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1. INTRODUCTION 

Plastic pollution is a global environmental crisis that has 
reached alarming levels in recent years. The widespread use of 
plastic in various sectors, such as food packaging, electronics, 
and construction, has led to an unprecedented amount of plastic 
waste being generated and dispersed in the environment [1], [2]. 
Plastic is now present even in the most remote regions of the 
world, including the ocean, where it poses a significant threat to 

marine life and ecosystems [1]. The health risks associated with 
plastics have been well documented by the scientific community. 
Indeed, the environmental impact of plastic waste cannot be 
ignored, especially in developing and least developed countries 
where these risks are particularly prevalent [3]-[7]. 

Plastic debris has the potential to permanently alter the natural 
balance of ecosystems, thus causing harm to humans and 
wildlife. The issue of plastic waste is a cause for growing concern, 
especially considering that by 2015, 6.3 billion tons of plastic 
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Microplastics have become a significant concern for the well-being of marine ecosystems. Small fragments of plastic debris are released 
into the environment from both the direct disposal of plastic products and the deterioration of larger items. Ingestion of microplastics 
by marine life can result in detrimental effects, including physical harm and the accumulation of toxic chemicals in their tissues. The aim 
of this research is to design a compact and cost-effective measurement system for effectively detecting and quantifying microplastics in 
marine environments. The proposed system uses a 2.4-inch liquid-crystal display (LCD) panel and a digital USB microscope, both of which 
are connected to a single-board computer, with a dedicated python-based graphical user interface (GUI). Specifically, the light 
transmitted through plastic and organic samples was measured in order to identify and classify them. Various types of materials, such 
as polypropylene, polyvinyl chloride, polycarbonate, polyethylene, and organic algae samples, were tested and the metrological 
performance of the system has been estimated. The transmittance of the samples analyzed was primarily influenced by their opacity 
and thickness. In general, thicker materials exhibited significantly lower transmittance values. This trend was particularly evident in 
organic components and opaque plastic samples, where transmittance was significantly low. In addition, the experimental results 
suggest that the colour of the material also affects transmittance, although as a secondary factor. The employed technique could be 
used to identify and distinguish samples based on material properties, thereby allowing the proposed system to be a valuable tool for 
further research on microplastics in marine environments. 
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waste had already been produced. If current trends continue, this 
number is expected to reach 26 billion tons by 2050, with almost 
half of it being disposed of in landfills or dispersed in the 
environment [8]. The production of plastic products, particularly 
single-use plastic, and their disposal are two of the major sources 
of marine debris. Marine debris poses a serious threat to the 
environment as it can affect a wide range of organisms, changing 
their physical, chemical, and biological characteristics and 
reducing their reproductive potential [9], [10]. The issue of 
microplastics in the marine environment has become a major 
concern, as it may bring significant risks to marine life and 
ecosystems [11]. In this context, the identification, quantification, 
and classification of microplastics are crucial steps in 
understanding and addressing this critical and challenging 
problem. However, the detection of microplastics is not a trivial 
task, due to their small size, low concentration, and the 
complexity of their physical and chemical properties. 

The classification of plastic particles according to size has 
been, and still is, a topic of ongoing debate in the scientific 
community and it may vary from study to study [12]. Some 
studies categorize them as macroplastics (i.e., > 20 mm) [12], 
mesoplastics (i.e., 5 mm - 10 mm) [13], microplastics (i.e., < 5 
mm) [12], and nanoplastics (i.e., 0.2 mm - 2 mm) [14]. Recently, 
the ISO/FDIS 24187:2023 standard [15] provides the following 
definitions: any solid plastic particle that is insoluble in water and 
has a dimension ranging from 1 mm to 5 mm is classified as large 
microplastic, from 1 µm to 1 mm as microplastic; meanwhile, 
ISO/TR 21960:2020 [16] defines nanoplastic as any plastic 
particle smaller than 1 µm. Despite their prevalence, the impact 
of microplastics on the environment and public health is not fully 
understood yet. It is crucial to accurately assess the extent of 
microplastic contamination and the characteristics of these 
particles, including polymer type, shape, and size. The effects of 
microplastics on ecosystem processes and organisms strongly 
depend on the amount of exposure and the properties of the 
plastic fragments. Marine biota, including corals, marine 
invertebrates, planktons, fish, and whales, can ingest 
microplastics, which can then be passed along the human food 
chain. This highlights the great importance of clearly 
understanding the impact of microplastics on marine ecosystems 
and the potential risks to human health. In this context, the 
development of tools and methods for accurately identifying and 
classifying microplastics is of fundamental importance. 
Nevertheless, the detection and classification of microplastics is 
a very challenging task, due to their small size and the wide range 
of polymers and shapes they can take. Over the years, a large 
number of techniques have been proposed for this purpose, 
including hyperspectral imaging and image processing, 
microscopy, spectroscopy, and chromatography [17]-[22]. 

Recent advances in analytical techniques such as Raman 
spectroscopy and Fourier transform infrared (FTIR) 
spectroscopy have shown promise for the detection and 
characterization of microplastics [20]-[23]. Both procedures fall 
within the macro-area of vibrational spectroscopies and are of 
non-destructive type. Specifically, Raman spectroscopy provides 
insights into molecular backbone structure, crystal lattice, and 
symmetrical non-polar groups. In contrast, FTIR offers 
information regarding hydrogen bonds and asymmetric polar 
groups. Although Raman and FTIR spectroscopy are widely used 
as analytical tools for the characterization of polymers, also 
present some limitations. One of the major disadvantages is their 
size resolution, as both techniques are not able to detect particles 
smaller than about 100 μm. Additionally, the measurement time 

for these techniques can be relatively long, making them less 
suitable for high-throughput applications. Furthermore, the cost 
of equipment and maintenance, as well as the need for 
specialized training, can be significant barriers to the wide use of 
these methods. Other techniques such as laser-induced 
fluorescence (LIF) and laser-induced breakdown spectroscopy 
(LIBS) have also been proposed for the detection of 
microplastics [24], [25]. LIF involves the excitation of fluorescent 
dyes present in microplastics, while LIBS involves the generation 
of plasma through the interaction of a laser beam with a sample. 
Both techniques have the advantage of being rapid and non-
destructive, but further research is needed to optimize their use 
for the detection and characterization of microplastics. Finally, 
microwave devices have only recently been used for the 
preliminary detection and quantification in soil and water [26]-
[28]. 

An alternative approach for microplastics identification is the 
use of hyperspectral imaging, a powerful analytical technique that 
allows for the simultaneous acquisition of a wide range of 
wavelengths across the electromagnetic spectrum. This 
technique is able to provide detailed spectral information about 
the samples, which can then be used to identify and quantify the 
presence of microplastics with high accuracy and precision. 
Compared to other techniques, such as Raman spectroscopy and 
FTIR, hyperspectral imaging offers faster measurement times 
and, in addition, the ability to analyse large areas at once. In [17], 
a method for detecting microplastics using hyperspectral imaging 
in the visible spectrum was proposed. The authors used various 
classifiers, including neural networks, support vector machines, 
partial least squares-discriminant analysis, and least squares-
support vector machines, to identify microplastics both 
underwater and in the air. Similarly, in [29], hyperspectral imaging 
combined with image processing was used to identify and classify 
microplastics in soil. Supervised classification algorithms, 
including Mahalanobis distance, support vector machines, and 
maximum likelihood, were utilized for this purpose. The 
resulting system was able to distinguish microplastics from other 
materials. In [30], an image-based technique was employed to 
identify spherical engineered microplastics (polyethylene, 10-45 
μm) and microalgae (Isochrysis galbana, 4-7 μm). The 
measurement system, which works in the visible spectrum in 
transmittance mode, was employed with different classifiers, 
including support vector machines, least squares support vector 
machines, and k-nearest neighbours, for the proper 
discrimination of microplastic fragments from organic materials 
like microalgae. 

In this paper, a compact and low-cost measurement system 
for a straightforward identification of microplastics in marine 
environments is proposed. The system exploits transmitted light 
to identify microplastic debris, providing a simple and effective 
method for material characterization [31], [32]. One of the main 
advantages of the proposed system is its low cost. Compared to 
other competing technologies, such as hyperspectral imaging and 
more conventional spectroscopy, it utilizes cheaper hardware 
and is more compact and portable. Additionally, the proposed 
system is equipped with a quadcore single-board computer, 
which allows for the implementation of machine learning-based 
classification algorithms. This further expansion of the system 
may improve the accuracy and reliability of the results. The 
present work is an extended version of the one presented at the 
2022 IEEE International Workshop on Metrology for the Sea 
[33]. In such a study, the system is tested using a wider range of 
plastic materials and organic samples and, in addition, provides 
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the first results on the identification and classification of 
microplastics based on type of material, colour, and thickness. 
The metrological performance of the system is also evaluated in 
terms of measurement repeatability and reproducibility. 
Furthermore, the software has been significantly updated, with 
the addition of automatic fragment contour recognition and 
automatic size estimation. The results of this experimental 
investigation suggest that the proposed system has the potential 
to be a valuable tool for further research on microplastics 
detection in marine environments. 

The rest of the paper is structured as follows. The proposed 
prototype and its working principle are described in Section II. 
Next, Section III introduces the image processing algorithm for 
the automatic selection of the regions of interest. The 
experimental activity and the achieved experimental findings are 
presented in Section IV. Finally, concluding remarks are 
provided in Section V. 

2. MEASUREMENT SYSTEM 

In this study, a low-cost measurement system for the 
identification of microplastics is proposed. The prototype is built 
on the UDOO single-board computer (SBC), which includes an 
Atmel ATSAM3X8E microcontroller that has features similar to 
an Arduino DUE board [34]. The UDOO platform has already 
been successfully used in the development of measurement 
solutions for a variety of applications [35]-[37]. 

The device described in this study is based on a previously 
developed measurement system designed for the 
characterization of colorimetric sensor arrays [38]. It has been 
improved in both hardware and software to meet the 
requirements of the current investigation. In particular, the 
measurement system has been updated to investigate plastic 
samples with dimensions smaller than 3 mm and down to 200 
µm. Additionally, the software for the measurement system 
management has been updated to allow for the automatic 
identification of the fragments being tested during the 
measurement process. A schematic illustration of the proposed 
system is shown in Figure 1. The system is equipped with a low-
cost 2.4-inch LCD panel, a Celestron 44302 USB digital 
microscope, and the UDOO single-board computer. The LCD 
panel serves as a programmable light source to illuminate the 
samples under test (SUTs) with a predefined colour sequence. 
The microscope acts as a detector and it is used to record and 
analyse changes in the spectrum of the transmitted light from the 
SUTs. A transparent glass support is employed to hold the 

microplastic samples during the measurement process. The use 
of an LCD panel as a light source has been carefully considered. 
Its wide availability and relatively low cost make it an attractive 
choice for a cost-effective and accessible measurement system. 
However, it is important to note that the LCD panel offers a 
limited electro-magnetic spectrum, which can limit the 
interaction between generated light and analysed sample. 
Additionally, the quadcore single-board computer allows for the 
implementation of machine learning-based classification 
algorithms, which can provide even more accurate and reliable 
results. 

A python-based graphical user interface (GUI) has been 
developed to provide easy control and management of the 
measurement system. The GUI allows for easy selection of the 
colour sequence to be generated by the light source, detector 
selection and configuration, and measurement acquisition and 
visualization. The GUI is accessible to the user via a 7-inch 
touchscreen that is connected to the UDOO board via an HDMI 
cable. The SUTs are placed on the transparent glass support in 

 

Figure 1. Schematic representation of the proposed measurement system for 
microplastics identification. The system employs a Python GUI to guide the 
user in selecting a colour sequence and ROIs. A UDOO single-board computer 
manages the LCD panel to generate the selected colour sequence, while 
simultaneously acquiring both the incident light (I0) on the sample and the 
transmitted light (IT). The transmittance T of the sample is calculated as the 
ratio of the two intensities and plotted as a function of the colour sequence. 

 

Figure 2. Measurement system schematic representation. The single-board 
computer UDOO is connected to the LCD Panel, surrounded by a transparent 
glass support, where the SUTs are placed. The light emitted by the LCD passes 
through the transparent glass support and consequently the samples and is 
captured by the USB digital microscope. From the acquired image, ROIs are 
selected to evaluate the transmittance value. 

 

Figure 3. Photo of the developed measurement system. Inside the 3D-printed 
plastic box, the SUTs are arranged on the glass support above the LCD panel 
that illuminates the same SUTs with a pre-defined colour sequence, i.e., red 
(b), green (c), and blue (d). 
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the optical path between the light source and the detector, as 
shown in Figure 2 and Figure 3. The detector captures the light 
generated by the LCD panel and that which is transmitted 
through the samples. This is achieved by selecting specific ROIs 
on the image acquired by the detector. The ROIs can be selected 
manually using the GUI or automatically by means of an image 
processing algorithm, which is described in detail in the next 
section. In the current implementation, a maximum of 7 ROIs 
can be selected, including those containing the samples under 
investigation and the reference (i.e., the background) that is 
representative of the light generated by the LCD panel. 
Specifically, ROIs with a width of about 400 μm were 
considered. This allows for the analysis of the transmitted light 
spectrum and the identification of microplastics based on their 
physical and chemical characteristics.  

Once the ROIs containing the investigating samples and the 
background are selected, the transmittance T, as a function of the 
colour sequence k, can be estimated as in equation (1): 

𝑇(𝑘) =
𝐼𝑇(𝑘)

𝐼0(𝑘)
, (1) 

where IT(k) and I0(k) represent the transmitted and the reference 
light intensities, respectively, as a function of the colour sequence 
k. For each region of interest, the average red-green-blue (R-G-
B) triplet is calculated for each colour in the sequence k. From 
the RGB triplet, the light intensity I can be calculated as a 
function of k using the following equation (2) [39], [40]: 

𝐼(𝑘) = 𝑙 × 𝑅(𝑘) +𝑚 × 𝐺(𝑘) + 𝑛 × 𝐵(𝑘), (2) 

with l, m, and n weighting factors equal to 0.299, 0.587, and 0.114, 
respectively [39]. 

3. IMAGE PROCESSING ALGORITHM 

The software used for system management includes a script 
that uses an image-processing algorithm to automatically select 
the ROIs of the SUTs. The script employs the Python OpenCV 
library and its working steps are illustrated in Figure 4. Once the 
image is acquired by the detector, it is converted to grayscale in 
order to simplify the image and reduce the amount of data that 
needs to be processed by the UDOO. Next, a Gaussian blur is 
applied to the grayscale image. This is a smoothing technique that 
reduces noise and other small-scale variations in the image. After 
blurring the image, adaptive thresholding is applied to the image. 
Thresholding is a simple image segmentation technique that 
converts an image into a binary image, where pixels are either 
black or white depending on whether they are above or below a 
certain threshold. In particular, the adaptive thresholding 
employed in this study adjusts the threshold value for each pixel 
based on the surrounding pixels, which can be useful in cases 
where lighting conditions or contrast in the image varies across 
the image. 

The program then employs the findContours() function from 
the OpenCV library to find contours in the binary image and 
iterates over the found contours and calculates the ROIs, i.e., one 
rectangle for each contour, which is entirely included in it. 
Additionally, for each contour, the program estimates the 
maximum size of each fragment. Once the contours have been 
calculated, the program attempts to place an additional rectangle 
in the background of the image outside of any contours, i.e., the 
reference. This task is accomplished by iterating over a range of 
possible positions for the top-left corner of the acquired image. 

4. METHODOLOGY 

In this study, different kinds of plastic samples were used as a 
case study. All the fragments have dimensions lower than 3 mm 
and are made of various plastic materials such as PVC, PE, and 
PET, among others. In addition to the plastic fragments, three 
additional organic samples of dry algae (Posidonia oceanica) 
collected from the seashore were included in the study. A photo 
of the samples categories investigated is shown in Figure 5, and 
a detailed list of the samples is provided in Table 1. Among the 
plastic samples considered, three categories have been identified: 

Table 1. Details of the samples considered in this study. 

Sample Material Acronym Colour 

1A Low density polyethylene LDPE Orange 

1B Low density polyethylene LDPE Yellow 

1C Low density polyethylene LDPE Blue 

2 Polyimide (Kapton) PI Orange 

3 High-density polyethylene HDPE Orange 

4A Polyethylene terephthalate (120 μm ± 15 μm) PET Blue 

4B Polyethylene terephthalate (460 μm ± 15 μm) PET Blue 

4C Polyethylene terephthalate (910 μm ± 15 μm) PET Blue 

5 Polyethylene terephthalate PET Transparent 

6 Polypropylene PP Transparent 

7 Polycarbonate PC Transparent 

8 Polyvinyl chloride PVC Transparent 

9 Polystyrene PS White 

10A Organic sample OS Brown 

10B Organic sample OS Brown 

10C Organic sample OS Brown 

 

Figure 4. Illustration of the working steps of the image-processing algorithm 
for the automatic selection of ROIs in the measurement system. The 
algorithm starts by converting the acquired image (a) to grayscale to simplify 
the image and reduce the amount of data that needs to be processed (b). It 
then applies a Gaussian blur to the grayscale image to reduce noise and other 
small-scale variations (c). After blurring, the algorithm applies adaptive 
thresholding and uses the findContours() function to find contours in the 
binary image (d), and it estimates one rectangle for each contour (green 
rectangles), an additional rectangle for the background (blue rectangle), and 
the maximum size of each fragment (red lines) (e). 

 

 

Figure 5. Photo of the samples used in the experiments. A description of each 
sample is reported in Table 1. 
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• Samples with the same material, same thickness, and 
different colours (1A, 1B, 1C); 

• Samples with the same colour, same thickness, and 
different materials (5, 6, 7); 

• Samples with the same material, same colour, and 
different thicknesses (4A, 4B, 4C). 

This approach allowed a comparative study of the response 
of the measurement system with different samples in which only 
one feature among material, thickness, and colour was varied at 

a time. Firstly, the collected samples were placed on the glass 
support for the transmittance evaluation in the visible range. The 
colour sequence generated by the LCD panel consists of 40 
different colours, from violet to red. Each colour was maintained 
on the display for 5 s and the measurements were carried out in 
a dark environment to further reduce the interference of external 
light. 

5. EXPERIMENTAL RESULTS 

The estimated transmittance of each material constituting the 
SUTs is reported in Figure 6. Initial results suggest that each 
material may have a characteristic response to light in terms of 
transmittance, although these observations are based on a limited 
set of samples that are, however, very common in the marine 
environment. Significant variations in transmittance were 
observed among the different materials, with a tendency for 
transparent or semi-transparent samples to exhibit, as expected, 
higher transmittance values. 

The obtained data suggests that there is a notable difference 
in the transmittance response between the different materials, 
and specifically between the organic and plastic samples. 
Therefore, transmittance response may be easily exploited to 
discriminate the SUTs and furthermore to train an artificial 
neural network (ANN) to automatically derive additional 
information for marine environmental monitoring. 

To better understand the potential dependence of the 
transmittance on the colour of the sample, the response of the 
first category was separately analysed: samples with the same 
material and thickness but different colours. In Figure 7, the 
transmittance of samples 1A, 1B, and 1C is plotted. The three 
samples considered here are made of LDPE with a thickness of 
40 μm ± 5 μm and are coloured orange, yellow, and blue, 
respectively. As can be seen from Figure 7, the transmittance for 
the blue sample is higher in the blue region of the spectrum. On 
the other hand, samples 1B and 1C are characterized by a 
maximum transmittance value in the yellow/orange region. This 
provides clear evidence of the possible dependence of the 
transmittance on the material colour. 

Furthermore, to better highlight the potential dependence of 
the transmittance values on the samples material, the response of 
the second category of samples was studied: samples with the 
same colour and thickness but different materials. In this case, 
samples 5, 6, and 7 were taken into account. They are transparent 
with a thickness of 315 μm ± 15 μm and are made of PET, PP, 
and PC, respectively. In such a situation, as shown in Figure 8, 
except for the different amplitude of the transmittance values, 
there is not a clear discriminant among the selected samples. This 
may be attributed to a not high enough sensitivity of the used 
measurement system. 

Finally, samples belonging to the third category are analysed: 
samples with the same material, same colour, and different 
thickness. In this case, the samples come from a PET plastic 
bottle. It is worth noting that since the samples come from the 
same plastic object, the plastic composition can be reasonably 
considered the same among the samples, and all the samples have 
roughly undergone the same aging process. This allows for 
visualization in terms of transmittance of the effect of the 
samples thickness only. The samples 4A, 4B, and 4C are 
characterized by a thickness of 120 μm ± 15 μm, 460 μm ± 15 
μm, and 910 μm ± 15 μm, respectively. The transmittance of 
these samples as a function of the selected colour sequence is 
reported in Figure 9. In this case, a clear trend is visible between 

 

Figure 6. Transmittance of each type of material for the samples as a function 
of the colour sequence. Each point on the graph represents a single 
measurement, with labels in the legend indicating the corresponding sample 
number and material type. 

 

Figure 7. Transmittance of samples made with the same material and 
thickness, but different colours. Each point on the graph represents a single 
measurement, with labels in the legend indicating the corresponding sample 
number and material type. 

 

Figure 8. Transmittance of samples with the same colour and thickness, but 
different materials. Each point on the graph represents a single 
measurement, with labels in the legend indicating the corresponding sample 
number and material type. 
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the transmittance and the SUTs thickness. This dependence is 
better represented in Figure 10, where the transmittance values 
at the three colours red (255,0,0), green (0,255,0), and blue 
(0,0,255) are plotted as a function of the samples thickness. 

To assess the metrological performance of the proposed 
system, the measurement repeatability and reproducibility have 
been evaluated. In the first case, multiple measurements were 
acquired on the same samples under the same measurement 
conditions, and the deviations in terms of standard deviations are 
reported in Figure 11 as error bars. The average bar length is 
0.003, which is a small value, demonstrating the high 
measurement repeatability of the proposed system. On the other 

hand, reproducibility was evaluated by replacing the plastic 
samples at each measurement and considering different ROIs 
each time. In this case, the deviations are represented in 
Figure 11 as coloured bands. The achieved average band 
thickness is 0.1 which highlights the good measurement 
reproducibility of the system. 

Finally, in order to provide a more comprehensive 
investigation, measurements were carried out considering 
multiple fragments of the same plastic materials with similar 
nominal specifications. Specifically, a total of 30 fragments of 
polyimide were extracted form a commercial Kapton substrate 
with a nominal thickness of 127 µm. This enabled further testing 
of the measurement performance of the system when 
considering plastic samples with similar characteristics (e.g., in 
terms of material, colour, and thickness). The results of this 
investigation are presented in Figure 12. Here, for each colour in 
the sequence, the average value of the transmittance and the 
standard deviation from measurements of 30 different polyimide 
samples are displayed. 

6. DISCUSSION AND CONCLUSIONS 

The proposed measurement system represents a valuable tool 
for identifying microplastics in marine environments by 
providing a low-cost and compact solution for straightforwardly 
identifying and quantifying microplastics. The system uses a 2.4-
inch LCD panel as a programmable light source and a digital 
microscope as a detector. The results of this study are promising 
and indicate that the system could be a useful tool for further 
research on microplastics in marine environments. The system 
was able to discriminate samples based on their material 
properties, with the transmittance values of the samples being 
different for different materials and colours. The organic 
samples, in particular, showed distinct transmittance values 
compared to the plastic samples, which can be used to 
distinguish between organic and inorganic materials. The 
software used for system management has been empowered to 
include a script for the automatic selection of the ROIs using an 
image-processing algorithm that is able to recognize the shape 
and contours of the SUTs. The script employs the python 
OpenCV library, which reduces the need for manual selection of 
ROIs, thus increasing the efficiency of the measurement process. 
Furthermore, the quad-core single-board computer allows for 
the implementation of machine learning-based classification 
algorithms, enabling even more accurate and reliable results. The 

 

Figure 9. Transmittance of samples made with the same material and colour, 
but different thickness. The error bars represent the experimental 
measurement repeatability. Each point on the graph represents an individual 
measurement, with labels in the legend indicating the corresponding sample 
number and material type. 

 

Figure 10. Transmittance as a function of the PET samples thickness at red, 
green, and blue colours. 

 

Figure 11. Transmittance of the samples made with the same material and 
colour, but different thickness. The bands represent the experimental 
measurement reproducibility.  

 

Figure 12. Transmittance of polyimide samples. Measurements were carried 
out on a total of 30 fragments derived from a commercial Kapton sheet with 
a nominal thickness of 127 µm. The red points indicate the average 
transmittance value for each colour. The error bars represent the standard 
deviation. 
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metrological performance of the proposed system in terms of 
measurement repeatability and reproducibility was also 
evaluated, with values of 0.003 and 0.1, respectively. 

Although the developed prototype has shown very promising 
results in identifying microplastics in laboratory settings, it is 
important to acknowledge some inherent limitations of the 
proposed measurement system. A significant challenge arises 
from the diverse nature of plastic materials, particularly in terms 
of their optical properties, that can be found in real-world 
application scenarios. For example, plastics with high opacity 
pose a significant challenge as they have inherently low light 
transmittance, making their detection and analysis via 
transmittance measurements less reliable. To overcome this, the 
present system can be further improved by adding the capability 
of reflectance measurements [31], [41], which would provide a 
more comprehensive description of the SUTs. This addition 
would allow the system to analyse a wider range of plastic 
materials, especially those with higher opacity, thereby increasing 
its applicability in different marine conditions. Moreover, the 
addition of reflectance measurements and the use of machine 
learning-based classification algorithms will further improve the 
accuracy and reliability of the system. Another critical aspect to 
consider is the inherent limitation of the light source used in the 
system. The 2.4” LCD panel used to illuminate the samples 
generates colours through a weighted combination of red, green, 
and blue light. While this approach is effective for general colour 
representation, it does not provide the pure spectral output 
found in more advanced spectrometers. However, this choice is 
a strategic compromise to maintain affordability. The LCD 
panel, while limited in spectral resolution, significantly reduces 
the overall cost of the system, making it a viable option for 
widespread use in marine environmental monitoring. 
Furthermore, the choice of using an LCD panel as a light source, 
despite its limited spectral resolution, aligns well with the use of 
a low-cost camera (i.e., the USB digital microscope) as a detector 
instead of a more expensive multispectral camera [17], [29], [30], 
[42]. The primary advantages of the proposed system over other 
competing technologies, such as hyperspectral imaging and 
conventional spectroscopy, lie in its affordability and ease of 
implementation. These features make it an attractive and 
accessible solution for marine environmental monitoring. 

In conclusion, this research provides some first results and 
opens up opportunities for further development and 
implementation in marine environment monitoring. 
Microplastics are a significant environmental issue, and, then, 
effective tools for identifying and quantifying them are vital for 
understanding and addressing this critical and challenging 
problem. The proposed measurement system has the potential 
to make a significant contribution to the ongoing efforts to 
understand and combat the effects of microplastics on marine 
life and ecosystems. 
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