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1. INTRODUCTION 

Within the domain of power systems, state estimate is a 
critical activity that is essential to guaranteeing the efficiency and 
safety of power system operations [1]. This fundamental process 
hinges on the invaluable Supervisory Control And Data 
Acquisition (SCADA) system, coupled with remote terminal 
units, which provide an abundance of measurements on active 
and reactive power flows, bus voltages, current, and network 
injections. It is important to note that these measurements 
exhibit a non-linear relationship with the underlying state 
variables [2], Gauss-Newton techniques must be implemented in 
commercial software in order to address them [3]. The iterative 
aspect of the Gauss-Newton method, which starts from an initial 
value and gradually moves towards convergence, is its weakness, 
though, and it presents considerable challenges when used with 
large-scale networks. Efforts to mitigate this challenge have 
yielded factorized methods [4]-[5] and the utilization of bilinear 
formulations [6]. Nevertheless, iterative solutions are still 

required for such approaches, especially in heavily-loaded 
networks. The idea of multi-area state estimation was developed 
as a solution to speed up state estimation in the huge networks 
[7]. This innovative approach permits the exchange of state 
estimates and boundary measurements among the local state 
estimators of neighbouring areas, providing an elegant solution 
when complete system information sharing is unfeasible. 
Notably, this paradigm has found its way into the realm of smart 
grids [8], [9], leading to considerable speed enhancements in state 
estimation for large-scale systems [10]. Moreover, gradient-based 
techniques, often employing the Gauss-Newton method within 
each area, have been explored [11], along with the deployment of 
the Kalman filter [12]. While these advancements have 
undoubtedly marked progress, many existing multi-area state 
estimation methods rely heavily on geographical information for 
delineating network areas, often overlooking a distinct approach 
to zone partitioning. Noteworthy exceptions include the 
application of spectral clustering for power system network 
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This paper introduces a novel approach for multi-area state estimation in large transmission networks through the application of graph 
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compared to conventional methods. Linear state estimation is employed within each area, expediting computations and making it 
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achieved state estimation answers with reduced computation time. The partitioning of the integrated network into multi areas has 
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advancing the field of state estimation, promising to bolster the stability and performance of modern power grids. 

https://doi.org/10.21014/actaimeko.v13i1.1704
mailto:paul@regtien.net


 

ACTA IMEKO | www.imeko.org March 2024 | Volume 13 | Number 1 | 2 

partitioning during emergency conditions [13] and the use of the 
k-means algorithm to expedite load flow in [14]. In reference 
[15], a state estimation method based on Gaussian process 
regression is presented, utilizing data from the SCADA unit of 
the New York Independent System Operator. Reference [16] 
employs a combination of PMU and SCADA measurement units 
for state estimation. However, the solution method employed in 
this article involves iteration, aimed at enhancing the time 
efficiency of state estimation through a recursive strategy (as 
opposed to the use of a correction method). Reference [17] 
delves into the impact of uncertainty factors, such as renewable 
resources, on state estimation, discussing proposed modelling 
methods. In [18], the article emphasizes the significance of state 
estimation, its role in blackout prevention, and factors 
influencing the blackout on October 14, 2003, from a state 
estimation perspective. [19] introduces a method for detecting 
bad data based on artificial intelligence, exploring its implications 
on state estimation. In [20], the state estimation of the 
distribution system with distributed production resources is 
evaluated and implemented using PMU measurement units, 
alongside a bad data detection method based on a deep neural 
network. Reference [21] introduces a state estimation method 
based on floating-point operations, aiming to reduce the 
computational load of distribution system state estimation and 
achieve faster response times. [22] presents a state estimation 
method based on weighted least squares and a generalized loss 
function. [23] introduces a multi-source mode estimator using 
PMU measurement units, employing a data fusion strategy to 
enhance estimation accuracy. A method for estimating the state 
of the distribution network with high penetration coefficient of 
solar electric energy production units is presented in [24]. 
Understanding the critical role of state estimation in power 
systems is supreme for optimizing grid operations. Accurate state 
estimation provides crucial information on variables such as bus 
voltages and power flows, ensuring the safety, reliability, and 
cost-effectiveness of power system operations. This paper aims 
to contribute to the advancement of state estimation 
methodologies, particularly in the context of large-scale 
transmission networks. This paper builds upon the premise of 
spectral clustering introduced in [15] and harnesses the potential 
of linear SCADA-based state estimation described in [25], with 
the objective of achieving rapid and efficient parallel state 
estimation. Within each area, state estimation is conducted with 
precision, considering the local reference bus. The pivotal role 
played by common buses situated at the border of neighbouring 
areas becomes apparent, as they serve to determine the phase 
angles of buses in different areas concerning the global reference 
angle. The distinctive contributions of this paper can be 
summarized as follows: 

• Harnessing spectral clustering to optimize exploration of the 
grid's topological intricacies. 

• Implementing exact linear formulations for state estimation 
in each area, streamlining the computational process. 

• Enabling parallel state estimation across distinct areas, 
thereby significantly curtailing the computational time required 
for this critical function.  

This paper proceeds with an organized structure: Section 2 
delves into the nuances of linear SCADA-based state estimation, 
Section 3 offers an in-depth exploration of power network 
clustering, Section 4 presents case studies to illustrate the 
practical application of these methodologies, and the paper 
concludes with Section 5. 

2. LINEAR POWER SYSTEM STATE ESTIMATION 

In this section, we address the idea of Linear Power System 
State Estimation, presenting a new formulation that represents 
the relationship between the system state and measurements as a 
linear system of equations [25]. This innovative method 
effectively converts state estimation problems into linear 
problems, eliminating the need for iterative solutions and the 
creation of Jacobian matrices in each iteration.  

To establish the foundation of this formulation, let's begin by 
considering the complex electrical current flow through a 

network branch a-b, denoted as, 𝑰ab
local which is defined as: 

𝑰ab
local ≜ 𝐼ab e

 j 𝜃ab . (1) 

In this equation 𝐼ab represents the magnitude of the measured 

current phasor, and its phase angle 𝜃ab is calculated as: 

𝜃ab = arctan (−
𝑄ab

𝑃ab

) . (2) 

This equation, according to Figure 1, allows us to express 
measured voltages, currents, and active and reactive powers in 
terms of the network's state variables, particularly with reference 
to the slack bus (in this case, bus number one). Complex current 

measurements 𝑰ab can be expressed as: 

𝑰ab = 𝑰ab
local e j 𝛿a . (3) 

Here, represents the unknown phase angle of the complex 
voltage at bus a. We further express the complex current at bus 
a through any branch a-b in terms of state variables as: 

𝑰ab
locale j 𝛿a = (𝑌ab +

1

𝑍ab

)𝑬𝐚 + (−
1

𝑍ab

)𝑬𝐛 , (4) 

where 𝑌ab and 𝑍ab denote the transmission line shunt 
admittance and series impedance, respectively. The magnitude of 

measured voltage at each bus, represented by 𝑬𝐚 (assuming bus 
a), can be expressed in relation to state variables as: 

𝐸a e
 j 𝛿a = 𝑬𝐚 . (5) 

With these formulations in mind, we now consider 𝐸a and 

e j 𝛿a as network state variables, allowing us to construct a linear 
system equation similar to Equation (6) for solving the state 
estimation problem: 

[𝐻]

[
 
 
 
 
 
 

𝑬1

𝑬2

⋮
𝑬𝒏

e j 𝛿2

⋮
e j 𝛿𝑛]

 
 
 
 
 
 

= 𝑍 . (6) 

 

Figure 1. Relationship between measured current, voltage, reactive and 
active power in bus a.  
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Here, matrix 𝐻 and vector 𝑍 are linked to network 
measurements and remain constant. As a result, in comparison 
to conventional state estimation methods, this approach 
facilitates faster problem solving [25]. This innovative framework 
sets the stage for enhanced efficiency in power system state 
estimation, promising accelerated computations and improved 
system monitoring and control. In the following sections, we will 
explore the application of this linear approach to real-world 
power system scenarios and demonstrate its advantages in 
achieving reliable and expedited state estimation. 

3. GRAPH REPRESENTATION OF A POWER NETWORK AND 
NETWORK CLUSTERING: ENHANCING SYSTEM 
UNDERSTANDING 

Within the complex domain of power system analysis, a 
fundamental step towards achieving a comprehensive 
understanding and more efficient management of power 
networks involves representing the system as a graph. This 
innovative approach entails transforming the complex web of 
interconnected power components into an organized, 
interconnected structure, which can be systematically analysed 
and partitioned to enhance operational efficiency. The essence of 
this methodology lies in the transformative notion that a power 
network can be conceptualized as a graph, with each bus in the 
network mapped to a node within the graph, and every branch 
of the network equated to an edge in this graph. This paradigm 
shift simplifies the representation of a complex power system, 
offering an essential framework for the application of graph 
clustering methods. Graph clustering techniques play a critical 
role here by offering an organized strategy for partitioning the 
connected power network into discrete areas. These methods 
harness the inherent patterns, connections, and dependencies 
within the graph to identify meaningful clusters of nodes or 
buses that share common characteristics or functionalities. The 
implications of these clusters are multi-fold, enhancing our 
comprehension of the network's structure, assisting in the 
isolation of critical regions, and facilitating more targeted 
analyses and actions. Graph clustering has numerous advantages, 
ranging from making network management easier to simplifying 
activities like failure detection, load flow analysis, and network 
optimization. Furthermore, clustering offers a framework for 
enhancing system resilience, enabling the identification and 
isolation of potential trouble spots, and facilitating the rapid 
deployment of corrective measures. The utility of graph 
representation and clustering isn't confined to traditional power 
systems alone; it seamlessly integrates with the evolving 
landscape of smart grids. In the context of smart grids, where 
real-time data streams and intricate interconnections are the 
norm, graph clustering offers a valuable tool for improving real-
time monitoring, demand response, and outage management. In 
conclusion, the graph representation of power networks, 
combined with the power of graph clustering, offers a 
transformative approach to system analysis and management. By 
viewing the complex power network as an interconnected graph, 
we can unlock new avenues for understanding, optimizing, and 
enhancing the resilience of the grid. This section establishes the 
foundation for the subsequent exploration of how graph 
clustering methods can be effectively employed in practice to 
create distinct areas within the power system, ultimately 
improving its reliability and efficiency. The potential of this 
methodology, especially in the context of evolving smart grids, 
promises to revolutionize the management of power systems. 

3.1. Spectral Clustering: Unveiling Network Structures 

In the pursuit of understanding the underlying structures and 
dynamics of power networks, one powerful technique that has 
gained prominence is spectral clustering. This section elucidates 
the steps involved in the implementation of spectral clustering, a 
sophisticated approach that effectively reveals the intricate web 
of interconnected components within a power system. Spectral 
clustering leverages mathematical techniques and spectral graph 
theory to unearth latent patterns and groupings, offering a fresh 
perspective on the power network's topology. Spectral clustering 
unfolds in a series of meticulously engineered steps that we 
outline below: 

1. Create Adjacency Matrix of the Graph: The journey begins 
with the creation of the adjacency matrix, a fundamental 
representation of the network's connections. Each element in 
this matrix captures the relationships between nodes, essentially 
encoding the structure of the graph. 

2. Calculate the Laplacian Matrix: Moving onward, the 
Laplacian matrix emerges, a critical construct in spectral 
clustering. It represents the Laplacian operator of the graph and 
acts as a link between the topology of the network and the 
eigenvectors that will be examined shortly. 

3. Calculate Eigenvalues and Eigenvectors: The pivotal step 
of spectral clustering unfolds with the calculation of eigenvalues 
and eigenvectors associated with the Laplacian matrix. These 
eigenpairs offer deep insights into the network's dynamics, 
effectively revealing the latent patterns concealed within the 
graph. 

4. Identify the Second-Smallest Eigenvalue: Among the 
plethora of eigenvalues, it is the second-smallest eigenvalue that 
holds a particular significance in spectral clustering. This 
eigenvalue serves as a guiding light, a beacon indicating the path 
towards meaningful cluster formations. 

5. Extract Relevant Eigenvector Rows: With the second-
smallest eigenvalue identified, the corresponding eigenvector 
row becomes the focal point. This row, embedded with critical 
information, will pave the way for the creation of distinct 
network clusters. 

6. Determine the Number of Clusters: The final, and perhaps 
most critical, step in the spectral clustering process is the 
determination of the number of clusters required to encapsulate 
the network's inherent structures. This decision, often guided by 
meticulous analysis, shapes the final outcome of the clustering 
process. 

Application to a Small Graph: Illuminating the Process To 
provide an in-depth understanding of the spectral clustering 
process, the subsequent section applies these steps to a small 
graph, unravelling the intricacies and nuances involved. This 
practical example not only serves as an educational tool but also 
highlights the methodology's potential in real-world applications. 

Conclusion: A Window to Unseen Power Network Structures 
In conclusion, spectral clustering emerges as a robust technique 
for uncovering hidden patterns and structures within power 
networks. By transforming the network into a mathematical 
representation and meticulously exploring the eigenvalues and 
eigenvectors, we gain valuable insights into the network's 
inherent organization. This understanding, in turn, equips us to 
make informed decisions regarding cluster formations, thereby 
enhancing our ability to manage, analyse, and optimize complex 
power systems. As we delve into the application of spectral 
clustering to a small graph, we underscore its potential to 
revolutionize the way we perceive and interact with power 
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networks, promising to shed light on previously unseen 
structures and relationships. 

3.2. Creating the Adjacency Matrix of the Graph: A Fundamental 
Step 

The generation of the graph's adjacency matrix is a crucial step 
in the realm of power system analysis and network representation 
that lays the foundation for numerous graph-based approaches, 
including spectral clustering. The adjacency matrix is a 
mathematical representation that captures the intricate 
relationships between nodes and edges within the network, 
transforming a complex physical structure into a data-driven 
matrix. This section delves into the significance of the adjacency 
matrix and elucidates its construction through an illustrative 
example, offering a deeper understanding of its practical 
implementation. The adjacency matrix is a pivotal element in the 
arsenal of tools for analysing and manipulating networks, ranging 
from power grids to social networks. This matrix serves as a 
concise representation of the network's connectivity, 
encapsulating the relationships between nodes and edges, 
effectively encoding the structure of the graph. The adjacency 
matrix is represented mathematically as a square matrix, with 
each row and column representing a network node. The matrix 
entries are filled based on the presence or absence of edges 
between nodes, indicating the network connections. 
Illustrative Example: Constructing an Adjacency Matrix 

To shed light on the construction of the adjacency matrix, let's 
consider an example using Figure 2 as a reference (as shown 

below). The adjacency matrix, denoted as α, corresponds to the 
number of nodes (n) by the number of edges (m) in the graph. 
For Figure 2, this translates to a 6x8 matrix. The adjacency matrix 
𝛼 is constructed as follows: 

𝛼 =

[
 
 
 
 
 
−1 −1 0 0 0 0 0 0
1 0 −1 −1 0 0 0 0
0 1 1 0 −1 0 0 0
0 0 0 1 0 −1 −1 0
0 0 0 0 1 1 0 −1
0 0 0 0 0 0 1 1 ]

 
 
 
 
 

 . (7) 

The construction of this adjacency matrix is a key preparatory 
step that empowers subsequent network analysis methods. This 
matrix provides a compact, data-driven representation of the 
graph's structure, setting the stage for various mathematical 
techniques, including spectral clustering. By employing this 
matrix, we gain access to a wealth of insights about the network's 
connectivity, patterns, and inherent structures, ultimately 
enhancing our ability to decipher the complexities of power 
systems and their underlying networks. In conclusion, the 
creation of the adjacency matrix of a graph serves as a 

fundamental gateway to network analysis, a critical step in 
transforming intricate power system networks into 
mathematically tractable entities. The adjacency matrix, with its 
rows and columns representing nodes and its elements encoding 
edge connections, offers a succinct and data-driven view of 
network structures. Its application extends beyond spectral 
clustering, facilitating various network analysis techniques that 
enable a deeper understanding of power system dynamics. As we 
move forward in our exploration of power network analysis, this 
adjacency matrix will remain a pivotal tool, shedding light on the 
intricate relationships and patterns within power networks and 
setting the stage for enhanced network management and 
optimization. 

3.3. Creating the Laplacian Matrix:  

In the context of analysing power systems, the Laplacian 
matrix emerges as a critical intermediary step, bridging the gap 
between the established adjacency matrix and sophisticated 
network analysis techniques, particularly spectral clustering. This 
mathematical construct encapsulates the intricacies of network 
connectivity, serving as a vital representation of 
interconnections. Inspired by effective methods such as those 
detailed in [15], the Laplacian matrix is methodically crafted. It 
hinges on the computation of diagonal entries within each row, 
representing the sum of non-diagonal entries, thus quantifying 
the interconnectedness of nodes. This matrix, denoted as L, is 
crucial for spectral analysis, as it profoundly influences 
eigenvalue distributions and subsequent cluster formation. 
Illustrated using the graph in Figure 2, the Laplacian matrix 
emerges as an indispensable tool for unveiling network 
structures, shedding light on underlying patterns and facilitating 
applications ranging from fault detection to network 
optimization. As our exploration of power network analysis 
unfolds, the Laplacian matrix remains a fundamental 
component, empowering us to gain deeper insights into the 
complex web of power systems and enhancing our ability to 
manage and optimize these intricate networks.  

𝐿 =

[
 
 
 
 
 

2 −1 −1 0 0 0
−1 3 −1 −1 0 0
−1 −1 3 −1 0 0
0 −1 0 3 −1 −1
0 0 −1 −1 3 −1
0 0 0 −1 −1 2 ]

 
 
 
 
 

 . (8) 

3.4. Calculating Eigenvalues and Eigenvectors:  

In our quest to fathom the intricate structures of power 
networks, the computation of eigenvalues and eigenvectors 
assumes a pivotal role, particularly in the context of the Laplacian 
matrix derived from the graph illustrated in Figure 2. These 
mathematical constructs, denoted as E and V, respectively, 
unlock the latent patterns and inherent dynamics concealed 
within the network. Eigenvalues, encapsulated within matrix E, 
serve as insightful indicators of the network's behaviour, 
shedding light on its structures. Eigenvectors, found in matrix V, 
offer a more profound understanding of the network's 
underlying patterns and relationships. This meticulous process of 
computing eigenvalues and eigenvectors enhances our capacity 
to analyse and manage the complexities of power systems, with 
direct relevance to spectral clustering and network analysis. As 
our exploration of power network dynamics unfolds, these 
matrices remain essential tools, empowering us to gain deeper 
insights into network behaviour, cluster formation, and  

Figure 2. An illustrative graph is employed as an exemplar in this context.  
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ultimately enhancing our ability to optimize these intricate 
systems. 

𝐸 =

[
 
 
 
 
 
5 0 0 0 0 0
0 4 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 1 0
0 0 0 0 0 0]

 
 
 
 
 

 (9) 

𝑉 =

[
 
 
 
 
 

0 −0.4082 0.5773 −0.0040 −0.5774 0.4082
−0.5 0.4082 −0.2921 −0.4980 −0.2887 0.4082
0.5 0.4082 −0.2852 0.5020 −0.2887 0.4082
0.5 −0.4082 −0.2921 −0.4980 0.2887 0.4082

−0.5 −0.4082 −0.2852 0.5020 0.2887 0.4082
0 0.4082 0.5773 −0.0040 0.5774 0.4082]

 
 
 
 
 

 . (10) 

3.5. Graph Clustering: Revealing Network Structures 

The process of graph clustering stands as a pivotal step in 
unravelling network structures, particularly in the context of 
spectral clustering. In this section, we delineate the intricate 
procedure of partitioning the network into distinct clusters, 
underpinned by the second column of the eigenvector, 
corresponding to the second-smallest eigenvalue. The ensuing 
sorting operation is not just a mere rearrangement of values; it's 
a strategic endeavour that reveals underlying patterns and 
relationships within the network. After extracting the second 
column of the eigenvector, associated with the second-smallest 
eigenvalue, the sorting operation is executed. This meticulous 
process orders the values, initially ranging from the smallest to 
the largest, with precision. The resultant sorted eigenvalue 

vector, denoted as λ₂, is a crucial step in the spectral clustering 
methodology. It ensures that the data is prepared for the 
subsequent clustering procedure, illuminating relationships and 
patterns that might otherwise remain hidden. The sorting 
operation not only brings order to the data but also sets the stage 
for network division. The sum of entries in the sorted vector is 
zero, a critical characteristic that facilitates network separation. 
By strategically dividing the vector into two distinct components, 
one encompassing negative values and the other positive values, 
two different vectors emerge: A and B. The creation of clusters 
is the culmination of this process. We extract two clusters from 
the original graph, as shown in Figure 3, a visual representation 
of the partitioning effort. The clusters encapsulate nodes with 
shared characteristics, unveiling hidden network relationships. 
Figure 4 illustrates the clustering axis, offering a graphical 
depiction of the eigenvalues related to nodes. In conclusion, the 
process of graph clustering, guided by spectral analysis 
techniques, offers a profound means to dissect and understand 
network structures. The careful sorting of eigenvalues and the 
subsequent creation of clusters not only reveal inherent patterns 
but also provide insights into network relationships. As we 

navigate the complexities of power network analysis, graph 
clustering remains a valuable tool, enhancing our ability to 
decipher the intricate interplay of nodes and edges within the 
network. These insights are pivotal for applications such as fault 
detection, load balancing, and network optimization, making 
graph clustering an indispensable technique in our pursuit of 
enhanced power system management and analysis. In the context 
of our analysis, clusters A and B, distinguished through the graph 
clustering process, emerge as distinct entities separated from the 

eigenvalue 𝜆2. In our analysis, increasing cluster count 
accelerates state estimation. Yet, clustering a large network into 
more clusters is time-consuming. Our approach ensures equal 
node distribution, balancing faster estimation with 
computational demands. 

𝜆2 =

[
 
 
 
 
 
−0.4082
0.4082
0.4082

−0.4082
−0.4082
0.4082 ]

 
 
 
 
 

 after sorting: 𝜆2 =

[
 
 
 
 
 
−0.4082
−0.4082
−0.4082
0.4082
0.4082
0.4082 ]

 
 
 
 
 

 , (11) 

𝐴 = [
−0.4082
−0.4082
−0.4082

] , 𝐵 = [
0.4082
0.4082
0.4082

] . (12) 

4. SIMULATION RESULTS 

4.1. Case Study 1: IEEE-118 Bus Test Network 

In this study, all voltage parameters are expressed in “per 
unit” (pu), the first validation we undertake delves into the 
IEEE-118 Bus Test System, a renowned benchmark in the realm 
of power network analysis. This system, portrayed as a graph in 
Figure 5, serves as a comprehensive testing ground for our 
spectral clustering approach. After applying the spectral 
clustering methodology, the network gracefully bifurcates into 
three distinct areas, as vividly depicted in Figure 6. 

With the network segmented into these areas, we proceed to 
tackle the challenging task of solving the state estimation 
problem. The results of this endeavour are meticulously 
tabulated in Table 1, which offers a comparative analysis of 
voltage magnitude and voltage angle for four specific buses 
within the network. Furthermore, to provide a more 
comprehensive understanding, we present graphical 
representations comparing voltage magnitudes and angles in 
both integrated and multi-area forms. Figure 7 illustrates a 
comparison of voltage magnitudes, while Figure 8 depicts a 
comparison of voltage angles in integrated and multi-area forms. 

 

Figure 3. Cluster that separated from Figure 2.  

 

Figure 4. Eigenvalues related to nodes.  
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Due to space limitations, a comprehensive of voltage magnitudes 
and angles in the multi-area and integrated forms. These 
graphical representations unmistakably illustrate that the results 
obtained using the proposed clustering algorithm align 
seamlessly with those of the integrated approach, affirming the 
accuracy and efficacy of our methodology. 

In essence, this case study substantiates the effectiveness of 
our spectral clustering approach in power system state 
estimation. The parallel and integrated algorithms produce 
congruent results, reaffirming the precision of our clustering 
method, thus enhancing our capabilities in managing and 
optimizing complex power networks. 

4.2. Case Study 2: 9241-Bus European Network 

Our second case study embarks on a complex and extensive 
network, the 9241-Bus European Network [26], [27], depicted in 
graph form in Figure 9. This intricate system challenges our 
spectral clustering methodology, and the results are a testament 
to the approach's capabilities. The network divides into several 
distinct areas, each with its unique characteristics, as visually 
represented in Figure 9(a) through (e). These areas hold the key 

Table 1. Comparison of Voltage Parameters in Multi-Area and Integrated Forms. 

Bus 
number 

Estimated voltage 
magnitude in multi-

area form 
(pu) 

Estimated voltage 
angle in multi-area 

form 
(degree) 

Estimated voltage 
magnitude in 

integrated form 
(pu) 

Estimated voltage 
angle in integrated 

form 
(degree) 

True voltage 
magnitude 

(pu) 

True voltage angle 
(degree) 

1 0.955 10.973 0.95499 10.972 0.955 10.973 

2 0.9714 11.5125 0.97139 11.512 0.97139 11.5125 

3 0.967709 11.856 0.967691 11.856 0.96769 11.856 

4 0.998 15.574 0.998 15.574 0.998 15.574 

 

Figure 5. The IEEE-118 Bus Network in Graph Form.  

 

Figure 6. Three separated areas from the 118bus network.  

 

Figure 7. Comparison of voltage magnitudes in integrated and multi-area 
forms.  

 

Figure 8. Comparison of voltage angles in integrated and multi-area forms.  
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to understanding the intricate web of interconnections within the 
European power network. To comprehensively validate the 
accuracy of our method, we meticulously examine the values of 
voltage magnitude and angle in three distinct forms: integrated, 
multi-area, and true values. Table 2 presents a detailed 
comparison of the measured and estimated voltage parameters 
for specific buses within the network. These values provide 
insights into the precision of our spectral clustering approach, 
reinforcing its value in power system state estimation. To further 
accentuate the efficiency of our proposed multi-area state 
estimator, we conduct a comparison of processing times. Table 3 
presents a performance evaluation, featuring the processing time 
for each of the network's areas, substantiating the swiftness of 
our spectral clustering approach. These simulations are executed 
on an i7-3770 CPU, and the results are a testament to the 
computational efficiency of the method. In summary, our case 
study of the 9241-Bus European Network underscores the 
robustness and computational efficiency of our proposed 
spectral clustering-based multi-area state estimator. The 
segmentation of the network into distinct areas, coupled with the 
accuracy of voltage parameter estimation, offers a practical 
solution for real-world power system state estimation challenges. 
These findings further solidify the relevance of our methodology 
in enhancing power network management and optimizing 
complex European power systems. 

4.3. Root-Mean-Square Error-Index: Quantifying Estimation 
Precision 

To comprehensively assess the performance of our state 
estimation method, we employ a critical metric - the Root-Mean-
Square Error (RMSE). The RMSE serves as a key benchmark in 
quantifying the disparity between the estimated values and the 
true values, providing valuable insights into the accuracy of our 

state estimation. The RMSE for voltage magnitude 𝑅𝑀𝑆𝐸(𝐸) 

and voltage angle 𝑅𝑀𝑆𝐸(𝛿) are calculated as follows: 

𝑅𝑀𝑆𝐸(𝐸) =
1

𝑛
√∑ |𝐸𝑖

est − 𝐸𝑖
true|

𝑛

𝑖=1
 , (13) 

𝑅𝑀𝑆𝐸(𝛿) =
1

𝑛
√∑ |𝛿𝑖

est − 𝛿𝑖
true|

𝑛

𝑖=1
 . (14) 

In Equation (13), 𝐸𝑖
est represents the value of the estimated 

voltage magnitude, and 𝐸𝑖
true is the corresponding true value. 

The parameter 𝑛 indicates the number of simulations performed. 

In Equation (14), 𝛿𝑖
est denotes the estimated voltage angle, and 

𝛿𝑖
true is the actual voltage angle. Similar to RMSE(E), 'n' signifies 

the number of simulations runs. 

4.4. Comparative RMSE Analysis 

Given space constraints, we present a summary of RMSE 
values exclusively for the 9241-Bus Network in Table 4. These 
RMSE values encompass various scenarios, each with its own 
standard deviation (σ) for measurement errors. This 
comprehensive analysis covers both integrated and multi-area 
forms, providing a detailed view of estimation precision in 
different network segments. These RMSE values offer a 
comprehensive understanding of estimation accuracy under 
different error conditions, reaffirming the robustness of our 
multi-area state estimator. They serve as a vital tool in assessing 
the precision of state estimation, ensuring the reliability of our 
approach in the intricate realm of power network analysis. 

5. CONCLUSION 

In this study, we have introduced a pioneering multi-area state 
estimation method, harnessing SCADA measurements for rapid 
analysis of large-scale power networks. By strategically 
partitioning the network and conducting linear state estimation 
in parallel, we have achieved unprecedented speed without 
compromising accuracy. Our approach has been rigorously 
tested on two substantial test systems, consistently delivering 
swift results. This transformative method significantly reduces 
the time required for solving state estimation challenges, making 
it a potent tool for managing complex power systems. As power 
networks grow in scale and intricacy, our methodology offers an 
efficient and accurate solution that has the potential to reshape 
power system management on a global scale, driving us toward a 
more sustainable and efficient energy future. 

Table 2. Magnitude and angle of estimated and measured voltages. 

Bus 
number 

Estimated 
voltage 

magnitude 
(pu) 

Estimated 
voltage angle 

(degree) 

Measured 
voltage 

magnitude 
(pu) 

Measured 
voltage angle 

(degree) 

1 1.007 -36.571 1.007 -36.571 

2 1.031 -8.434 1.013 -8.434 

3 1.017 -21.085 1.017 -21.085 

4 1.022 -6.892 1.020 -6.892 

Table 3. Speed comparison between proposed multi-area state estimator and integrated state estimator. 

Type of network 
Area number one of 

9241 bus network 
Area number two of 

9241 bus network 
Area number three of 

9241 bus network 
Area number four of 

9241 bus network 
Integrated 9241 bus 

network 

Processing time (s) 0.144 0.0917 0.420 0.205 0.538 

Table 4. Comparative RMSE Analysis in Integrated and Multi-Area Forms. 

Scenario Type of network 
Error Value 

σ 
RMSE(E) RMSE(δ) 

1 
Integrated 9241 bus 

network 
0.002 0.10248 0.01459 

2 
Area number one of 
9241 bus network 

0.002 0.10250 0.01398 

3 
Area number two of 
9241 bus network  

0.002 0.10244 0.01337 

4 
Area number three 

of 9241 bus network 
0.002 0.10239 0.01422 

5 
Area number four of 

9241 bus network 
0.002 0.10252 0.01450 

6 
Integrated 9241 bus 

network 
0.005 0.4124 0.0807 

7 
Area number one of 
9241 bus network 

0.005 0.5433 0.0454 

8 
Area number two of 
9241 bus network 

0.005 0.5223 0.0793 
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