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1. INTRODUCTION 

X-ray computed tomography (XCT) is a complex inspection 
technology, whose usage is spreading on the market other than 
medical diagnostics [1]. Indeed, in the last decades, it has been 
widely used in several fields, from aerospace up to automotive, 
in order to achieve qualitative and quantitative assessments of 
materials [2].  

In particular, the use of XCT as a non-destructive technique 
on composite materials for automotive industry has increased 
considerably for its ability to provide detailed information on the 
internal structure, both in 2D and 3D, and to analyse 
components from macro and micro-scale point of view. 

In detail, as regard composites, XCT is fundamental to study 
their structural integrity, to detect inner defects occurring during 

manufacturing or in-service conditions, to understand fiber 
orientations and to identify porosity [3]. 

In order to do that, it is clear that one of most relevant aspects 
to take into account for feature detection is the contrast between 
the different constituents within the volume of interest, such as 
matrix, fibres, defects and background. 

The XCT image quality depends from the contrast, and this 
can be reduced due to different factors: artefacts, such as beam 
hardening, noise, ring effects, or a not sufficient X-rays intensity 
through the component, made even more complex by 
heterogeneous materials with not easily distinguishable and in 
turn similar linear attenuation coefficients. 

From this point it is evident the need to set up a careful 
measurement protocol of XCT parameters in order to optimize 
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the contrast of the scan and in turn to improve the goodness of 
a further image processing step [4]. 

 In literature, some works present the relevance of selecting 
scanning parameters according to the grey values of radiographs 
to provide suitable penetration of X-rays while minimizing noise 
[5]. Their main focus was to explain the role of these XCT 
parameters and their effect on the final scan from a qualitative 
point of view [5], [6]. Furthermore, other works made use of 
some commercial software, like ArTist or Scorpius XLab [7], 
which allow to simulate the result of the XCT scan with certain 
user-selected parameters, with measurement errors in the order 
of micrometers for metrological assessment with respect to 
ground truth geometries. 

In our work, the main goal is to develop a quantitative and 
reliable XCT parameters optimization procedure which can give 
as result a prediction of the quality of a specific material scan. 

The way we achieve our goal was by making use of a Design 
of Experiment (DOE), which is a branch of applied statistics 
used for planning and conducting experiments in order to 
interpret data obtained from them. In particular, we have used it 
for optimization purpose, by moving the experiments to 
optimum setting of input variables, which in our case correspond 
to XCT system parameters [8]. 

DOE is a robust multipurpose technique which can be used 
in various situations to identify important experimental factors 
and to understand the way they are related to a certain response 
variable. 

Khalifa et al. [9] reviewed various DOE methodologies 
depending on the nature of experimental system and the 
availability of resources to perform, dwelling on the differences 
between a full factorial and fractional designs.  

Bianchesi et al. [10] described the potential of DOE to find 
out optimal solution of a response variable through the 
combination of input variables, according to some algorithms 
which combine regression model, Ordinary Least Square (OLS) 
and Analysis of Variance (ANOVA). 

The use of OLS to estimate linear regression models, in 
conjunction with Response Surface Method (RSM), useful to 
develop, improve and optimize processes, was also discussed in 
[11], with obtained Mean Square Error (MSE) and determination 
coefficient (R2) values of 0.01 and 66.86% respectively, as well as 
in [12], in which RSM was used to fit a first-order polynomial in 
the inputs by means of OLS. 

Prior research dealt with DOE to improve system 
performance in many fields of research. Guo et al. [13] indicated 
the guidelines for conducting DOE to solve chemical processes, 
suggesting full factorial designs for factors screening, while RSM 
based on Central Composite Design (CCD) for factors 
optimization. The use of RSM in analytical chemistry problems 
was confirmed by Ferreira et al. [14], which performed a 
multivariate experimental design approach by using a second 
order model, employing more than two factor levels. Sharif et al. 
[15] implemented a RSM based on five level-two factor CCD in 
order to optimize the hydrolysis conditions for maximum ferulic 
acid production, obtaining an R2 value of 80.68%. Khazaei et al. 
[16] identified RSM technique as a valuable tool which facilitated 
the execution and analysis of experiments in chemistry with 
respect to the time consuming conventional optimization 
method which altered one variable at a time by keeping the 
others constant, without considering the interactive effects 
between variables, providing a fit with the experimental data of 
98.4 %. RSM based on CCD was also preferred in [17], 
determining optimum operating conditions with a R2 of 98.6 %, 

indicating a high reliability of the model in predicting the desired 
responses. 

DOE played an important role in optimization processes also 
in energy distribution [18], biological [19] and pharmaceutical 
[20] fields, as well as in material science, in which CCD and RSM 
are preferred over others DOE approaches for the capability of 
solving curvature in response associated with each design 
variable by using quadratic terms. 

Our work aims to find out the effect that XCT system 
parameters have on contrast-to-noise ratio (CNR) value, taken as 
quality metric of the final performed scan, from a quantitative 
point of view, that is how this indicator of the XCT scan quality 
will numerically change according to a certain XCT parameters 
choice.  

A previous study of Portante et al. [21] attempted to 
overcome the current challenges regarding XCT parameters 
settings, which involve mainly the biases introduced by 
operator’s ability to run the measurement, instead with DOE 
based optimization process we achieved an objective and 
quantitative CNR measurement, independently from the 
subjective choice of the user. In that work the authors refer to 
Q-factor calculated on the histogram of reconstructed XCT 
images of a 3D printed component as a metric of contrast 
between material and air background, and they identified main 
factors which could impact the Q-factor responses through a 2-
level full factorial DOE. After that, they use RSM to determine 
the optimal settings. In reverse, our work introduces another way 
to predict optimal combination of XCT parameters to maximize 
the contrast of composite materials XCT scan, by performing a 
specific experimental design based on 2D radiographs, also called 
projections, created by simply impinging a beam of X-rays 
through a sample. 

This procedure, which represent the greatest novelty 
compared to the state of the art, will allow to save time and 
money required for the whole XCT scan process, by providing 
the operator with a priori knowledge of what will the result of 
the final XCT scan in terms of contrast. 

2. MATERIALS AND METHODS 

This section explains the applied procedure in order to choose 
the optimal XCT parameters for a CFRP scan. 

Following a brief overview about the tomographic machine 
and the material used (Section 2.1), section 2.2 described the type 
of chosen DOE, which best suited our goal, together with the 
choice of independent variables and response selection to be 
involved in our design. Section 2.3 showed how experimental 
CNR measurements were performed. Section 2.4 outlined the 
building of the DOE matrix. Subsequently, in Section 2.5, a 
quadratic multivariate regression model was built according to 
the design, and through statistical analysis we tried to understand 
how each variable affected the response. The fit of the model 
was then evaluated with statistical measurements and residual 
plots. The combination of XCT parameters to optimize our 
response variable was identified by using RSM (Section 2.6), 
from which outliers were removed. Outliers were identified by 
considering the histogram of projection images, resulting by 
using certain combination of XCT parameters, and linearity 
range of detector sensors. The whole procedure was then 
validated by performing a XCT scan with this parameters’ 
combination, and other three ones, in order to see if the optimal 
contrast value, calculated from projection images, will reflect in 
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an optimal contrast value even in the reconstructed slices of the 
scan. 

The block diagram (Figure 1) summarizes the workflow.  

2.1. Scanned material and X-ray computed tomography system 
used 

All the experimental runs for this study were performed by 
using a ZEISS Metrotom 1500 laboratory XCT system that has 
a maximum power output of 200 W (200 kV). 

The material considered is a high-strength CFRP (T700 fibres 
and ER450 epoxy resin) provided by HP Composites S.p.A. 
company. In particular, the sample under investigation is a cut-
out portion of a laminate which was produced by hand lay-up of 
6 sheets, oriented at 0°, of a woven carbon fabric prepreg, with 
a twill 2 × 2 weave pattern and further cured in autoclave 
(Figure 2, top left). The sample size was 10 × 100 × 3.5 mm³. 

2.2. DOE development 

In order to find out the optimal combination of XCT scan 
parameters, a five-level central composite design (CCD) was 
developed by using Python software. This is a technique widely 
used to limit the actual number of tests needed through the 

combination of two-level full 
factorial design with additional 
points, also called star points, and 
two other points taken at the centre 
of experimental region, fundamental 
to obtain rotability or orthogonality 
properties. 

The first step performed before 
building the design matrix was to 
select independent variables or input 
factors, together with their numerical 
range, which could predict the 
behaviour of a certain response or 
dependent variable, which will 
represent our desired outcome. 

Since our objective was to 
optimize the XCT scan of the 
investigated composite material, 

from a preliminary analysis the independent variables which 
affect the XCT scan quality are the voltage (X1), as indicator of 
the X-ray beam generated power, the beam pre-filter (X2), whose 
presence could modify the average power of polychromatic X-
ray cone beam before impinging the component to be scanned, 
the exposure time (X3), taken as product of integration time and 
amount of images averaged in order to reconstruct the XCT 
image and main index of time duration of XCT final scan, and 
finally the distance (X4) from X-ray source, which will impact on 
the maximum achievable XCT spatial resolution since each scan 
has an acceptable resolution range. 

The four selected independent variables were considered at 
five different levels, coded as –α, -1, 0, 1 and +α. 

The α value was calculated using the following formula: 

𝛼 = (2𝑘)
0.25

 (1) 

where 𝑘 was the number of independent variables, in our study 

set to 4. Thus, the values of 𝛼 for this study was set to 2. 
The numerical range of these independent variables was 

selected in a way that the resulting collected X-ray projections 
did not result in a saturated image, namely the intensity of 
transmitted X-rays did not overcome the linearity limits of 
detector sensors, carrying out an uncorrected image. 

Moreover, we choose to not consider as input variable the 
current parameter, since it was calculated by the ZEISS 
Metrotom 1500 automatically accordingly to the voltage. The 
link between voltage and current had impact also on the voxel 
and focal spot size, which in this experiment varied over a range 
of 7.25 – 17.85 µm. 

The gain has been set to 8, since it has been a good 
compromise to avoid image saturation when the voltage is high 
and image with low contrast when the voltage is low.  

After that, to determine the uncoded value correspondent to 
α, the following expression was used: 

𝑈𝑛𝑐𝑜𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑜𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ∙ 𝐿) + 𝐶, (2) 

where coated value was one of the five levels coded values, L was 
the length expressed in real units between centre points and +1 
value of each factor, and C was the centre point expressed in real 
units.  

Table 1 illustrates the input variables used in the design 
matrix, with their levels coded and correspondent uncoded 
values. 

 

Figure 1. Workflow of the proposed procedure for CNR optimization measurement of XCT scans. 

 

Figure 2. Two ROIs selected on each XCT projection (yellow: material, red: 
air). On top left a cut-out portion of the investigated material. 
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2.3. CNR experimental factors determination 

After having decided the variables involved and the DOE 
technique to be used, experimental calculations were made based 
on projection images. The reference projection image with 
smallest thickness has been chosen in this paper, since it reported 
the most unfavourable conditions.  

The studied response variable used in this study was the 
contrast-to-noise ratio (CNR), which provided a quality metric 
of the XCT scan. 

CNR is an important measure in Non-Destructive 
Techniques (NDT) field and it was used in XCT scan process 
because it indicates whether the attenuation difference between 
a feature and its background is greater than background noise 
level.  

The following equation was used to extrapolate CNR value 
[22], [23]: 

𝐶𝑁𝑅 =  
|µ1 −  µ2|

ơ2
 , (3) 

where µ1 and µ2 were the mean grey level intensities calculated 

on the material and on the background respectively, and ơ2 was 
the standard deviation calculated on the background region to 
consider the noise level of the image. 

Prior assessing the CNR values, XCT projections were 
exported from METROTOM OS ZEISS software into 
MATLAB as uint16 tiff images. 

Here, a de-striping filtering algorithm [24], based on Wavelet 
and Fast Fourier analysis, was used to correct vertical stripes 
inhomogeneities from the raw projections, coming from typical 
detector measurement errors. This approach resulted in the 
suppression of just the unwanted structure feasible, while 
preserving the original image information. 

In detail, the original image was Wavelet decomposed up to a 
certain level L, in order to separate the structural information 
into horizontal, vertical and diagonal details bands. Then, the 
bands containing the vertical stripe information were FFT 
transformed to by a column wise 1D FFT. These coefficients 
were multiplied with a Gaussian function and then transformed 
back to the Wavelet space, from which the de-striped image was 
reconstructed. 

To accomplish our goal, three parameters were selected for 
the filtering process: the highest decomposition level L (set to 3), 

the Wavelet type (Daubechies, DB30), and the damping factor ơ 
of the Gaussian function (set to 10). 

Two Regions of Interest (ROI), shown in Figure 2, were 
selected corresponding to material (yellow) and air (red) for each 
collected XCT projection image, and a corresponding CNR value 
was calculated based on that. 

As recommended in [25], minimum number of pixels to 
consider in order to provide a statistically significant analysis is 
about 225, and in this work we selected two ROIs with size 
97 × 600 pixels, in order to take into account possible hidden 

defects and artifacts in the projection, which could lead to an 
alteration of the CNR subsequently calculated. 

2.4. CCD matrix 

The number (N) of experiments performed to fulfil CCD 
model was defined by this expression: 

𝑁 = 2𝑘 + 2 ∙ 𝑘 + 𝐶 , (4) 

where k is the number of input variables, in our case 4, and C is 
the number of centre points used (set to 2) in order to check the 
adequacy of fit and corresponding to a coded value of 0 for each 
of the independent variables. 

Thus, a total of 26 experiments were performed, 
corresponding to 26 XCT projections on which a CNR was 
provided. 

2.5. Statistical analysis of experimental data 

After the CCD matrix was structured and experiments were 
conducted, the main aim of the study was to find the best 
combination of factor levels which gives the highest CNR as 
predicted and optimized response. 

A quadratic model fitting was accomplished for the CCD 
design, and methods like Analysis of Variance (ANOVA) and 
Ordinary Least Square (OLS) were carried out by means of 
Python code to evaluate the adequacy of the fitted model, to 
describe its significance and to study the effects of the variables. 

Interactions up to second order were considered, since higher 
ones were negligible, and the experimental response could be 
represented by the following equation: 

𝑌 =  𝛽0 +  ∑ 𝛽𝑖

𝑘

𝑖=1

∙ 𝑥𝑖 + ∑ 𝛽𝑖𝑖

𝑘

𝑖=1

∙ 𝑥𝑖𝑖
2 +  ∑ ∑ 𝛽𝑖𝑗

𝑘

2

𝑘−1

𝑖=1

∙ 𝑥𝑖 ∙ 𝑥𝑗 . (5) 

Table 2 summarized the effects of the multivariate regression 
model variables and their associated p value for the response. 

By performing OLS and ANOVA, we were able to estimate 
regression coefficients βk by minimizing the sum of squares error 
(SSE). These coefficients represent the mean change in the 
response variable for unit of change in the predictor variable, 
while holding other predictors in the model constant. 

Table 1. Coded and correspondent uncoded values for independent variables 
used in DOE matrix. 

Indipendent 
variables 

Symbol -α -1 0 1 +α 

Voltage (kV) X1 80 100 120 140 160 

Filter (mm) X2 0 0.25 0.5 0.75 1 

Exposure time (ms) X3 2000 4000 6000 8000 10000 

Distance (mm) X4 55 75 95 115 135 

Table 2. ANOVA and OLS results for the CCD model. 

ANOVA and OLS Regression Results 

R2 = 97.10 % 
Adjusted R2: 

93.30 % 
F-statistic:  

25.98 
P-value: 

2.12 · 10-6 

 Regression 
coefficients 

t-test p-value 

Intercept 9.38 14.55 0.00 

X1 1.68 9.02 0.00 

X2 -2.70 -14.53 0.00 

X3 0.17 0.91 0.38 

X4 1.32 7.11 0.00 

X12 -0.51 -2.32 0.04 

X22 0.11 0.48 0.64 

X32 0.01 0.05 0.96 

X42 -0.25 -1.16 0.27 

X1*X2 0.64 2.81 0.02 

X1*X3 0.03 0.16 0.87 

X1*X4 -0.24 -1.07 0.31 

X2*X3 -0.03 -0.15 0.88 

X2*X4 0.24 1.06 0.31 

X3*X4 0.01 0.01 0.99 
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F-statistic was determined to establish if regression model was 
statistically significant, at a confidence level of 95%, and to reject 
the null hypothesis, which expected all regression coefficients 
equal to 0. A look at t-test also was essential to understand at 
which extent individual input variables contributed in the 
prediction of the response.  

The determination coefficient (R2) described how well model 
predictors, taken as a group, did in predicting the response. 

Finally, residual plots (Figure 3) must be considered to 
validate the model and avoid heteroscedasticity problem with 
either predictors in the model. 

2.6. RSM based optimization process 

As mentioned before, the CCD model was used to optimize 
the XCT measurement process. 

In order to identify the optimal factor settings, Response 
Surface Methodology (RSM) played an important role. Indeed, 
the response surface is a three-dimensional plot displaying the 
relationship, based on the quadratic equation shown above, 
between the response and independent variables. Together with 
lines of constant response drawn in the plane of the inputs, called 
contour plot, RSM provided a quick insight of predicted 
response by the model. 

In Figure 4 it could be seen an example of response surface, 
with the predicted CNR results in function of voltage, filter, 
exposure time and distance as coded values, by keeping, for 
instance, the latter two constant to 0. 

From the multivariate regression model equation, coordinates 
of stationary point optimizing the response function could be 
calculated by solving partial derivatives equation system, given by 
δY/ δX1 = 0, δY/δX2 = 0, δY/δX3 = 0 and δY/δX4 = 0. This 
stationary point corresponded to the maximum value of CNR 
predicted from the response surface (Figure 4). 

After having transformed the coded results for XCT 
parameters combinations into the corresponding uncoded and 
“real” ones, a further analysis and screening was needed to 
remove present outliers. 

These were given by a list of combinations of XCT 
parameters which might provide incorrect and unfeasible XCT 

projection images, being saturated, i.e. in case of voltage values 
combined with maximum exposure time and distance from X-
ray tube. 

In order to remove these outliers, a control function was 
applied. 

We considered the dynamic range of our XCT system 
detector sensors and extracted the linearity limits, which 
corresponded to 6000 and 55000 in terms of minimum and 
maximum greyscale level intensities, respectively. We 
investigated the behaviour of each projection image histogram, 
and derived from that a control function which provided us the 
minimum and maximum greyscale values of each image 
histogram derived from XCT parameters combination and, if it 
exceeded the fixed linearity limits, caused the corresponding 
combination to be discarded from the list of those ones resulting 
from DOE. 

In Figure 5 an example of a not saturated projection image (a) 
and a saturated one (c), together with their histogram (b, d). 

3. RESULTS 

From RSM analysis, the optimal resulting four XCT 
parameters combination are those reported on Scan 1 row of 
Table 3. In order to validate the results obtained, we proceeded 
to run, for comparison, other three XCT scans (scans 2, 3, 4 from 
Table 3), gradually changing one variable at a time, starting from 
voltage (imposing it as an example at 160 kV), followed by 
exposure time (2000 ms) and finally filter (0.5 mm). 

These last three XCT scans parameters combinations were 
observed to provide a lower CNR value as predicted by RSM.  

Afterwards, we considered the reconstructed images from the 
XCT scan, also called slices, and, after having centered the 
component with respect to the image center in each of the four 
scan’s slices, we selected two ROIs (Figure 6), having fixed size 

 

Figure 3. Residual plots for each independent model variable. 
 

Figure 4. Response surface of the model predicted CNR results by varying 
voltage and filter and keeping exposure time and distance constant to 0 as 
coded value. 

Table 3. Scan 1 run with optimal parameters combination from RSM and Scan 2, 3, 4 to validate CCD model results. 

Scan 
number 

Voltage 
(kV) 

Current 
(µA) 

Exposure 
Time (ms) 

Gain 
Distance 

from X-ray 
source (mm) 

Focal spot 
size 
(µm) 

Voxel 
size 
(µm) 

Magnifi-
cation 

Filter 
(mm) 

FOV 
(mm) 

Number 
of slices 

Predicted CNR 
from projections 

(CCDmodel) 

Scan 1 125 129 120 8 115 16 15.85 12.62 0 26 × 23 × 20 1264 15.87 

Scan 2 160 99 0.5 8 115 16 15.85 12.62 0 26 × 23 × 20 1259 14.07 

Scan 3 160 99 6000 8 115 16 15.85 12.62 0 26 × 23 × 20 1264 13.49 

Scan 4 160 99 95 8 115 16 15.85 12.62 0.5 26 × 23 × 20 1267 11.29 
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81 × 511 pixels, one for the material and one for the background, 
for all slices of the scans. 

Subsequently, we used the same CNR formula (Eq.3) as 
before in order to plot CNR values referring this time to the XCT 
slices (Figure 7). 

In order to further confirm and validate these results, four 
different projections, one for each scan considered above, were 
taken into account, and in particular their greyscale level 
distributions (Figure 8), distinguishing the two different peaks 
relative to material and air by means of Otsu thresholding (green 
line). 

CNR values based on the projection histogram (here referred 
as CNR_hist), considering one projection for each of the above 
four XCT scans, were extracted through the following equation 
[6]: 

𝐶𝑁𝑅hist =  
|𝜇2 −  𝜇1|

√ơ12 + ơ22
 , (6) 

where µ1 and µ2 are the mean greyscale values for material and 

air peak respectively, and ơ1 and ơ2 are the estimated standard 
deviation of the material and air greyscale values distributions 
(Figure 9). 

4. DISCUSSION AND CONCLUSIONS 

The accuracy of the described model can be checked by 
looking at its determination coefficient R2, F-statistic results and 
at the associated residual plot. The former corresponded to 
97.1 %, which indicated the percentage of variation in the 
response explained by the multivariate regression model.  

F test turned out to be 25.98, with associated probability value 
(p-value) of 2.12 · 10-6, which allowed to state that the developed 
regression model was statistically significant, meaning that the 
input variables, taken as a group, predict a significant amount of 
variance in the response variable.  

As regard the residual plot, it fall in a symmetrical pattern in 
each of the input variables considered in the model, and residuals 
were centred on zero throughout the range of fitted values. This 
furtherly guaranteed the model validation. 

Signs and values of regression coefficients calculated by OLS 
and ANOVA represented the influence of predictors on the 

response, and their associated individual p-value suggested 
whether or not changes in predictor were associated with 
changes in the response.  

From Table 2, as expected for this kind of investigated 
material which was not so dense, positive values of regression 
coefficients for voltage, exposure time and distance exhibited a 
positive effect on the CNR as response, suggesting that CNR 
could be slightly improved with the increase of these three 
settable parameters.  

On the other hand, negative value for filter regression 
coefficient indicated an inverse relationship between this variable 
and CNR. 

In order to locate an optimum set of XCT process 
parameters, a second order design model based on RSM and 
fitted with a multivariate quadratic polynomial was fundamental.  

Response values for each trial at different factor settings could 
be predicted by substituting the corresponding values for the 

 

Figure 5. Example of not saturated projection image (A) and a saturated projection (C), together with their respective histograms (B, D).  

 

Figure 6. Example of ROIs selection (yellow: air, red: material) on a slice for 
Scan 1. 
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four factors, four quadratic terms and four 2-factor interaction 
terms present in the regression equation.  

This led to successfully getting the maximum response with 
the corresponding predictors inside the whole experimental 
space. 

From the RMS results, we took the resulting optimum 
parameters combination (voltage: 125 kV, filter: 0 mm, exposure 
time: 6000 ms, distance form X-ray source: 115 mm) and we 
decided to run a XCT scan with these. 

The developed CCD model appears to be reliable, providing 
high accuracy in predicting CNR values. A prior filtering 
approach on projection images, based on Wavelet-fft combined 
algorithm, proved necessary in order to correct images affected 
by artefacts coming from detector inhomogeneities. 

In order to validate our CCD model, based on experiments 
performed on XCT projection images, we launched other three 
scans taken with a different parameters setting, we calculated 
CNR values on each scan’s reconstructed slices and we 
compared them. 

We obtained CNR measurements which confirmed the 
goodness of our new proposed approach, with the highest one 
corresponding to the XCT scan run with the parameters 
provided by the model. 

A second validation was performed by looking at the 
histogram of these four scans’ projections, and also in this case 
we found out a bigger CNR for the XCT scan launched with the 
optimal combination of XCT parameters coming from DOE. 

In conclusion, many engineering projects involve 
understanding effects of different predictor variables on a 
desired output or response. 

These experimental-based problems can be challenging, 
experimental with limited resources. 

 

Figure 7. CNR calculated on XCT scan slices. 

 

Figure 8. Response surface of the model predicted CNR results by varying 
voltage and filter and keeping exposure time and distance constant to 0 as 
coded value. Green line distinguishes two different peaks (material and air), 
blue and black lines indicate the start and end of the histogram. Red dots 
indicates the maximum values of the two peaks of the histogram. 

 

Figure 9. CNR-hist value calculated on each of the four projection. 
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In this work, we focused on the improvement of the whole 
XCT measurement process, providing a quantitative result 
relative to the assessment of scans quality in terms of contrast. 

A CCD model development was demonstrated to be useful in 
order to overcome the lack of knowledge of the correlation 
between XCT parameters and final scan quality, which governed 
the XCT process.  

Indeed, CCD model allows to provide maximum information 
with minimum experimental trials and to estimate non linearity 
of response in a given dataset. 

Furthermore, what was highly innovative in our proposed 
approach was the fact that we collected data from XCT 
projection images, which allowed the operator not to waste time 
and money, together with the fact of providing quantitative and 
objective insights on what would be the outcome of the final 
XCT scan. 
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