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1. INTRODUCTION 

Bearings are components located inside rotating machinery, 
typically consisting of an inner ring, an outer ring, a cage, and 
rolling elements [1]. They play a crucial role in facilitating the 
conversion of motion between shafts, and any failure causes such 
as fatigue, wear, corrosion, or deformation result in a reduction 
in the reliability of rotating machinery [1]. Bearing causes 40-45% 
of defects inside electrical machinery such as motors [2]. 
Additionally, various fault detection techniques are utilized, 
including oil analysis, temperature analysis, acoustic analysis, and 
vibration analysis [2]. However, in the industrial environment, 
vibration analysis is the most effective technique, since vibration 
signals contain information about the defects present inside the 
machine and depend on the rotating part [2], [3]. In addition, 
vibration analysis can be performed without disassembling the 

machine components, unlike oil analysis, which requires some 
disassembly [2], [3]. Similarly, the application of sound signals 
used in acoustic analysis for accurate measurements requires an 
isolated measurement environment to avoid other sound sources 
from nearby machines [2], [3]. After discussing the importance 
of bearings and the prevalence of faults, vibration signal analysis 
involves two crucial steps. The first step involves gathering the 
signals using a measurement chain equipped with sensors like 
accelerometers, while the other step is related to signal 
processing using methods that incorporate mathematical and 
computational tools [4]. 

The processing of vibration signals is an interdisciplinary field 
that encompasses various signal analysis methods for fault 
detection [5]. Among these methods, some involve decomposing 
the vibration signal into multiple simpler signals and 

ABSTRACT 
The second-order moment spectrum is a method designed to simplify the complex shape of the spectrum, thus facilitating its 
interpretation for the identification and localization of defects based on peak frequency. Generally used as a final step in defect detection 
methods, this method offers the advantage of a more easily interpretable spectral shape. Compared to the shape of the spectrum of 
the vibration signal defined by the Fourier transform, which includes sidebands composed of peaks of large amplitude at different 
frequencies, the spectrum generated by the second-order moment spectrum method stands out for its simplicity. Starting from the 
mean and standard deviation of the vibration signal, the second-order moment can be defined as the power of the ratio between the 
standard deviation and the difference between the signal and the mean. Next, the Fourier transform is applied to express the second-
order moment spectrum. The performance of the second-order moment spectrum is evaluated using the principle of comparison with 
the envelope spectrum obtained by the Hilbert transform. Vibration signals are analyzed using two methods: adaptive time-varying 
morphological filtering and second-order moment spectrum. After applying these methods to the signals from the database, we observe 
high-amplitude peaks at the frequencies corresponding to inner ring and ball defects. The second-order moment spectrum gives similar 
results to those obtained with the Hilbert transform envelope.  
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subsequently performing a selection operation on the signal that 
is most sensitive to defects, using indicators [5]. This approach 
subsequently enables the reconstruction of an additional signal 
that includes information regarding anomalies [5]. The 
decomposition of signals is performed using algorithms such as 
successive variational mode decomposition [6], variational mode 
extraction [7], and empirical Fourier decomposition [8]. As for 
the selection indicators, we find kurtosis [4], correlation [2], the 
Gini index [9], and weighted entropy index [10].  

Furthermore, signal demodulation techniques are commonly 
employed as a final step to extract and localize the faulty 
component by comparing the theoretical values of fault 
frequencies with the frequency of peaks in the spectra [4]. Two 
methods are particularly popular for signal demodulation, namely 
the Hilbert transform [11] and the Teager-Kaiser energy operator 
[12]. Therefore, the fault frequencies of bearing components are 
determined based on geometric parameters and rotation speed 
[2]. Furthermore, information regarding defects can be defined 
based on the selection of effective frequency bands using the 
kurtogram method, which relies on the representation of spectral 
kurtosis as a function of frequency [13], or through the use of a 
candidate fault frequencies gram (CFFsgram) [14]. 

Vibration signals consist of an impulsive part and a noisy part 
correlated with each other by a convolution product [15]. The 
defect information is usually in the impulse part [15]. Thus, the 
separation between these two parts plays a crucial role in 
diagnosis [15]. The various methods considered for extracting 
the impulse part are based on the inverse process of convolution, 
known as deconvolution [15]. In this context, there are signal 
deconvolution methods such as Minimum Entropy 
Deconvolution [16], Maximum Correlated Kurtosis 
Deconvolution [17], Maximum Cyclostationarity Deconvolution 
[18], and Adaptive Maximum Cyclostationarity Blind 
Deconvolution [19]. Furthermore, machine learning and deep 
learning methods are integrated into defect detection [20]. The 
general principle of these methods focuses on proposing new 
features determined in the time or frequency domain of the 
signals from the faulty and healthy states of the bearing [20]. 
Next, classifiers are employed to categorize the feature values 
and determine the type of defect. Several classifiers are used in 
diagnostics, such as Support Vector Machine, K-nearest 
neighbour, Artificial Neural Network, Convolutional Neural 
Network [20]. 

In this paper, we propose an approach for detecting bearing 
defects. Second-Order Moment Spectrum (SOMS) and Adaptive 
Time-Varying Morphological Filtering (ATVMF) are two 
methods integrated into the approach, with ATVMF designed to 
eliminate noise and extract defect-related pulses from the signals. 
Additionally, the second-order moment spectrum is created to 
locate the defect based on the peak frequency. 

2. METHODS 

2.1. Defect Detection Method 

Figure 1 presents the method for detecting bearing defects, 
developed by us and composed of two steps: 

1. Step 1: Adaptive Time-Varying Morphological Filtering 
(ATVMF) is applied to the vibration signal to eliminate 
noise and extract the impulse part of the signal. 

2. Step 2: determination of the Second-Order Moment 
Spectrum (SOMS) to locate the faulty component in the 
bearing. The comparison between the peak frequencies 
of SOMS and the defect frequencies of the bearing 

elements allows for the detection of defects. The defect 
frequencies of the bearing are defined by the following 
formulas [2]: 
- Inner race fault frequency (IRFF): 

𝐼𝑅𝐹𝐹 =
𝑧 × 𝐹𝑟

2
(1 +

𝑑

𝐷𝑚
cos⁡(𝑎))⁡, (1) 

- Outer race fault frequency (ORFF): 

𝑂𝑅𝐹𝐹 =⁡
𝑧 × 𝐹𝑟

2
(1 −

𝑑

𝐷𝑚
cos⁡(𝑎)), (2) 

- Ball fault frequency (BFF): 

𝐵𝐹𝐹 = ⁡
𝐷𝑚 × 𝐹𝑟

2𝑑
(1 − (

𝑑

𝐷𝑚
cos⁡(𝑎))

2

), (3) 

- Cage fault frequency (CFF): 

𝐶𝐹𝐹 =
𝐹𝑟

2
(1 −

𝑑

𝐷𝑚
cos⁡(𝑎))⁡, (4) 

with 𝑧: number of balls, 𝐹𝑟: operating speed, 𝑎: angle of 

contact, 𝑑: diameter of ball, 𝐷𝑚: pitch diameter.  
The proposed method is implemented using MATLAB 

software, with a program that encompasses all the steps outlined 
in the method flowchart (Figure 1). 

2.2. Adaptive time-varying morphological filtering  

Adaptive time-varying morphological filtering (ATVMF) is a 
method involving the use of structuring elements and 

 

Figure 1. Defect detection method.  
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morphological operators to eliminate noise and extract pulse 
information, and provides a highly efficient filtering operation 
for signals [21]. The ATVMF method consists of the following 
two steps [21]: 

1. Formulation of a series of time-varying structural 
elements (SE) based on the signal. The structural 
elements are established after identifying all the signal's 
minimum and maximum points, and interpolation 
methods are then employed to obtain a new sequence. 
The alignment between two minimum points in the 
result of the interpolation method is considered as a 
structural element.  

2. Morphological filtering is applied to the signal using the 
morphology hat product operation (MHPO), MHPO1, or 
MHPO2 operators. The equations below define these 
operators. 

𝑀𝐻𝑃𝑂(𝑛) = 𝐴𝐻𝐶𝑂(𝑛) × 𝐴𝐻𝐶𝑂𝑂𝐶(𝑛)⁡, (5) 

𝑀𝐻𝑃𝑂1(𝑛) = 𝐴𝐻𝐷𝐸(𝑛) × 𝐴𝐻𝐶𝑂(𝑛)⁡, (6) 

𝑀𝐻𝑃𝑂2(𝑛) = 𝐴𝐻𝐷𝐸(𝑛) × 𝐴𝐻𝐶𝑂𝑂𝐶(𝑛)⁡, (7) 

with AHCO: closing and opening average-hat operator, 
AHCOOC: closing-opening and opening-closing 
average-hat operator, AHDE: dilation and erosion 
average hat operator. 

Two input parameters for the ATVMF method include the 
interpolation method type and the chosen morphological 
operator. 

2.3. Second order moment spectrum 

The second-order moment spectrum (SOMS) is a method 
used to simplify the complex shape of vibration signal spectra, 
making their interpretation easier. The random distribution of 
peak shapes reflects the complexity, whereas simplicity is 
expressed through the variation of organized peaks. By using 
Fourier transform, the mean, and the standard deviation of the 
signal, the second-order moment spectrum is formulated 
through the following steps: 

- Calculation of the mean and standard deviation of 
the vibration signal (x(t)) using the following two 
equations: 

𝑥̅ =
1

𝐿
(∑𝑥𝑖

𝐿

𝑖=1

), (8) 

𝑠𝑡𝑑(𝑥) = √
∑ (𝑥𝑖 − 𝑥̅)2𝐿
𝑖=1

𝐿
⁡ , (9) 

- The reconstruction of the second order moment of 
the signal is done using the proposed formula: 

𝑠𝑜𝑚(𝑡) =
1

𝐿
(
𝑥(𝑡) − 𝑥̅

𝑠𝑡𝑑(𝑥)
)

2

⁡, (10) 

- Applying the Fourier transform to 𝑠𝑜𝑚(𝑡) to 
obtain the second order moment spectrum. 

𝑠𝑜𝑚𝑠(𝑓) = ∫ 𝑠𝑜𝑚(𝑡)⁡𝑒−𝑗⁡2⁡π⁡𝑓⁡𝑡𝑑𝑡
+∞

−∞

⁡. (11) 

Evaluation of second-order moment spectrum performance 

The performance evaluation of the second order moment 
spectrum is done by comparing the frequencies of peaks 
observed in the SOMS with the envelope spectrum obtained 
using the Hilbert transform. Subsequently, classification between 
the SOMS and the envelope spectrum obtained through the 
Hilbert transform is performed based on the features. The 
following equations represent the envelope spectrum obtained 
through the Hilbert transform [4]: 

𝐻[𝑥(𝑡)] = 𝑥(𝑡) ∗
1

π⁡𝑡
⁡, (12) 

𝐴(𝑡) = 𝑥(𝑡) + 𝑗⁡𝐻[𝑥(𝑡)]⁡, (13) 

𝐸𝑛(𝑡) = √𝑥(𝑡)2 + 𝐻[𝑥(𝑡)]2⁡, (14) 

𝐸𝑛(𝑓) = FFT(𝐸𝑛(𝑡)), (15) 

H: Hilbert transform, *: product convolution, 𝐸𝑛: envelope, 
FFT: fast Fourier transform. 

Demodulating signals using the Hilbert transform is chosen 
to evaluate the performance of SOMS because it is very useful in 
diagnostics as a final step for detecting faulty components based 
on peak frequency. Table 1 presents the features used to generate 
a matrix appearing in (16) 

𝑪 = [𝑚𝑎𝑥,𝑚𝑖𝑛, 𝑟𝑚𝑠,……… ,𝑚𝑒𝑎𝑛]⁡. (16) 

The matrix (C) comprises the features of the second-order 
moment spectrum (SOMS) and the envelope spectrum. After 
determining this matrix, we proceed to divide the data into 80% 
training data to train the support vector machine (SVM) classifier 
and 20% test data to validate the classifier. Next, we establish 
two classes: (1) for the second-order moment spectrum and (-1) 

Table 1. Features. 

Features Formulas 

Maximum max(𝑥𝑖) 

Minimum min(𝑥𝑖) 

Root mean square (rms) √
1

𝐿
∑𝑥𝑖

2

𝐿

𝑖=1

 

Skewness 
1

(𝐿 − 1)(𝐿 − 2)
(
𝑥𝑖 − 𝑥̅

𝑠𝑡𝑑(𝑥)
)
3

 

Kurtosis 
1

𝐿
∑(

𝑥𝑖 − 𝑥̅

𝑠𝑡𝑑(𝑥)
)
4𝐿

𝑖=1

 

Variance 
1

𝐿
∑(𝑥𝑖 − 𝑥̅)2
𝐿

𝑖=1

 

Standard deviation (std) √
∑ (𝑥𝑖 − 𝑥̅)2𝐿
𝑖=1

𝐿
 

Creast factor 
𝑟𝑚𝑠

𝑚𝑎𝑥
 

Median median(𝑥𝑖) 

Sum ∑𝑥𝑖

𝐿

𝑖=1

 

Mean 
1

𝐿
∑𝑥𝑖

𝐿

𝑖=1
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for the envelope spectrum, determined by the Hilbert 
transformation. Finally, we obtain a classification of the method 
types. 

The principle of SVM is based on constructing a hyperplane 
to separate two different types of samples while considering the 
minimization of structural risk [22]. The hyperplane is expressed 
by equation (17) [23]. 

𝑓(𝑥) = ⁡𝑊T + 𝑏, (17) 

(x): represents the input data, the position of the hyperplane is 
determined by the vector (W) and the scalar (b), and through the 
application of the sign function on (f(x)), the samples are 
classified into positive or negative classes [23]. In addition, non-
linear classification by support vector machine incorporates the 
use of kernel functions [23]. The performance of the SVM 
classifier is defined by equation (18), which has been determined 
from the confusion matrix [24]. 

𝑎 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100, (18) 

3. EXPERIMENTAL STUDY 

3.1. CWRU database 

In this subsection, we analyse the vibration signals resulting 
from a defect in the inner ring of a ball bearing of the type 6205-
2 RS JEM SKF [25]. This bearing is located at the end of an 
electric motor on the driver side, as shown in the test strip used 
in the Case Western Reserve University (CWRU) database [25]. 
The signals measured by accelerometers are recorded as 
MATLAB files with a sampling frequency of 48 kHz [25]. During 
the test, the operating conditions, load, speed, and the diameter 
of the defect in the inner ring of the bearing are varied [25]. 
Equation (19) expresses the inner ring defect frequency [25]. 

𝐼𝑅𝐹𝐹 = 5.4152 × 𝐹𝑟, (19) 

Table 2 contains the vibration signals from the inner ring 
defect with a diameter of 0.5334 mm. Two vibration signals, each 
comprising 48000 samples, are analysed by the proposed 
method, as shown in Table 2, along with the sampling frequency. 

Results and discussions 

For signal 1, after applying the method (Figure 1), we observe 
a significant peak at the inner ring defect frequency of the bearing 

in the second-order moment spectrum (161.9 Hz ≅ 162.18 Hz), 
as shown in Figure 2. 

A high amplitude is observed in the inner ring defect 
frequency of the bearing in the second-order moment spectrum 

of signal 2 (159.7 Hz≅159.92 Hz), as shown in the Figure 3. 
Performance of the second-order moment spectrum: the 

envelope spectrum of the Hilbert transform indicates the same 
results as those obtained by the SOMS method, as shown in 
Figure 4 and Figure 5. In this case, the second-order moment 
spectrum illustrates a good result. 

The feature values are calculated from the second-order 
moment spectrum and the envelope spectrum obtained by the 
Hilbert transform of the two previously analysed signals, 

Table 2. Vibration signals. 

Signals 
Fault frequency 

Hz 
Speed 
RPM 

Load 
N · m / s 

Signal1: 
X213_DE_time 

162.18 1797 0 

Signal2: 
X214_DE_time 

159.92 1772 745.6 

 

Figure 2. SOMS of signal 1.  

 

Figure 3. SOMS of signal 2.  

 

Figure 4. Envelope spectrum of signal 1 
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allowing the construction of matrix (C). When the SVM method 
is applied, a high performance of 100% is obtained, as shown in 
the confusion matrix (Figure 6), with the actual classes on the Y-
axis and the predicted classes on the X-axis. 

Classes 1 represent SOMS, and -1 represents the envelope 
spectrum determined by the Hilbert transform. Furthermore, the 
diagonal represents the prediction performances. The features 
mentioned in Table 1 effectively enable the selection of the 
method type. 

3.2. HUST database 

This database includes fault signals from several bearings 
identified under the symbols 6204, 6205, 6206, 6207, and 6208 
[20]. All faults appear in the form of microcracks with a width of 
0.2 mm created using the wire cutting method. The test strip used 
in the Hanoi University of Science and Technology (HUST) 
database includes a 1 HP electric motor controlled by an inverter 
and a powder brake, as well as a PCB 325C33 accelerometer 
positioned in the bearing housing [20]. Additionally, a torque 
sensor is used on the dynamometer to monitor the load and 
speed [20]. The acceleration of bearing vibrations is recorded in 
the form of MATLAB files with a sampling frequency of 
51.2 kHz [20]. We will select two signals from bearings 6206 and 

6208 to validate the effectiveness of the proposed method. 
Therefore, the length of each signal is 51200 samples. 

Results 

The second-order moment spectrum of signal B804 displays 

a series of peaks at the ball defect frequency (110.2 Hz ≅ FD), 
with a decrease in vibration acceleration amplitude as a function 
of frequency, as shown in the Figure 7. 

A high-amplitude peak is present at the ball defect frequency 

(107 Hz ≅ Fd), as indicated by the second-order moment 
spectrum of signal B604 (Figure 8). 

Comparison between the results: the envelope spectrum of 
the analysed signals yields the same result as that found by 
SOMS, as shown in Figure 9 and Figure 10. Furthermore, the 
amplitude decreases as the frequency increases, thereby allowing 
for the detection and localization of the defect based on the peak 
frequencies. 

 

Figure 5. Envelope spectrum of signal 2.  

 

Figure 6. Confusion matrix.  

 

Figure 7. SOMS of signal B804.  

 

Figure 8. SOMS of signal B604.  

Table 3. Vibration signals for analysis. 

Bearings Signals 
Speed 

Hz 
Load 

W 

Fault 
frequency 

Hz 

Defect 
component 

6206 B604 22.7 400 Fd = 111.57 Ball 

6208 B804 22.84 400 FD = 109.63 Ball 
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The SVM classifier demonstrates excellent performance at 
100%, as shown in the confusion matrix (Figure 11). Therefore, 
the parameters presented in Table 1 prove to be highly effective 
in defining the type of methods used in signal demodulation. 

 

4. COMPARATIVE ANALYSIS 

In this section, we illustrate a comparison between the 
proposed method and the defect detection method based on 
demodulation, known as envelope analysis. Envelope analysis, as 
described in references [14], [26], [27], [28], [29], comprises the 
following steps: 

- Selection of an effective frequency band containing fault 
data typically involves methods like the kurtogram. 
However, in this particular step, we employ the 
CFFsgram method, the procedural details of which can 
be found in reference [14]. 

- Band-pass filtering: The two pass frequencies of this filter 
are determined in the initial step and are set equal to the 
initial and final values of the effective frequency interval. 

- Fault detection via envelope spectrum or square envelope 
spectrum, as defined by equations (14) and (20). 

𝑆𝐸(𝑡) = 𝐸𝑛(𝑡)
2⁡, (20) 

where: SE denotes a square envelope. 
The envelope analysis is applied to the signal (B804), 

contingent upon the bearing ball defect 6208, as depicted in 
Table 3. Following application, the CFFsgram figure portrays a 
frequency centred at 400 Hz with a frequency bandwidth (Bw) 
of 800 Hz. Hence, based on the centre frequency and bandwidth, 

 

Figure 9. Envelope spectrum of signal B804.  

 

Figure 10. Envelope spectrum of signal B604.  

 

Figure 11. SVM performance.  

 

Figure 12. CFFsgram.  

 

Figure 13. Square envelope spectrum.  
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the two filter pass frequencies are set to 0 Hz and 800 Hz, as 
illustrated in Figure 12. Furthermore, the square envelope 
spectrum depicts high-amplitude peaks at the ball defect 
frequency, as depicted in Figure 13. This outcome aligns 
identically with the findings of the proposed method. 

5. CONCLUSIONS 

The vibration signals, which correspond to defects in the 
bearing's inner ring and balls, have been extracted from the 
CWRU and HUST databases, respectively. They are analysed to 
validate and assess the second-order moment spectrum with 
adaptive time-varying morphological filtering, which is utilized in 
a defect detection method. The second-order moment spectrum 
is intended to streamline the shape of the spectrum, which 
includes sidebands, while adaptive time-varying morphological 
filtering is employed to eliminate noise and extract pulses from 
the signals. A comparison is made between the envelope 
spectrum obtained through the Hilbert transform and the 
second-order moment spectrum, followed by a classification of 
the characteristics of each method using the SVM classifier. 
Comparison of the results obtained for all the analysed signals 
reveals that the SOMS method effectively locates faulty bearing 
components based on the frequency of high-amplitude peaks. 
These peaks correspond to the theoretical fault frequencies of 
the bearing components, as defined by mathematical equations 
incorporating the bearing's geometric parameters and rotational 
speed.  

Hence, the second-order moment spectrum yields results 
identical to those obtained with the envelope spectrum and the 
squared envelope spectrum, resulting in a high-amplitude peak at 
the fault frequency. Furthermore, the calculated statistical 
parameters enable us to discern the method type used, whether 
SOMS or the envelope determined by the Hilbert transform. 
SOMS is derived from mean and standard deviation formulas 
that rely on the original vibration signal, while the envelope 
spectrum is defined by the Hilbert transform, which entails a 
convolution operation. 
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