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1. INTRODUCTION AND BACKGROUND 

The background of this article is to describe the development 
of a method to determine the dimensions of catapult bolt 
projectiles for early Hellenistic catapults, constructed according 
to the known ancient design formulae. The method further 
enables the possibility of determining the key design parameters 
of a torsion-based catapult via the dimensions of the bolt point 
alone (under certain constraints). A series of recent publications 
address the mathematical analysis of the performance, energy 
storage capability etc. of torsion-based catapults, but, to the best 
of our knowledge, no attempt to estimate the full length of the 
bolt on basis of the bolt point dimensions is known to have been 
published by other authors. The method applied here is based on 
the kinetic projectile energy for two different ancient catapult 
types. 

Section 2 gives a brief overview of the historical development 
of catapults and of early catapult research in general. The 
mathematical framework is developed in Section 3. The concept 
of virtual specific gravity of a bolt point will be introduced in 
Section 3 and elaborated in Section 4 and the possible solution 

to a resulting 3rd order equation is shown in Section 5. Section 6 
describes the overall method/procedure to calculate the full bolt 
length L, and a sensitivity analysis of the involved parameters is 
presented in Section 7. Section 8 contains the conclusion of the 
work. 

The use of catapults can, besides psychological impact 
(intimidation, deterrence), have physical effects by targeting 
specific targets such as city walls and soldiers. Smaller catapults, 
in general, were used for shooting bolts/spears, and larger 
catapults launched stones. The basic function of a catapult is to 
accelerate a given projectile of mass m to a velocity high enough 
to allow it to move a distance l via air to a given target. Adding 
such a high initial velocity v to said mass m during launching from 
the catapult enables the mass to hit enemy targets. The projectiles 
can have different shapes and forms, from bolts over irregularly 
formed objects such as natural stones to processed spherical 
stone balls of specific mass. The actual shooting distance l will, 
besides the stored energy, depend on the friction coefficient 
between the projectile and the air, but the aim here is to analyse 
the behaviour at the launch moment and, thus, not the travelled 
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distance l. For information about research on actual shooting 
range, air resistance etc., see [1], [2]. 

The concept of energy states that a projectile at its launch 

moment must carry less kinetic energy 𝐸launch than the energy 

𝐸stored initially stored in the energy storage medium of the 
catapult, such as bow limbs or torsion springs, see equation (1) 

𝐸launch =  
1

2
 𝑚 𝑣2 <  𝐸stored . 

 
(1) 

The maximum shooting distance l is not analysed in this 
investigation, as the main purpose is to establish a method to 
determine the catapult and bolt size based on excavated 
boltheads in general. 

2. HISTORICAL DEVELOPMENT 

The catapult is generally considered to have been invented 
approximately in the year 399 BC in Syracuse, at that time large 
bows mounted with a fixed release mechanism. At a later stage, 
around 350 BC, torsion-based energy storage was introduced, 
and the design of these late Hellenistic catapults was standardised 
around 270 BC (see [1] for a detailed historical description and 
[3], [4], [5] for further discussion). A drawing of a torsion-based 
stone thrower is shown in Figure 1 with the main catapult parts 
and frame structure shown in Figure 2. 

The most important sources for information about ancient 
catapult design are Heron, Biton, Philon and Vitruvius, together 
spanning the period from 240 BC. to 25 AD [1], [6]. No design 
formulae for the early bow-based catapults are known to have 

existed, and only the artillery manuals of Heron of Alexandria, 
Belopoeica and Cheiroballista, contains information about the early 
non-torsion catapults as well as the design of the earliest torsion-
based catapults, where energy is mainly stored in torsion springs 
fabricated out of rope. Heron, however, provides almost no 
measurements, and the emphasis is on the description of 
components. The work by Biton is difficult to interpret, mainly 
due to the absence of drawings, which presumably were lost over 
time. It is fragmentary and very hard to decode. The artillery 
manual by Philon of Alexandria, Belopoeica, is extremely 
important to understand the construction of a working catapult, 
as it provides useful lists of dimensions of components/parts. 
The Roman officer Vitruvius describes both the Greek and the 
Roman development from a historical perspective. Since none of 
the classical sources listed above contain all the necessary 
information for a reconstruction, it is necessary to combine 
information from several ancient sources to be able to build a 
working catapult. 

The scientific investigation of the design and construction of 
Greek and Roman catapults began in the early 19th century and 
can overall be divided into a French and a German group. The 
French research was initiated by Emperor Napoleon III and was 
dominated by the works of the generals Dufour and Reffye [7]. 
They attempted to build reconstructions, based on the surviving 
ancient sources, and tried to develop a mathematical model for 
the shooting distance. Dufour and Reffye, however, seem to 
have misinterpreted several crucial design information from the 
Greek writers, and the reconstructions, therefore, are not 
considered correct, according to present knowledge [1]. The 
German group was dominated by the scholars Köchly and 
Rüstow, but their deep knowledge of Greek language was 
unfortunately not matched by their technical understanding, and 
they did not succeed in developing correctly functioning 
reconstructions or usable mathematical models [8]. The German 
tradition was later greatly influenced by artillery major Erwin 
Schramm, who in the period 1903-1920 experimented with the 
reconstruction of ancient catapults at the Saalburg Museum near 
Frankfurt in Germany [3]. The remains of a Greek bolt launching 
catapult was in 1914 discovered in Ampurias near Barcelona, 
Spain, dating from around 150 BC. Figure 3 shows the preserved 
frame, still with the 4 circular bronze washers for mounting of 
the torsion springs in their original positions. A reconstructed 
bolt launching catapult, based on a Ampurias catapult frame, 
with pre-tensioned rope springs inserted, shown in Figure 4. The 
design is similar to the version built by Erwin Schramm at the 

 

Figure 1. Drawing of a large stone throwing catapult. Note the rope-based 
torsion springs. Adapted from [3] with kind permission from the Saalburg 
Museum, Germany. 

 

Figure 2. Drawing of main catapult parts and frame structure for a 
torsion catapult, front view. 
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Saalburg Museum in 1918 (see [3] and [9], [10] for details). The 
historical attempts to calculate catapult performance, based on 
torsion theory, were in general not successful and did not 
generate usable results. For a more contemporary approach, see 
[11]. 

The ancient sources are specific about two sets of 
standardised design rules. They cover bolts/spears/bolts and 
spherical stone balls, each with its own calibration formulae to 
be applied, see equation 2 and equation 3, compiled primarily by 
E. W. Marsden [1], [2]. The sources state that all component sizes 
for a given catapult can be constructed from one base 

measurement, which is then scaled according to the needed size 
of the catapult. This standardization of the designs apparently 
emerged around 270 BC, presumably in Alexandria. 

The extremely important text Belopoeica by Philon of 
Alexandria, compiled around year 200 BC contains a section 
stating that: “Now it is time to explain ….. the subject of artillery 
construction, called engine-construction by some people… the fundamental 
basis and unit of measure for the construction of engines was the diameter of 
the hole. This had to be obtained not by chance or at random, but by a 
standard method which could produce the correct proportions at all sizes (of 
a catapult). …… Later engineers looked exclusively for a standard factor 
with subsequent experiments as a guide……” [2].  

The ancient texts clearly state that the standard factor is given 
by the diameter of the torsion spring! This base measurement 
was derived by two different methods, one for the Euthytone 
(bolt thrower) (Figure 3) and another for the Palintone (stone 
thrower). The Euthytone was based on the length of the bolt and 
the Palintone was based on the weight of the stone. The two 
formulae will be briefly discussed below. The standardization 
introduced in 270 BC linked all vital geometries to the calculated 
diameter of the torsion spring (equations (2) and (3)), both for 
the bolt throwers and for the stone throwers. The design 
parameters given by the ancient authors Philon and Vitruvius are 
not complete and it is also necessary to combine them for 
building a complete catapult. A catapult of any size can be 
constructed by applying the appropriate scaling factors, as 
illustrated in Table 1. Philon stated that the ratios were 
discovered by experiment and experience. Similar tables exist for 
Palintones. For a full list, covering also winches and sliders, see 
[1], [2]. The factor in question is the diameter f of the torsion 
springs. The authors Heron, Philon and Vitruvius give the 
formulae, but only Philon and Vitruvius have also supplied the 
ratios of the individual catapult parts, without those, the 
calibration formulae would be worthless (see Table 1). 

The measurements of all major components in a torsion-
based catapult are expressed as a factor relative to a single design 
parameter, the diameter of the torsion spring f. This diameter is, 
according to Philon/Heron/Vitruvius, determined by two 
different methods, depending on the purpose of the catapult. 
The key factor is the diameter of the circular washer, holding the 
inserted torsion spring. For a bolt launcher (Euthytonon) the 
factor fe is given by 1/9 of the actual full bolt length L (equation 
2). 

𝑓𝑒 =
1

9
𝐿 . (2) 

It is observed that equation (2) used the length L of a bolt, 
but the diameter d is unknown. No complete catapult bolt from 
before the 3rd century has been discovered, only the bolt points 

 

Figure 3. Frame of the Ampurias catapult remains in Museu d'Arqueologia de 
Catalunya, Barcelona, Spain. The 4 circular bronze washers for the mounting 
of the torsion springs are visible. Photo by author K. M. Paasch. 

 

Figure 4. Torsion based Euthytonon type catapult, based on the Ampurias 
design. Construction by the authors. 

 

 

Table 1. Euthytone multiplication factors for fp. (x) indicates not provided, 
calculated from available information. [x] estimated value, difficult to 
calculate. Compiled from [1], [2]. Vit.=Vitruvius, Ph.=Philon. 

Part 
 

Height 
 

Diameter /  
Length 

 
Width 

Author Vit. Ph. Vit. Ph. Vit. Ph. 

Spring hole   1 1   

Hole carrier 1 1 6 1/2 (6) 1 1/2 1 1/2 

Washer [3/4] [3/4] 1 1/4 1 1/4   

Sides 3 1/2 4   1 1/2 1 1/2 

Tenons 1/2      

Case 1   16 1  
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of iron. The socket diameter of a bolthead is likely to be equal to 
the diameter of the wooden shaft, but the length of the inserted 
wooden shaft is unknown. 

The washer diameter 𝑓𝑝 of a stone-throwing catapult 

(palintonon) is calculated as a function of the weight w of the 
stone (equation 3) [1], [2]. The expression is shown in SI-unit (kg 

for the mass m and meter for the diameter 𝑓𝑝). 

𝑓𝑝 = 0.130 √𝑤
3

 . (3) 

The original design formula used the units of Attic-Euboic 
minae, where 1 mina = 436.6 grammes [1]. The torsion springs 
were installed under extreme tension to ensure sufficient energy 
storage and individually adjusted by turning the washers. For 
details regarding stretching/pre-tensioning of rope see [1], [9], 
[10]. The actual amount of energy stored in a torsion 
spring/washer design, as shown in Figure 1 and Figure 2, is 
traditionally calculated based on a solid cylinder approximation 
[11]. However, more recent research has shown that the missing 
material in the torsion spring below the crossbar should be 
considered [10], [12]. 

3. COMPARISON OF DESIGN FORMULAE 

The physical principle behind the function of the catapults is, 
as stated in section 1, that both types of catapults accelerate a 
given mass m to a given launch velocity v with a kinetic launch 
energy Elaunch, as shown in equation (1). The main text by Philon 
can be interpreted as if the designs for both types of catapults are 
optimal. In case both design formulae express a maximum 
performance, it is to be considered if both equations express the 
same function of projectile weight m. In that case it is 
hypothesised that it is possible to establish the actual length L 
and shaft diameter d of catapult bolts, where only the points have 
survived [9], [10], as well as determining the diameter of the 
torsion spring and thus the size of catapult parts found without 
corresponding complete bolts. 

The “standardisation” in design of catapults is, as stated, 
considered to have taken place around 270 BC. Both formulae 
relate to the weight of the projectile, the palintonon formula with 
direct use of the mass m of the stone and the euthytonon 
indirectly by the length L of the bolt. The mass of a bolt as a 
function of its length, therefore, can be determined based on the 
physical dimensions and material properties, such as the specific 
gravity of iron and wood. Under the initial hypothesis that both 
calibration formulae (equations (2) and (3)) express the same 
physical performance, we have 

𝑓𝑒 = 𝑓𝑝 , (4) 

giving 

 
1

9
𝐿 = 0.130 √𝑚

3
 . (5) 

Under the hypothesis that both calibration formulae are 
optimized regarding the resulting mass of the projectile 
(stone/bolt/spear), both formulae for a given projectile mass m 
will give the optimal torsion spring diameter f. Combining the 
calibration formulae and solving for the mass m (in kg) gives 

𝑚 =
𝐿3

(0.130 ∙ 9)3
 . (6) 

The projectile mass m of a bolt is expressed as a function of 
the bolt length L and its other physical dimensions, shape and 

material compositions. The full-length L can further be divided 
into the shaft length Lshaft and the point length Lpoint, as 
illustrated in Figure 5 

𝐿 = 𝐿shaft + 𝐿Point . (7) 

Lshaft can be expressed as the ratio 𝛼 between the shaft length 

Lshaft and the full-length L, for 𝛼 < 1. 

𝐿shaft = 𝛼 𝐿 . (8) 

The mass m of a bolt can be calculated as the sum of the mass 
of the visible shaft (mshaft) and the mass of the point section 
(mpoint) 

𝑚 = 𝑚shaft + 𝑚point . (9) 

The mass of the shaft part mshaft is calculated via its volume 
and the specific gravity of the wooden shaft material (δshaft) and 
the length Lshaft. The mass of the fletching is considered much 
lower than the other components and is not included. The real 
specific gravity of the virtual point volume will depend on the 
weight m as well as the shape of the actual bolt point, which 
might vary from type to type. As the bolt point can have a 
multitude of shapes, a virtual specific gravity δvirtual is introduced 
into the model. This expresses the specific gravity as if the bolt 
point section was an enclosing cylinder of a pseudo-material with 
a virtual density δvirtual, resulting in the same mass m as the bolt 
point section as illustrated in Figure 5. The mass of the bolt point 
mpoint is thus calculated via the enclosing cylinder volume and the 
virtual specific gravity (δvirtual). 

In this rather simple model, the small cone of wood inside the 
socket is not included as, for example, an inner diameter of 16 
mm and length of 70 mm inside will add around 3-4 grams to the 
weight, only a few percent of the weight of the iron point itself. 
The mass of the parts is approximated as follows: 

𝑚shaft = 𝛿shaft π 
𝑑2

4
 𝐿shaft  (10) 

𝑚point = 𝛿virtual π 
𝑑2

4
 𝐿point . (11) 

Inserting equation (10) and equation (11) into equation (9) gives 

𝑚 =
π

4
𝑑2 ∙ (𝛿shaft 𝐿shaft + 𝛿virtual 𝐿point) , (12) 

resulting in 

𝑘1 𝐿3 = 𝑘2 𝑑2 ∙ (𝛿shaft 𝐿shaft + 𝛿virtual 𝐿point) , (13) 

where the constants k1 and k2 below contain the numerical values  

 

Figure 5. Bolt composition and parameters.  
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𝑘1 =
1

(0.130 ∙ 9)3
 

and  

𝑘2 =
π

4
 . 

By applying the ratio α from equation (8) and using equation 
(13), it can be shown that the diameter d of the bolt shaft can be 
calculated by solving the following equation. The steps in the 
solving process are shown in some detail to illustrate the process. 

𝑑2 =
𝑘1

𝑘2

∙
𝐿3

𝛿shaft 𝛼 𝐿 + 𝛿virtual (𝐿 − 𝛼 𝐿)
 . (14) 

Solving for the shaft diameter d, by implementing k1 and k2 
and relabeling δvirtual as δpoint gives 

𝑑 = √
4

π ∙ (0.130 ∙ 9)3
∙

𝐿

√𝛿shaft 𝛼 + 𝛿point (1 − 𝛼)

 . (15) 

Rearranging for full bolt length L gives 

𝐿 =
𝑑

2
∙ √π ∙ (0.130 ∙ 9)3 (𝛿shaft 𝛼 + 𝛿point (1 − 𝛼)) . (16) 

The total length L is now expressed as the diameter d times a 
factor containing the other physical properties. The parameters 
Lpoint and d are measured values from the given bolt point under 
investigation, as shown in Figure 5. By introducing the variable β 
as the length of the bolt point Lpoint divided by the diameter d, 
the full bolt length L can be determined as shown below. 

𝛽 =
𝐿point

𝑑
→ 𝐿point = 𝛽 𝑑 . (17) 

Inserting equation (17) into equation (14) and rearranging 
terms and reduction, the parameter d can be isolated 

𝑑2 =
𝑘1

𝑘2

∙
𝐿3

𝛿shaft 𝐿shaft + 𝛿point (𝐿 − 𝐿shaft)
    

𝑑 = √
4

𝜋 ∙ (0.130 ∙ 9)3
∙

𝐿

√𝛿shaft 𝛼 + 𝛿point (1 − 𝛼)

 . 

 

(18) 

It can be observed that the only unknown in equation (18) is 
the full bolt length L. Rewriting and rearranging for powers of L 
gives 

𝛽 𝑑3(𝛿point − 𝛿shaft) =
𝑘1

𝑘2

𝐿3 − 𝑑2 𝛿shaft 𝐿   

𝑘1

𝑘2

𝐿3 − 𝑑2 𝛿shaft 𝐿 − 𝛽 𝑑3 (𝛿point − 𝛿shaft) = 0   

𝐿3 −
𝑘2

𝑘1

𝑑2 𝛿shaft 𝐿 −
𝑘2

𝑘1

𝛽 𝑑3 (𝛿point − 𝛿shaft) = 0 . (19) 

According to equation (19), the length of the projectile can be 
calculated via 4 parameters: 

• the length of the bolt point Lpoint 
• the socket diameter d 
• the virtual specific gravity of the point δpoint 
• the specific gravity of the wooden shaft δshaft. 
The virtual specific gravity parameter of each individual bolt 

point must be estimated. 

4. VIRTUAL SPECIFIC GRAVITY 

The wood used for the shaft of roman spears/throwing 
weapons such as a pilum is expected to be a type of hardwood, 
typically ash, hazelnut or similar [13]. Due to lack of knowledge, 
similar types of wood are expected to have been used also for 
bolts. The specific gravity of these types of hardwood are 
typically around 670-740 kg/m3 [14]-[16]. A value of 700 kg/m3 
is used in this analysis. The value will also depend on the 
humidity content. To the best of our knowledge, the so far only 
known complete catapult bolts discovered (Dura-Euporos, Qasr 
Ibrim) are from later Roman periods and are thus not considered 
representative for this analysis [17], [18]. 

The virtual specific gravity δpoint of the point will depend on 
the detailed shape and the wood inside the socked structure. A 
detailed analysis has been performed by the authors on data from 
a find of a Roman Republican weapon hoard from Grad near 
Šmihel under Mt. Nanos in Slovenia [19], covering many 
socketed catapult points of various sizes, as illustrated by 
examples in Figure 6. The analysis determined the virtual specific 
gravity of the catapult points together with an estimation of their 
mass, for a structure illustrated in Figure 5. The virtual specific 
gravity of catapult points can easily be calculated in case there is 
only little corrosion present. 

Thirteen values of virtual specific gravity were calculated 
based on the drawings from [19], plate 14. The values span the 
range of 1372-3136 kg/m3 with an average value is 2330 kg/m3. 
The calculated corresponding β-values are illustrated in Figure 7. 
A linear fit is estimated, showing an R2-value in the range of 0.7. 
This indicates that the points have comparable (but not identical) 
shapes and are not scaled version of the same shape, as the β-
values express the point length versus socket diameter. Identical 
shapes would, regardless of length, show a linear relationship. 
For heavily corroded points it is recommended that the 
dimensions are approximated by the geometries of the points 
and not by insertion in a liquid, due to the loss of mass, however, 
swelling caused by corrosion can make the estimate difficult. This 
unfortunately was the case for the catapult points found together 
with the catapult from Ampurias described in Section 2. Their 
very corroded state unfortunately made them not suitable for 
inclusion in this analysis. 

The difference between the weights of the points recorded in 
[19] and the calculated weight vary from -29 % to 19 %, as shown 
in Table 2, indicating the importance of correct modelling. 

 

Figure 6. Examples of catapult points from the Grad near Šmihel find, 
Slovenia [19], plate 14. Adapted from [19] with kind permission from 
Arheološki vestnik.  
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5. SOLUTION OF THE 3rd DEGREE EQUATION SYSTEM 

A cubic equation such as equation (19) can be written in the 
general form 

𝐿3 + 𝑝𝐿 + 𝑞 = 0 , (20) 

where in this case 

𝑝 = −
𝑘2

𝑘1

 𝑑2 𝛿shaft  (21) 

𝑞 = −
𝑘2

𝑘1

 𝛽 𝑑3(𝛿point − 𝛿shaft) . (22) 

Cubic equations, in general, cannot easily be solved 
analytically. Except in cases, where one root is obvious and the 
equation is reduced to a quadratic equation, cubic equations are, 
in practice, mostly solved by an approximate or numerical 
method. The method used here is based on Cardano’s method 
[20] and a set of assumptions related to its use. 

In case p and q are real numbers 

∆=
𝑞2

4
+

𝑝3

27
> 0 , (23) 

then the real root (in this case L) is given by equation (24). 

𝐿 = √𝑢1 3 + √𝑢2
 3  , (24) 

where 

𝑢1 = −
𝑞

2
+ √∆  (25) 

𝑢2 = −
𝑞

2
− √∆  , (26) 

for details see [20]. Equations (21)-(26) are easily implemented in 
software, calculating the expected full-length L of the catapult 
bolt of which only the bolt point has been found. Figure 8 shows 
the calculated expected full bolt length L as a function of the 
point length Lpoint, for selected values of the socket/shaft 
diameter (15-26 mm). A selected specific gravity of the wooden 
shaft of 700 kg/m3 and a selected virtual specific gravity of 
2400 kg/m3 of the bolt point section was used. 

6. PROCEDURE AND EXAMPLES 

The procedure to establish the length of a bolt, where only 
the dimensions of the bolt point is known, is as follows:  

• Determine if the period of the bolt point is in the 
Hellenistic/Republican period. 

• Measure the overall length Lpoint and the socket diameter d 
of the point. 

• Estimate the volume of the bolt point, either by geometry 
or by immersion in a liquid [21]. 

• Calculate the virtual density δpoint of the bolt point. 
• Estimate the length L by applying equation (20)-(26) or by 

applying the graphical solution chart shown in Figure 10. 
The 13 data sets used from [19], plate 14, are used to calculate 

the expected corresponding full-length L of the bolt, based on 
equations (21)-(26) and the diameter of the torsion spring fp via 
equation 1. The results are shown in Table 2. For weight 
differences below 10 %, the estimated bolt lengths are in the 
range of 60-74 cm and the catapult torsion spring diameters are 
in the range of 6.7-8.2 cm. Results for differences larger than 
10 % are consider too uncertain to be included in the analysis. 

7. SENSITIVITY ANALYSIS 

The theoretical framework developed in the previous sections 
showed a method to estimate the full bolt length, but the analysis 
of available data in [19] also showed an uncertainty in estimating 
the require input values, especially the correct geometry of the 
bolt points and the derived virtual specific densities. To illustrate 
the influence of the main parameters has a sensitivity analysis 
been made. The results of the sensitivity analysis around the 
selected parameter set of shaft diameter d = 20 mm, point length 
Lpoint = 180 mm, wooden shaft δshaft = 700, iron 7800 kg/m3 and 
the virtual specific density δpoint = 2400 kg/m3 are shown is 
Table 3.  

  

Figure 7. Calculated point 𝛽-values as function of diameter size of the 13 
catapult points investigated from [19], plate 14. 

Table 2. Calculated full bolt length L and torsion spring diameter fp. 

Figure in [19], 
plate 14 

Length 
Lpoint 
(mm) 

Socked 
d 

(mm) 

Weight 
(gram) 

(19] 

Specific 
grav. 

(kg/m3) 

Weight 
difference 

(%) 

L 
(cm) 

fp 
(cm) 

No.   1 152 17.2 93 2670 -2 65.6 7.3 

No.   2 150 20.8 92 1870 7 71.7 8.0 

No.   5 142 18.2 98 2753 -14 68.5 7.6 

No.   6 138 17.3 84 2650 4 64.8 7.2 

No.   7 127 19.8 98 2580 -6 71.4 7.9 

No. 10 138 20.5 112 2510 10 74.1 8.2 

No. 11 137 21.0 136 2894 -29 77.7 8.6 

No. 12 108 20.5 62 1770 -5 67.8 7.5 

No. 13 108 16.4 52 2331 -25 58.2 6.5 

No. 15 108 18.7 63 1370 7 60.1 6.7 

No. 16 109 19.1 50 1635 -12 62.9 7.0 

No. 17 93 15.5 54 3137 -13 57.5 6.4 

No. 18 95 17.9 32 1372 19 57.2 6.4 

Table 3. Result of sensitivity analysis. 

Parameter Point of analysis  Variation in L 

d 20 mm  3.2 mm/mm 

Lpoint 180 mm  0.6 mm/mm 

δpoint 2400 kg/m3  7 mm / (100 kg/m3) 

δshaft 670-740 kg/m3  20 mm 
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The sensitivity analysis showed that especially the estimation 
of the socked diameter d is important, as a variation of 1 mm can 
generate a deviation of 3.2 mm in the estimation of the full bolt 
length L. The socket diameter can be very difficult to estimate 
precisely due to corrosion. The variation in L from the point 
length Lpoint is 0.6 mm/mm. The virtual specific gravity δpoint of 
the point will vary with 7 mm for every 100kg/m3 and is as such 
a critical parameter. Based on the wood density variations 
estimated in [14], [15], [16], the length of the bolt could vary up 
to 2 cm. 

8. CONCLUSION 

The main purpose of this paper was to develop a theoretical 
basis for the calculation of the bolt size and the diameter of the 
torsion spring for early torsion based euthytonon and palintonon 
catapults, by measurement of bolt point characteristics. This was 
achieved by combining the two known formulae for the optimal 
diameter of the torsion springs for those catapults, listed in 
ancient Greek/Roman sources. The hypothesis is based on the 
authors assumption that both formulae represent the same basic 
principle, to accelerate a given mass to an optimized velocity. 
Archaeological finds of ancient catapult bolts in general consist 
only of metal parts, as all wooden elements have deteriorated 
over time and this imposed uncertainties in the estimation of type 
of wood and actual dimensions (due to corrosion). The 
combination of both formulae and the introduction of a virtual 
specific gravity for the point section of the bolt has led to a 
polynomial of 3rd degree, solvable under certain assumptions. As 
examples, the published geometrical forms of 13 catapult points 
from the Grad near Šmihel find in Slovenia, have been analysed 
and used as input data for the analysis. The points show 

corrosion so a deviation in the results were to be expected. The 
application of the developed theory showed that the full length 
of the bolts matching those bolt points were estimated to be in 
the range of 60-74 cm, matching a catapult with a torsion spring 
diameter range of 6.7-8.2 cm. A 10 % difference in weight from 
the calculated weight and the measured weight of the points was 
accepted. A sensitivity analysis showed that a critical parameter 
in the process is the estimated diameter d of the bolt shaft, 
identified as the outer diameter of the socket part of the bolt 
point. A 1 mm variation in d will result in a 3.2 mm variation of 
the full bolt length. The variation of the specific gravity of the 
wood used as shaft material can give up to 20 mm in difference. 
A procedure for the calculation has been described and a 
graphical tool for the estimation of the bolt length has been 
presented. 

In the best of our knowledge, it is the first time that it has 
been demonstrated that a combination of the apparently 
different calibration formulae for standardized bolt-throwing 
and stone throwing torsion-based catapults can be used to 
approximate the full length of a bolt made for an early Hellenistic 
euthytonon bolt shooting catapult. The standardized design was 
developed around the year 270 BC in Greece. To the authors 
best knowledge, no full-length catapult bolts from the Hellenistic 
period have been found or identified as such so far. Therefore, it 
has not been possible to test the developed theory against 
archaeological finds. 
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