 
optimization function indicates that a particular solution 
effectively balances the thrust ball-bearing fault detection 
objective. It suggests the solution can accurately distinguish 
between faulty and healthy bearings based on the extracted 
features. A solution with a high fitness value is more likely to 
correct. Accurate fault prediction allows for preventive 
maintenance before catastrophic failure, saving costs associated 
with repairs and downtime. Numerous deep network models 
have been implemented for recognition with good validation of 
performance. However, they find it difficult to predict the 
approximation values. Whereas, radial basis is used for attaining 
the approximate function problems and it is easy to implement 
with strong forbearance. Here zebra fitness is applied to solve 
the problems and bring out the best prediction. The proposed 
model layers are described in Figure 3. 

The proposed model has combined three phases to analyse 
the performance i.e. Input data phase, Zebra fitness phase, and 
outcome phase. At the input phase, the collected vibration signal 
data of the thrust ball bearing is entered and the noisy signals are 
filtered using the pre-processing steps. Further, at the Zebra 
fitness phase, the efficient features such as friction and wear 
tribological parameters are analysed and extracted. The analysed 
information is processed in the radial basis architecture to predict 
and classify the fault and given at the output phase of the 
designed model. In this training the data function is done on the 
input layer, the trained data undergoes the zebra fitness process 
in the hidden layer and this layer is high-powered, and 
tribological parameters and fault identification is performed. In 
the output layer performance analysis and classification is 

described. The working of the proposed model layers is 
described in the following section. 

The raw data from the bearings is fed into the input layer. This 
layer trains normalizes, and pre-processes the input data. The 
hidden layer processes this data using the Zebra fitness function, 
which assesses the bearing's condition by analysing patterns and 
anomalies in the tribological parameters (friction and wear). 
Finally, the output layer demonstrates the hidden layer's 
processed information into particular fault predictions, 
indicating the presence and severity of any possible concerns. 

4.2. Process of proposed ZbRBPM 

The proposed ZbRBPM in the optimized network has been 
assisted in predicting the faults in the thrust ball bearing. In the 
same way, the tribological parameters like wear and friction 
calculations have been equated. The zebra fitness is utilized to 
support the classification process by (1). The dataset, which was 
obtained for this research is the Qatar University Dual-
Machine Bearing Fault Benchmark dataset. (QU-DMBF) [33]. 
Here, the data are labelled data, during prediction if the vibration 
signal is predicted under the 0th class then it is the normal signal. 
If the vibration signal is predicted under 1st class then it is a ball 
fault. If the bearing vibration is predicted under the 2nd class 
then it is reported as inner race and if the predicted signal falls 
under the 3rd class it is determined as outer race.  

𝑊𝑡+1 = 𝐵𝑡(𝑊max − 𝑊o) + 𝐵𝑡(𝑊max.t − 𝑇o) + 𝑊𝑡  . (1) 

Here, 𝑊 represents the wear, 𝑡 represents the time, 𝐵𝑡  

represents the thrust bearing, 𝑊𝑡+1 represents the time interval 

of wear, 𝑊max denotes the wear maximum of the bearing, 𝑊o 

represents the recorded optimal wear of the bearing, and 𝑇o 
represents the recorded optimal time of the bearing. After the 
evaluation of wear, friction is evaluated similarly. The evaluation 
of friction in thrust ball bearings is described in (2) 

𝐹𝑡+1 = 𝐵𝑡(𝐹max − 𝐹o) + 𝐵𝑡(𝐹max.t − 𝑇o) + 𝐹𝑡  , (2) 

where 𝐹 represents the friction, 𝐹𝑡+1 represents the time interval 

of friction, 𝐹max represents the maximum friction of the bearing, 

and 𝐹o represents the recorded optimal friction of the bearing. 
Here the equations are derived from the zebra fitness function. 
The given equation analyses the wear and friction at each interval 
of the input vibration signal. These equations analysing the 
tribological parameters continuously update the vibration pattern 
of the given input signals to the faults. The following section 
defines the fault detection process.  

 

Figure 2. CAPTION.  

 

Figure 3. CAPTION.  
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4.3. Fault identification 

Detecting the fault identification is a necessity to avert 
damage to the machine elements. Here, the zebra fitness 
accomplished the recognition faults in the detecting process. The 
accuracy level depends on the fitness and the trained features. 
The fault detecting and identification process is described below. 
The identification is executed in (3) 

𝜂 = if(𝑇(𝑃pb) = 𝑃nb) . (3) 

Here, 𝜂 denotes the zebra fitness, 𝑇 denotes the parameter 

testing, 𝑃 denotes the performance, pb denotes the present 

bearing, and nb denotes the normal bearing. Hence the 
identification is performed. 

Algorithm 1 shows the full explanation of the proposed 
model in step by step. The MATLAB system has been 
functioning in a step-by-step format. The output has been 
established. 

The consecutive step for the functioning procedure of the 
proposed model is enumerated in the format of a flow chart is 
shown in Figure 4. Numerous mathematical operators are 
displayed in the Algorithm 1.  

5. RESULT AND DISCUSSION 

The MATLAB system is performed in Windows 10 and is 
used to validate the proposed ZbRBPM. Thrust ball bearings are 
utilized in cars. Thrust ball bearings assist the axial thrust of 
vertical and horizontal shafts. It functions to stop the shaft 
moving in the axial direction and transmits thrust loads practiced 
on the shaft. Consequently, the needed specification for the 
performance of the ZbRBPM is described in Table 1. 

5.1. Case study 

This research work is made to understand the procedure of 
the proposed model ZbRBPM. The thrust ball-bearing datasets 
are taken from QU-DMBF [33]. The data is downloaded from 
the GitHub source. 

The dataset consists of 660 vibration signals and it is divided 
into 80 % for training and 20 % for testing. i.e., 528 for training 
and 132 for testing, the description given in Figure 2. It has both 
the normal and faulty thrust ball bearing conditions. The faulty 
conditions include ball fault, inner race fault, and outer race fault. 
In the training phase the model is trained using the vibration 
signals of both the normal and faulty bearings and the model 
learns the different vibration types. This allows the model to 
distinguish between normal and faulty bearings in the operating 
circumstances. In the testing stage, the model is evaluated by the 
vibration signals data of the bearing which is not used during 
training the model. By exposing to both normal and faulty data 
during the model training, it accurately learns the behaviour of 
normal and faulty signal and this allows the model to identify the 
faults in the unseen data. It demonstrates the model's ability to 
generalize the new unknown data. It establishes the model's 
efficiency in real-world applications. The proposed methodology 
Zebra optimization with radial basis prediction increases the 
accuracy of the system under controlled circumstances. The 
zebra optimization enhances the model's diversity and 
adaptability and with the radial basis prediction it improves the 
model's capacity to detect and adapt to new patterns in the 
operations. Hence, this demonstrates better performance. 

Start  

{ 

 Dataset initialization 

 //Initiating the observing element 

 𝜂 = 𝐵(𝑊, 𝐹) 
 //Wear and friction tribological properties have been 

validated 

 Tuning parameter 

 { 

 int 𝑊o, 𝑊t, 𝐵t, 𝑇o, 𝑊max 

 //Initializing the wear tuning  

 Tuning (𝑊 + 1) 

 //The thrust ball bearing wear is tuned by (1) 

 int 𝐹o, 𝐹t, 𝐹max 

 //Initializing the friction tuning 

 Tuning (𝐹 + 1) 

 //The thrust ball bearing friction is tuned by (2) 

 } 

 Detecting fault 

 { 

 int 𝑇, 𝑃pb, 𝑃nb 

 //Initializing the detection variables 

 𝜂 = (𝑊o + 𝐹o) ∙ 𝛽 + (𝑃pb × 𝑃nb)/𝑇 

 𝛽 -> fault prediction variable of the radial basis 

 //The fault is predicted and classified 

 } 

}  

Stop  

Algorithm 1. ZbRBPM 

 

Figure 4. Flow diagram for the proposed model ZbRBPM.  

Table 1. Execution parameters. 

Metrics Specification 

Operating System Windows 10 

Version 3.7.14 

Program MATLAB 

Dataset Bearing image 

Optimization Zebra 

Network Radial system 
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The fault signal in the bearing is accomplished by MATLAB 
is described in Figure 5. 

Here, the vibration signal of the normal bearing and the fault 
bearing is demonstrated by the rotation of the thrust ball bearing. 
The normal bearings vibrations are trained to recognize the faulty 
vibration. The varied vibration signals are specified as the faulty 
vibration signals. The normalization and noise filtering process 
in the input layer of the presented system suppresses the false 
positive predictions. By analysing the tribological parameters and 
with the zebra fitness evaluation the model accurately 
distinguished the fault and normal ball bearings; also increased 
the reliability of the system. Some of the existing models like the 
Self-Driven Textured Guiding for Thrust ball bearing (SDTGT) 
[19], Fretting tribometer with ASTM D4170 (FTAD) [21], 
Voltage-Induced Damage Progression of Thrust ball bearing 
[23], and Self-Lubricating Polytetrafluoroethylene cages and 
Surface-textured raceways (SLPS) [24] are implemented in the 
same proposed platform for the same thrust ball bearing and 
compared with the proposed technique. The confusion matrix 
for the testing function is exposed in Figure 6. 

5.2. Specific wear rate 

The wear rate is considered to be higher for the thrust ball 
bearing in the bottom place of the column. The bearing in the 
bottom is worn more than the top. Mineral oil is almost the usual 
lubricant type which is utilized for thrust ball bearings. Damage 
wear in bearings is due to misalignment, poor installation, and 
improper fitting. The proposed model’s specific wear rate is 
computed, and it is evaluated with other traditional models. The 
comparison is shown in Figure 7. 

Here, the SDTGT has attained a specific wear rate of 

1.75 mm³/(N·mm); the FTAD has attained a specific wear rate 

of 4.49 mm³/(N·mm), and the VIDPT has attained a specific 

wear rate of 2.28 mm³/(N·mm) and the SLPS has attained a 

specific wear rate of 3.24 mm³/(N·mm). Hence, the proposed 
model ZbRBPM has attained a specific wear rate of 

0.35 mm³/(N·mm). Therefore, the proposed model gives the 
lowest wear rate compared to the prevailing models due to the 
zebra tuning process.  

5.3. Friction torque 

Friction in a thrust ball bearing is caused by improper 
alignment, speed, etc. Improper alignment leads to surplus force 
on some parts, causing wear and friction. When the rotational 
speed is high, the bearings' friction increased because of heat and 
the breakdown of lubricant. Friction is reduced by utilizing small 
balls and lubricating them with oil that makes the ball roll freely 
between the inner surface and the outer surface. The proposed 
model's friction torque is computed and evaluated. The 
comparison is shown in Figure 8. 

Table 2. Dataset Description. 

Total Samples-660 

Normal 110 

Ball Fault 165 

Inner race Fault 195 

Outer race Fault 190 

Training Samples-528 

Normal 88 

Ball Fault 132 

Inner race Fault 156 

Outer race Fault 152 

Testing Samples-132 

Normal 22 

Ball Fault 33 

Inner race Fault 39 

Outer race Fault 38 

 

Figure 5. Normal and Faulty vibration signal of bearing.  

 

Figure 6. Confusion matrix.  

 

Figure 7. Specific wear rate comparison.  
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Frictional torque is defined as the rotational force or torque 
required to overcome the resistance to rotation caused by the 
friction between the bearing components. Here, SDTGT earned 
a friction torque of 79 Nmm, FTAD earned a friction torque of 
96 Nmm, VIDPT earned a friction torque of 82 Nmm and SLPS 
earned a friction torque of 90 Nmm. Hence, the proposed 
ZbRBPM model earned a friction torque of 75 Nmm. The 
proposed ZbRBPM gives the least frictional torque. In addition, 
energy consumption is evaluated it refers to the amount of 
energy required to overcome frictional resistance within the 
bearing during operation. It is compared with the existing 
techniques and displayed in Figure 9. 

Excessive Frictional torque leads to energy consumption. The 
energy consumed by the existing techniques such as SDTGT, 
FTAD, VIDPT, and SLPS is 80 J, 120 J, 94 J, and 101 J 
respectively. The proposed ZbRBPM model consumed energy 
of 79 J which is low compared to the existing and hence 
demonstrates better performance.  

5.4. Performance validation 

The proposed ZbRBPM was evaluated by using the bearing 
visualized data and MATLAB system. The performance criteria 
such as Accuracy, precision, Recall, F score, Error rate, 
computation time, and speed were computed for the fault 
identification. The calculated results were made a comparison 
with some of the models for identifying the development of the 
proposed model. 

5.5. Accuracy 

The bearing's fault is evaluated by the vibration signals. The 
exact value estimated from the proposed model is defined as the 
accuracy. It is computed by the false positive, true positive, false 
negative, and true negative samples. Accuracy is calculated by (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇N + 𝑇P

𝑇P + 𝐹N + 𝐹P + 𝑇N

 , (4) 

where, 𝑇P and 𝐹P indicate the true positive and false positive 

respectively, 𝑇N and 𝐹N indicate the true negative and false 
negative samples, respectively. Applying these metrics, the 
percentage of accuracy is calculated. The accuracy for fault 
identification is compared with some of the existing models and 
is displayed in Figure 10. 

Here, the SDTGT gained an accuracy of 97 %, the FTAD 
gained an accuracy of 86 %, VIDPT gained an accuracy of 91 %, 
SLPS gained an accuracy of 94 %, and the proposed model 
ZbRBPM gained an accuracy of 99.5 %. Hence, the accuracy 
percentage the proposed ZbRBPM gains for fault identification 
is comparatively higher than the prevailing models. Here the 
accuracy value was evaluated for 132 tested signals that include 
all the classes. The accuracy value is accessed using the confusion 
matrix attained by the model. In the tested data 22 are normal 
signals and 110 are fault signals. The training and testing class 
instances are detailed in Table 2.  

5.6. Precision 

The estimation metrics precision calculates the positive 
predicting accurateness. It is evaluated by the true positive and 
false positive samples. The precision metrics are estimated using 
(5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇P

𝑇P + 𝐹P

 . (5) 

The precision rate for fault identification of the proposed 
model is compared with some of the current models and 
displayed in Figure 11. 

Here, the SDTGT gained a precision of 95.2 %, the FTAD 
gained a precision of 84.7 %, VIDPT gained a precision of 
89.9 %, SLPS gained a precision of 92.6 %, and the proposed 
model ZbRBPM gained a precision of 99.5 %. Therefore, the 
Precision obtained from the proposed model is better compared 
to that of the prevailing models. 

 

Figure 8. Friction torque comparison.  

 

Figure 9. Energy consumption comparison.  

 

Figure 10. Accuracy comparison for fault identification.  
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5.7. Recall 

Recall is calculated by the true positive, true negative, and false 
negative samples. In recall metrics, the sample does not go under 
false positive samples. It is the calculating measure of exact 
identification from the regained constituents. It is evaluated 
using (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇P

𝑇P + 𝐹N

 . (6) 

The recall rate for the fault identification of the proposed 
model is evaluated by applying in above (6). The comparison is 
displayed in Figure 12.  

Here, the SDTGT obtained a Recall of 96.7 %, the FTAD 
obtained a Recall of 85.2 %, VIDPT obtained a Recall of 90.1 % 
and SLPS obtained a Recall of 92.9 %. The Recall obtained for 
the proposed ZbRBPM is 99.4 %. Hence, the Recall of the 
proposed model is high and shows a good performance. 

5.8. F-Score 

F score is an important metric as it combines precision and 
recall in an isolated value. It balances precision and recall. It is 
formulated by multiplying both metrics by making the sum of 
both metrics. The F score is evaluated by using (7) 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑅𝑒 ∙ 𝑃𝑟

𝑅𝑒 + 𝑃𝑟

 . (7) 

Here, 𝑅𝑒 represents the recall and 𝑃𝑟  represents the precision 
value, and it is compared with the existing techniques and 
demonstrated in Figure 13.  

The existing SDTGT attained 94.3 %, FTAD attained 
83.2 %, VIDPT attained 90.1 % and SLPS attained 91.2 %. The 
F-Score for the fault identification of the proposed ZbRBPM 
model is 99 %. Hence, the F-score obtained from the proposed 
model is high and shows better performance. 

5.9. Computation time 

Computation time in predicting faults refers to the time 
duration it takes for the entire process to identify the fault in 
thrust ball bearing. The computation time is measured in 
seconds. The proposed method attained computational time is 
compared with the existing techniques and displayed in 
Figure 14. 

The existing techniques attained a computation time SDTGT, 
FTAD, VIDPT, and SLPS of 345s, 324s, 367s, and 308s 
respectively. The proposed ZbRBPM model attained a 
computation time of 294 s, which is comparatively lower than 
the existing techniques and hence shows better performance.  

5.10. Error rate 

The error rate, referred to as the misclassification rate, 
represents the proportion of misclassified instances relative to 
the total number of instances. It is calculated by (8) 

 

Figure 11. Precision comparison for fault identification.  

 

Figure 12. Recall Comparison for fault identification.  

 

Figure 13. F-score Comparison for fault identification.  

 

Figure 14. Computation time Comparison for fault identification.  
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𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝐹N

𝐹N + 𝑇P

 . (8) 

A decrease in the error rate signifies improved performance 
and effectiveness in fault identification. The error rate 
comparison for the proposed model is shown in Figure 15. 

The error rate obtained by the existing techniques is SDTGT 
at 3 %, FTAD is 14 %, VIDPT is 9 % and SLPS is 6 %. The 
proposed ZbRBPM model obtained an error rate of 0.5 %. 
Therefore, the error rate obtained is very low, and it 
demonstrates better performance of the proposed model. 

5.11. Speed  

Here, the prediction speed is measured in terms of 
Revolutions Per Minute (RPM). If the signal data is too complex, 
then the prediction approaches might require more time for the 
prediction process. Hence, to determine the prediction speed of 
the designed prediction mechanism, the speed parameter is taken 
into consideration. Validation with the existing techniques is 
displayed in Figure 16. 

The existing techniques SDTGT, FTAD, VIDPT, and SLPS 
attained a speed rate of 1390 RPM, 1240 RPM, 1030 RPM, and 
1450 RPM, and the proposed ZbRBPM model attained a speed 
rate of 1500 RPM which shows better performance by increasing 
the speed rate  

6. DISCUSSION 

Usually, the deep network is utilized for prediction. But, if the 
data is more complex, then the prediction is not accurate. To 
overcome these issues, the radial basis network is enhanced with 
zebra optimization, which yields the optimized prediction 
outcome. Here, the tribological parameter wear friction is 
optimized by fixing the desired wear and friction rate in the zebra 
memory layer. While running the optimization, the algorithm is 
continuously iterated still a suitable solution is found.  

 In this present article, it is not tested in real-time scenarios, 
so the false positives in the true nature are not recorded. Here, 
the labelled database was utilized for the performance validation. 
In addition, the restriction of detecting faults in real time is the 
drawback of this study. In the future, testing the proposed model 
for the real-time data in a real environment will give the reliability 
of the system. The accomplishment of the proposed ZbRBPM 
is described in Table 3. 

The entire performance of the proposed ZbRBPM is 
displayed. In this model, the zebra gives the best result for the 
fault identification. 

To handle abnormalities, the zebra-based radial prediction 
mechanism is employed. This method efficiently distinguishes 
between normal and fault bearing from vibration signals. The 
Zebra optimization technique allows the model to explore 
several solutions and fluctuate with the environment. By 
fostering diversity and adaptability in the learning process, it 
enables the optimal function to identify the behaviour of both 
normal and fault-bearing data by capturing a wide range of 
patterns. Furthermore, based on the learned patterns the radial 
basis functions predict the fault, reduce the false positives, and 
acquire the ability to distinguish the fault by filtering the noise. 
This improves equipment reliability in the problem detection 
model, which ultimately maximizes operational efficiency 
overall. 

7. CONCLUSION 

This research paper displays the framework for thrust ball-
bearing fault identification from visualized data using the 
optimized deep network. 

To avoid failure, it is better to recognize the tribological 
behaviour in the bearing. MO lubrication is added to minimize 
wear and friction.  

Zebra fitness is used to predict the fault because it has a high 
optimization function that gives the best prediction.  

At last, the performance is validated and compared with some 
of the existing models. The proposed model ZbRBPM gives the 

 

Figure 15. Error rate Comparison for fault identification.  

 

Figure 16. Speed Comparison for fault identification.  

Table 3. Performance of ZbRBPM. 

Metrics Fault Identification 

Accuracy 99.5 % 

Precision 99 % 

Recall 99.4 % 

F-score 99 % 

Error rate 0.5 % 

Computation time 294s 

Speed 1500 RPM 

Specific Wear rate 0.35 mm3/Nm 

Friction Torque 75Nmm 
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best Accuracy of 99.5 %, Precision rate of 99 %, Recall rate of 
99.4 %, F-score of 99 %, Error rate of 0.5 %, and computation 
time is 294s. 

The wear and friction obtained by the proposed model are 
low. The specific wear rate of the bearing is 0.35mm3/Nm and 
the friction torque is 75Nmm. 

The ZbRBPM proposed model accuracy is improved by 1 %. 
Hence, this proposed model is the most suitable for bearing fault 
identification. 

The hybrid of zebra fitness improved the accuracy of the fault 
prediction. Also, the MO addition can optimize the performance 
of the thrust ball bearing.  

By identifying potential bearing failures before catastrophic 
events, industries can schedule maintenance proactively, 
minimizing unplanned downtime. This ensures machinery 
remains operational for longer periods, leading to higher 
production output beneficial for stakeholders.  

The background noise from surrounding machinery or 
electrical sources can mask the subtle changes in vibration 
signatures associated with bearing faults. Therefore the model 
necessitates proper filtering techniques to isolate the clear 
bearing-specific signal. Also, the different types of bearing faults 
can sometimes manifest in similar vibration patterns, which 
creates a complex prediction process. 

The future work is to demonstrate the hybrid technique to 
forecast the bearing fault in real-time scenarios.  
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