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1. INTRODUCTION 

The wide technological availability in the analysis of the 
microbiome (16S rRNA sequencing, shotgun metagenomics and 
metatranscriptomics) has allowed a very versatile and widespread 
application in many fields: from ecology to medicine, both 
human and veterinary [1]–[3]. In particular, the study and 
characterization of the microbiome have revealed its crucial role 
with metabolism and its interconnection with host physiology 
[4], [5]. 

Many studies have been proposed, several aimed at the 
characterization of the microbial environment through the 
description of which microorganisms are found, several others 
provided a more complex experimental design: case-control 
studies, clinical trials or, following the temporary evolution of the 
data themselves, time-series experiments. Within these 
inferential studies some specific problems emerge, both in the 
definition of the experimental design and in the subsequent 
analysis of the data obtained from the sequencing [6], [7]. The 
preventive assessment of the sample size is not straightforward: 
investigation and comparison of microbial composition requires 

the appropriate definition of the null hypothesis for the statistical 
test. Indeed, due to the multivariate nature of the microbial data, 
there are many hypotheses that can be investigated, reflecting the 
specific scientific question and the chosen experimental design. 
They can start with a generic request of equality of community 
composition [8]–[10] and can continue to focus on differential 
abundance for specific Operational Taxonomic Units (OTU), 
thus being able to evaluate which OTUs characterize a condition 
and, more generally, if there are patterns of OTUs that 
characterize specific conditions. 
Moving at the data analysis, several choices have to be made:  

I. the sequenced reads association strategy through 
clustering methods, implemented for example in Mothur 
with the definition of OTUs [11] compared to the 
denoising methods implemented in DADA2 with the 
definition of Amplicon Sequence Variants (ASV) [12],  

II. the 16S rRNA databases you can rely on for taxonomic 
association (Silva [13], Greengenes [14], RDP [15] NCBI 
[16]),  

III. the methods used to identify differentially abundant (DA) 
microorganisms [17] and  
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IV. the algorithms used to calculate and to compare alpha and 
beta diversities [18], [19]. 

These diversity metrics differ in the basic [20], [21]: some 
focus more on the number of features, some others more on the 
evenness with few that considers the phylogenetic relationship 
among features (Faith's phylogenetic diversity [22] and UniFrac 
distance [23]) too. 

Specifically, in this work we aim to discuss the diversity 
metrics problem by showing the strong variability of results and 
the consequent challenge in choosing between the 24 different 
alpha and 19 beta diversity metrics, as implemented on Qiime2 
[24]. 

2. METHODS 

In order to test and to evaluate the possible metrics in the 
Qiime2 pipeline, bacterial population structure was investigated 
in dog samples collected during parturitions (see the 
experimental design scheme at Figure 1). 

Briefly, 4 pregnant bitches were included in the study and 
samples were collected. After birth, the puppies and the mothers 
were followed and sampled at day 0 (the birth), day 2, and day 
30. Samples from vagina and rectum were sampled from the 
mothers and meconium was collected from the puppies. 
Environmental controls were sampled during the collection time 
as well as a laboratory negative control during the molecular 
protocols. DNA was extracted using the RNeasy Power 
Microbiome KIT (Qiagen, Hilden, Germany) following the 
manufacturer’s instructions. One microliter of RNaseA (Thermo 
Fisher Scientific, Waltham, MA, USA) was added to digest RNA, 
with an incubation of 1 h at 37 °C.DNA was quantified with 
fluorimetric method Qubit High Sensitive dsDNA kit (Life 
Technologies, Carlsbad, CA, USA) and standardized at 5 ng/μl. 
The 16S rRNA gene was amplified following the Illumina 16S 
Metagenomic Sequencing Library Preparation Protocol (Illumina 
Inc. San Diego, CA, USA), with minor modifications. Briefly, the 
V3-V4 region of the 16S gene was amplified with unique 
barcoded PCR primers containing the Illumina adapter overhang 
nucleotide sequences. PCR amplicons were cleaned up and size 
selected using NucleoMag® NGS Clean-up and Size Select 
(Macherey- Nagel, Allentown, PA, USA). The resulting products 
were tagged by using the Nextera XT Index Kit (Illumina Inc., 
San Diego, CA, USA). After the second purification step, 
amplicon products were quantified using Qubit High Sensitive 
dsDNA kit (Life Technologies, Carlsbad, CA, USA). Purified 
and normalized libraries were then pooled and diluted to a 4 nM 
concentration. The pooled library was then denatured with 0.2 N 
NaOH, diluted to 10 pM, and combined with 20% (vol/vol) 
denatured 10 pM PhiX and sequenced with the MiSeq Illumina 
platform (Illumina Inc., San Diego, CA, USA) with V3-600 cycles 
chemistry. Sequencing results were analyzed using Trimmomatic 

and Qiime 2-2019.10 standard pipelines. General Qiime2 
pipeline was applied, including all the possible metric evaluations 
for Alpha and Beta diversities. Alpha diversity measures were 
subdivided into three classes according to their specific focus on 
abundance or uniformity: Diversity (Richness), Evenness and 
Phylogenesis. 

Alpha diversity metrics, as identified in Qiime2, belonging to 
Diversity class are thirteen: ace, brillouin_d, chao1, doubles, enspie, 
fisher_alpha, gini_index, margalef, menhinick, michaelis_mentin_fit, 
observed_otus, shannon and singles. Those belonging to Evenness 
class are ten: berger_parker_d, dominance, heip_e, lladser_pe, 
mcintosh_e, pielou_e, robbins, simpson, simpson_e and strong. The one 
that considers the phylogenesis is the Faith_pd. Beta diversity 
metrics were subdivided into two classes according to their use 
of phylogenesis. Beta diversity metrics, as identified in Qiime2, 
belonging to non-phylogenetic class are sixteen: braycurtis, 
cityblock, correlation, cosine, dice, euclidean, hamming, jaccard, kulsinski, 
matching, rogerstanimoto, russelrao, seuclidean, sokalmichener, sqeuclidean 
and yule. Those belonging to the phylogenetic class are three: 
unweighted_unifrac, weighted_unifrac and generalized_unifrac. In 
addition to the beta diversity found in Qiime2, we also tested 
another beta diversity metric (the Robust Aitchison PCA capable 
of linking specific features to beta diversity sorting [25], available 
as a Qiime2 plugin at https://github.com/biocore/DEICODE). 

Pearson correlation coefficient has been calculated for all 
possible pairs of alpha diversity metric. Samples were grouped 
according to  

i) the sample features (biological samples vs environmental 
control (white) samples),  

ii) the collection time (day 0, day 2 and day 30) and  
iii) the tissue origin (vaginal, rectal, meconium, and control).  
The Wilcoxon test and Kruskal-Wallis test were used to assess 

possible statistical significant differences among groups 
according to the alpha metrics. Bonferroni correction was 
applied to nominal p-values. Beta diversities significances were 
evaluated using the Permanova test, followed by False Discovery 
Rate estimation as implemented in Qiime2. All the statistical 
analyses were conducted with R statistical software [26]. 

3. RESULTS 

The alpha diversity values have been calculated for all samples 
according to the 24 different algorithms present in Qiime2 suite 
and the correlations among the different algorithms have been 
calculated, as reported in Figure 2.  

Several clusters of highly correlated (both positively or 
negatively) metrics are highlighted together with some metrics 
that seem to be poorly associated with the others, like Lladser 
point estimate of the unsampled taxa or Robbins estimator of the 
probability of unobserved outcomes. 

Successively, these alpha diversity measures have been used 
to compare the different experimental groups as defined in the 
Methods section. In particular, three main comparisons have 
been analyzed by grouping samples according to: environmental 
control versus biological samples; the collection time or the 
tissue of origin. These three comparisons were used to evaluate 
the ability to highlight statistical significance of different metrics, 
as reported in Table 1. 

In particular, by analysing the nominal and the corrected p-
values of metrics subdivided into the three classes, it emerges 
that the class of metrics based on Diversity is able to highlight 
more statistical differences among the experimental groups. In 
the first comparison, between white and biological samples, the  

Figure 1. Experimental design scheme. 
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difference among samples is hardly detectable (46% with the 
Diversity metrics versus 10% with the Evenness metrics, but 0% 
for both when Bonferroni correction is applied), highlighting the 
presence of possible false positives in the comparisons if nominal 
p-values alone were considered. Focusing on Time and Tissue 
based groups, the Diversity metrics show a range between 69% 
to 100% of statistical comparisons whereas the Evenness metrics 
range from 0% to 90%, generally showing a lower percentage of 
significant tests and a much greater range of variability. The 
Diversity metrics confirm in 69% of cases the significance both 
with the nominal and the corrected p-value for both Time and 
Tissue comparisons, the Evenness metrics instead show a 50% 
of cases that lose significance when p-value correction is applied. 
According to our data, the Faith Phylogenetic Distance is robust 
as respect to the p-value adjustment. 

Time and Tissue groups’ comparisons based on Beta diversity 
metrics instead show a more convergent behaviour, as reported 
in Table 2: the significant PERMANOVA test percentages, both 
according to the empirical nominal p-value and the False 
Discovery Rate (FDR) q-value, show a high value of significant 

tests and are well comparable between the two phylogenetically 
and non-phylogenetically based metrics. By analysing the 
pseudo-F statistics of the pairwise comparisons, as in Figure 3, 
we observed that when the differences between the experimental 
groups are small, the beta diversity metrics that are able to 
highlight these differences can vary between 16% of those 
analysed (three out of nineteen) to 84% (sixteen out of nineteen), 
but without a real preference for measures based on phylogeny.  

The added Robust Aitchison PCA beta diversity metric is in 
line with other measures of beta diversity. Specifically, it 
highlights significant differences for both the Time and the 
Tissue comparisons (pValue < 0.001 with pseudo-F = 12.49 and 
pValue < 0.001 with pseudo-F = 7.66, respetively). The specific 
Time pairwise comparisons put in evidence an overall 
significance for all comparisons except for samples collected at 
time=0 and the white samples (qValue = 0.13 with pseudo-F = 
1.81). Tissue pairwise comparisons show instead non 
significances in the following cases: mammary vs meconium 
(qValue = 0.39 with pseudo-F = 1.07), mammary vs vaginal 
(qValue = 0.87 with pseudo-F = 0.15), meconium vs vaginal 
(qValue = 0.33 with pseudo-F = 1.27) and vaginal vs blank (qValue 
= 0.15 with pseudo-F = 2.27).  

Table 1. Number of alpha diversity metrics significant comparisons according 
to environmental control (White), Time and Tissue analyses. In brackets, the 
percentages of significant metrics are reported. The metrics are considered 
all together and subdivided into classes based on their specific aim of 
measurement and their distinct focus on abundance or uniformity: Diversity 
(Richness), Evenness and Phylogenesis. Wilc: Wilcoxon rank-sum test; Bonf: 
Bonferroni correction; K-W: Kruskal-Wallis test. 

Alpha 
Diversity 
Metrics 
Classes 

White comparison Tissue comparison Time comparison 

Wilc Bonf K-W Bonf K-W Bonf 

All metrics 
7 

(29.2%) 
0 

(0%) 
17 

(70.8%) 
11 

(45.8%) 
23 

(95.8%) 
15 

(62.5%) 

Diversity 
metrics 

6 
(46.2%) 

0 
(0%) 

12 
(92,3%) 

10 
(76.9%) 

13 
(100%) 

9 
(69,2%) 

Evenness 
metrics 

1 
(10%) 

0 
(0%) 

4 
(40%) 

0 
(0%) 

9 
(90%) 

5 
(50%) 

Phylogenetic 
metrics 

0 
(0%) 

0 
(0%) 

1 
(100%) 

1 
(100%) 

1 
(100%) 

1 
(100%) 

 

Figure 2. Correlation plot based on the 24 analyzed alpha diversity metrics. 
For each pairwise correlation, the Pearson coefficient is based on the alpha 
diversity metrics values of all samples. 

 

Figure 3. The PERMANOVA based pseudo-F statistics are plotted. The study 
of pairwise comparisons deriving from the 19 beta diversity metrics analysis 
is considered: pairwise comparisons according to time evolution are reported 
in left panel, whereas for tissues comparison in right panel. On the x-axis the 
pseudo-F values, as from the PERMANOVA analysis, are considered; on the 
y-axis the pairwise comparison they are related to , in the left panel: 0, 2 and 
30 are the days of collection and NA are the white samples, whereas in the 
right panel: Me - Meconium, Ma - Mammary, Re - Rectal, Va - Vaginal, and 
Wh - White. When pseudo-F values exceed the value of 20, the number of 
beta diversity metrics is reported. Black dots are not significant according to 
the q- value cut-off of 0.05, red dots are those significant. 

Table 2. Number of beta diversity metrics significant comparisons according 
to Time and Tissue analyses. In brackets the percentages of significant 
metrics are reported. The metrics are considered all together and subdivided 
into classes based on their specific strategy of measurement based, or not 
based, on phylogenetic evolution. 

Beta 
Diversity 
Metrics 
Classes 

Time comparison Tissue comparison 

PERMANOVA Bonferroni PERMANOVA Bonferroni 

All metrics 
19 

(100%) 
19 

(100%) 
17 

(89.47%) 
16 

(84.21%) 

Non-
phylogenetic 
metrics 

16 

(100%) 
16 

(100%) 
14 

(87,5%) 
13 

(81.25%) 

Phylogenetic 
metrics 

3 

(100%) 
3 

(100%) 
3 

(100%) 
3 

(100%) 
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4. DISCUSSION 

The microbiome studies, in all their forms, have reached a 
huge number of items in public reference databases. Even if the 
largest part of them is very well structured and developed, in 
several cases the choice of metrics remains a crucial point. 
Especially in the case of complex studies, the real biological 
differences (if any) are hard to be highlighted. Our case study 
shows how when biological differences are not so strong, metrics 
can provide different statistical outcomes. This could be due by 
different reasons both biological (i.e. kind of samples, lab 
procedures...) and statistical (i.e. experimental design, sample 
size, statistical power...). In order to explore this scenario, we 
applied 24 alpha and 19 beta diversity metrics on the same 
sample set. The final results provide a quite large variability in the 
statistical significance, making the results interpretation strictly 
dependent from the specific metric used. Our study generally 
suggests, as expected, that when the biological differences among 
the investigated groups are strong and clear, each single diversity 
metric is able to statistically confirm this difference. On the other 
hand, the use of a large number of metrics, both correlated or 
not (as in the alpha diversity metrics case), could be a key to avoid 
misinterpretation of data. In particular, by choosing to consider 
together those metrics that show correlation (critically discussing 
them without selecting only those with a significant result), 
evidences of similarities of differences among conditions would 
be strengthen (by avoiding the p-hacking problem [20]). 
Whereas, by considering no correlated metrics, it is possible to 
explore different aspects of richness and evenness that otherwise 
would be neglected.  
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