
ACTA IMEKO 
ISSN: 2221-870X 
June 2024, Volume 13, Number 2, 1 - 10 

 

ACTA IMEKO | www.imeko.org June 2024 | Volume 13 | Number 2 | 1 

Modelling photovoltaic modules with enhanced accuracy 
using particle swarm clustered optimization 

El marghichi Mouncef1, Abdelilah Hilali2, Azeddine Loulijat3, Abdelhak Essounaini4, Abdelkhalek 
Chellakhi5 

1 Intelligent Systems Design Laboratory (ISDL), Faculty of Science, Abdelmalek Essaadi University, Tetouan 93000, Morocco  
2 Faculty of Sciences, Moulay Ismail University, Meknes 11201, Morocco  
3 Faculty of Sciences and Technology, Hassan first University, FST of Settat, Morocco  
4 Laboratory of Analysis, Modeling and Simulation, Department of Mathematics and Computer Science, Faculty of Sciences Ben M’Sik Sidi  
  Othman, Hassan II University, Casablanca, Morocco  
5 Laboratory of Engineering Sciences for Energy (LabSIPE), National School of Applied Sciences of El Jadida, Chouaib Doukkali University,  
  24000, El Jadida, Morocco  

 

 

Section: RESEARCH PAPER  

Keywords: Particle Swarm Clustered Optimization (PSCO); PV parameter extraction; PV modelling; solar PV 

Citation: El marghichi Mouncef, Abdelilah Hilali, Azeddine Loulijat, Abdelhak Essounaini, Abdelkhalek Chellakhi, Modelling photovoltaic modules with 
enhanced accuracy using particle swarm clustered optimization, Acta IMEKO, vol. 13 (2024) no. 2, pp. 1-10. DOI: 10.21014/actaimeko.v13i2.1699  

Section Editor: Laura Fabbiano, Politecnico di Bari, Italy  

Received October 23, 2023; In final form March 23, 2024; Published June 2024 

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

Corresponding author: Mouncef El marghichi, e-mail: Elmarghichi.mouncef@gmail.com, m.elmarghichi@uae.ac.ma  

 

1. INTRODUCTION 

Humanity's survival and progress rely on accessible and 
sustainable energy. Traditional energy sources are depleting, 
leading to ecological decline. To address this, a transition to 
renewable energy is crucial. These sources are environmentally 
friendly, abundant, and versatile, offering solutions to ecological 
concerns [1]. 

Significant progress has been made in harnessing renewable 
energy sources, such as solar and wind power, leading to 
increased energy production [2]. Photovoltaic (PV) technology 
has played a crucial role in various applications, including satellite 
power, water desalination, and heating/cooling systems [3], [4]. 

Accurate simulation and modeling of solar cells have been 
achieved through numerical simulation and adaptive control 
methods [5], [6]. 

Photovoltaic cells are constructed using a P-N junction 
semiconductor material that comprises several distinct regions: 
the quasi-neutral, space-charge, and defect regions. These 
regions introduce losses due to charge carrier recombination and 
diffusion, making it essential to consider them when developing 
a photovoltaic model. Various approaches are used in PV models 
to address these losses. The single-diode model (SDM) is a 
popular choice due to its simplicity and efficiency, allowing it to 
represent losses in the quasi-neutral region. For increased 
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accuracy, the double-diode model (DDM) is employed, which 
incorporates losses in both the SDM and space-charge region. 
Moreover, the three-diode model (TDM) offers even higher 
precision by encompassing losses in the defect region in addition 
to those already considered in the DDM [7]. 

Accurate modeling is crucial for optimizing and deploying 
photovoltaic systems, demanding precise parameter estimation 
for PV cell models [8]. Yet, the nonlinear and nonconvex nature 
of PV models presents substantial challenges. To address these 
hurdles, three distinct techniques for parameter estimation have 
been developed by researchers: analytic, deterministic, and 
metaheuristic approaches [9]. These approaches are utilized to 
guarantee the precise estimation of PV model parameters and 
improve the overall efficiency of PV system optimization and 
implementation. 

Analytic methods rely on specific data points and formulate 
simple equations for parameter estimation. While fast and 
convenient, they depend on accurate manufacturer data and may 
be affected by PV degradation over time [10], [11]. 

Deterministic methods utilize multiple measurements to 
accurately ascertain the unknown parameters and employ a loss 
function to measure the difference between predicted and actual 
data points. These approaches have the potential to converge to 
local optimal solutions since they depend on gradient 
information. Evolutionary-based algorithms, such as the 
Differential Evolution Algorithm (DEA) and Genetic Algorithm 
(GA), apply evolutionary principles to tackle the parameter 
estimation problem [12]-[14]. 

Extracting parameters from photovoltaic models is a 
multifaceted endeavor due to the intricate nature of these 
models, which involve nonlinearity and an abundance of 
parameters. In pursuit of precise parameter estimation, the field 
has witnessed a surge in the utilization of metaheuristic 
techniques, attracting considerable attention. To address the 
complexities of this task, various methodologies have been 
introduced in academic research. 

Among these methodologies is the Grey Wolf Optimizer 
combined with Cuckoo Search Algorithm, referred to as 
GWOCS, and documented in [15]. GWOCS is meticulously 
crafted to strike an equilibrium between the exploitation and 
exploration of search space, with a pronounced focus on 
enhancing the accuracy of parameter extraction. Another notable 
methodology, the Multiple Learning Backtracking Search 
Algorithm (MLBSA), put forth in [16], sets its sights on 
delivering dependable and precise parameter estimations for 
photovoltaic models. 

In the study outlined in [17], researchers opted to employ the 
Gradient-Based Optimizer (GBO) to estimate parameters across 
three distinct PV models: SDM, DDM, and TDM. The findings 
from this investigation effectively underscore the prowess of 
GBO, as it adeptly achieves both accurate modeling and robust 
simulation of photovoltaic modules. 

In a different vein, the Sunflower Optimization Algorithm 
(SFO), as introduced in [18], leverages the graceful movement of 
sunflowers toward sunlight as its guiding principle. Remarkably, 
the experiments conducted within this study yielded error rates 
consistently below 0.5%, serving as a testament to the 
effectiveness of SFO in achieving intricate and precise modeling 
and simulation, especially in the context of the three-diode PV 
model. 

The modified JAYA algorithm, unveiled in [19], presents a 
noteworthy approach for the accurate modeling of current and 
voltage characteristics of solar cells. This adaptively modified 

algorithm exhibits superior robustness and precision in 
comparison to its counterparts, thus advancing the state-of-the-
art in parameter estimation. 

Diving deeper into the realm of research, the Whale 
Optimization Algorithm (WOA) has taken center stage, as 
evidenced by its application in parameter estimation for single, 
double, and three-diode PV models, detailed in [20]. The models 
underwent meticulous validation through rigorous simulations 
under diverse conditions and were judiciously benchmarked 
against other optimization methods and experimental data. 

The realm of parameter extraction for photovoltaic models 
has also witnessed the emergence of novel hybrid strategies that 
amalgamate multiple techniques. These innovative hybrid 
approaches, expounded upon in references [21]-[25], are 
carefully designed to amalgamate the unique strengths of 
different optimization methods. The resultant synergy 
significantly bolsters the precision and resilience of parameter 
estimation, thereby contributing to the state-of-the-art in the 
field. 

1.1. Paper objective 

The NFL theorem [26] states that no single metaheuristic 
optimization technique can universally solve all optimization 
problems, emphasizing that the effectiveness of an optimizer on 
one set of problems does not guarantee similar performance on 
another. Widely accepted, this theorem serves as the foundation 
for adapting existing techniques for new problem domains. 

Extensive explorations in the realms of solar cell parameter 
estimation and the application of metaheuristic techniques have 
unveiled a host of limitations and challenges that researchers 
grapple with. Some of the prominent challenges encompass 
issues linked to non-adaptive weight metrics, sluggish 
computational speed, the ever-looming threat of converging into 
local optima, and the pivotal need to minimize root mean square 
error (RMSE) values. It is these realizations and challenges that 
have ignited the spark of innovation among researchers, 
propelling them to seek ground-breaking solutions and devise 
highly efficient methodologies to overcome these inherent 
shortcomings. 

This article introduces a search mechanism, the Particle 
Swarm Clustered Optimization (PSCO) algorithm, to effectively 
estimate PV cell parameters, specifically for the three-diode 
model (TDM). PSCO utilizes clusters within the particle 
population to facilitate localized communication and 
information sharing, enabling efficient exploration and 
exploitation. The dynamic nature of the algorithm allows it to 
adapt to the changing search space and determine optimal 
photovoltaic parameters. 

The PSCO algorithm shows robust performance with high 
precision, convergence, and a balanced approach to exploration 
and exploitation. This study aligns with the NFL theorem and 
leverages the PSCO algorithm's success. The proposed solution 
quickly achieves optimal global values, demonstrating its efficacy 
and efficiency. 

The algorithm's performance is validated on real solar 
modules, including STP6-120/36 and Photowatt-PWP201. It is 
compared against six robust strategies, confirming its robustness, 
speed, and effectiveness for parameter estimation in 
photovoltaic models. 

In summary, this investigation yields a set of noteworthy 
contributions: 
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• Introduction of an innovative PSCO methodology 
tailored for parameter estimation in the TDM, resulting 
in a significant reduction in the loss function. 

• A comprehensive comparative analysis that pits the 
PSCO algorithm against six modern and robust 
counterparts across four different PV modules, namely, 
STP6-120/36 and Photowatt-PWP201. 

• Thorough verification of the algorithm's effectiveness 
through the meticulous evaluation of absolute power and 
current errors. 

• The execution of simulations for I-V and P-V curves, 
utilizing the parameter values obtained through the 
PSCO algorithm, to provide a visual validation of its 
remarkable efficiency. 

1.2. Paper structure 

The paper is structured as follows: Section 2 presents the 
TDM PV model and its equations. Section 3 provides an 
overview of PSCO method. Section 4 describes the 
implementation setup for the Photowatt-PWP201 and STP6-
120/36 solar panels. Section 5 presents the results and 
discussion. Finally, the paper concludes in the last section. 

2. SOLAR PV MODELLING 

This section explores the mathematical models of the three-
diode model (TDM) for solar PV cells and modules. 

2.1. Three-Diode Model (TDM) 

The photovoltaic generator consists of a current source (Iph), 
three diodes, a resistor (Rsh), and a series resistor (Rs), as shown 
in Figure 1. By applying the principle of current division, the 
current from the source is divided among the diodes and parallel 
resistor, yielding the generated current of the photovoltaic unit, 
expressed as follows [27]:  

𝐼out = 𝐼ph − ∑ 𝐼o𝑘 −

3

𝑘=1

𝐼out 𝑅s + 𝑉

𝑅sh

, (1) 

In this context, n represents the quantity of parallel diodes, 
specifically "n = 3." The output voltage is denoted as "V," while 
the current in diode "k" is represented by "Iok" and can be 
defined as follows [27]: 

𝐼o𝑘=𝐼st𝑘 (e
𝑞 (𝐼out 𝑅s+𝑉)

𝑛𝑘 𝐾 𝑇 − 1), (2) 

The symbol Istk represents the saturation current, and q 

denotes the elementary charge of an electron (1.602 · 10-19 C). 

Additionally, K refers to the Boltzmann constant, nk represents 
the ideality factor of the diode, and T signifies the temperature in 
Kelvin. By combining equations (1) and (2), we arrive at the 
following expression [27]: 

𝐼out =𝐼Ph − ∑ 𝐼st𝑘 (e
𝑞 (𝐼out 𝑅s+𝑉)

𝑛𝑘 𝐾 𝑇 − 1)

3

𝑘=1

−
𝐼out𝑅s + 𝑉

𝑅sh

 , (3) 

2.2. PV Module Model 

The current Iout of a TDM-based PV module (Figure 2) with 
Ns × Np solar cells arranged in series and/or parallel is expressed 
as [27]: 

𝐼out =𝐼Ph − ∑ 𝐼st𝑘 (e

𝑞 (
𝐼out 𝑅s

𝑁p
+

𝑉
𝑁s

)

𝑛𝑗 𝐾 𝑇 − 1)

3

𝑘=1

−

𝐼out 𝑅s

𝑁p
+

𝑉
𝑁s

𝑅sh

 , (4) 

where Iout and V represent the current and voltage output of the 
PV module, respectively. 

2.3. Cost function  

The main objective of this study is to minimize the difference 
between the simulated and measured current of the solar cell. 
This is achieved by using the root mean square error (RMSE) as 
the loss function to identify the optimal values for the 
photovoltaic model parameters [28]. The cost function is defined 
based on the discrepancy between the estimated and measured 
current, quantified as follows:  

𝐹Ob = √
1

𝐺
 ∑|𝐼es(ℎ) − 𝐼mes(ℎ)|2

𝐺

ℎ=1

  , (5) 

In the equation above, Ies represents the estimated current, 
Imes represents the measured current, and G denotes the total 
number of data points. 

3. PSCO ALGORITHM 

3.1. PSO 

Particle swarm optimization (PSO) is a stochastic 
optimization algorithm. It belongs to the category of swarm 
algorithms, which are inspired by the collective behaviour of 
birds or fishes. Unlike evolutionary algorithms that use crossover 
and mutation operators, PSO utilizes a different computation 
process to find solutions. PSO, each particle in the search space 
is characterized by velocity and position vectors. Initially, the 
particles are randomly distributed, with their position vectors 

 

Figure 1. TDM equivalent circuit.  

 

Figure 2. PV module.  
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initialized randomly and velocity vectors set to zero. each 
iteration, the position and velocity vectors of the particles are 
updated using the following equations: 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡𝑤 + 𝑟1 ∙ 𝐶1 ∙ (𝑃𝑖
best − 𝑥𝑖

𝑡) + 𝑟2 ∙ 𝐶2 ∙  (𝐺𝑖
best − 𝑥𝑖

𝑡), (6) 

𝑥𝑖
𝑡+1 = 𝑣𝑖

𝑡+1 + 𝑥𝑖
𝑡 , (7) 

where r1 and r2 are random numbers between 0 and 1, w is the 

inertial weight, 𝑃𝑖
bestrepresents the best position achieved by 

particle i, 𝐺𝑖
best is the best position of all particles, and C1 and C2 

are the personal and global learning coefficients, respectively. 

3.2. PSCO 

The Particle Swarm Clustered Optimization (PSCO) 
technique, introduced in [29], addresses the limitations of PSO, 
such as getting trapped in local solutions and failing to reach the 
global solution. PSCO divides particles into clusters and follows 
the PSO procedure until a specified iteration, Im, where each 
cluster aims to find a solution. subsequent iterations, particles 
gain knowledge from other particles, moving towards the cluster 
leader and the best particle of the entire population. This strategy 
ensures that clusters at Im are near different local solutions, and 
moving particles from local solutions to the best particle helps 
overcome trapping. The particle velocity vectors are updated 
using the following equations [29]: 

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖,𝑗

𝑡 + 𝑟1 ∙ 𝐶1 ∙ (𝑃𝑖,𝑗
best − 𝑥𝑖,𝑗

𝑡 ) + 𝑟2 ∙ 𝐶2 ∙  (𝐺𝑗
best − 𝑥𝑖,𝑗

𝑡 ),

𝑡 ≤ 𝐼𝑚 
(8) 

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖,𝑗

𝑡 + 𝑟1 ∙ 𝐶1 ∙ (𝑃𝑖,𝑗
best − 𝑥𝑖,𝑗

𝑡 ) + 𝑟2 ∙ 𝐶2 ∙  (𝐺best − 𝑥𝑖,𝑗
𝑡 ),

𝑡 > 𝐼𝑚, 
(9) 

where 𝑃𝑖,𝑗
best represents the best-observed position of the ith 

particle in the jth cluster, 𝐺𝑗
best denotes the position of the leader 

of the jth cluster, and 𝐺best represents the best particle position 
[29]. The position of particles is updated using the following 
equation: 

𝑥𝑖,𝑗
𝑡+1 = 𝑣𝑖,𝑗

𝑡+1 + 𝑥𝑖,𝑗
𝑡  . (10) 

The learning coefficients for individual and global learning, 
denoted as C1 and C2, respectively, exhibit distinct values and 
undergo updates during an iterative process using the following 
equation [29]: 

𝐶1 = 1.95 − 2 (
𝐼𝑡

𝑀𝑎𝑥𝐼𝑡
)

1
3

, 𝐶2 = 0.05 − 2 (
𝐼𝑡

𝑀𝑎𝑥𝐼𝑡
)

1
3

 . (11) 

The flowchart of the Particle Swarm Clustered Optimization 
(Figure 3) algorithm begins with the initialization step, where a 
population of particles is randomly assigned positions and 
velocities within the search space. The algorithm then proceeds 
to evaluate the fitness of each particle by calculating an objective 
function or fitness measure. Next, the personal best position 

𝑃𝑖
best for each particle is updated based on the fitness evaluation, 

and the global best position 𝐺best is determined among all the 
particles. 

In the velocity and position update step, the algorithm adjusts 
the velocity and position of each particle using its current 

position, velocity, 𝑃𝑖
𝑏𝑒𝑠𝑡 , and 𝐺best. This allows the particles to 

move towards better solutions. Additionally, a cluster formation 

step is performed to group similar particles together, promoting 
exploration within each cluster. 

To further refine the solutions, a local search is conducted 
within each cluster, enabling the algorithm to exploit the local 
neighborhood effectively. The algorithm continues to iterate 
through the fitness evaluation, position updates, cluster 
formation, and local search steps until a convergence criterion is 
met. The convergence criteria typically involve reaching the 
maximum number of iterations or achieving the desired solution 
accuracy. 

3.3. The proposed PSCO for PV parameter estimation 

The Particle Swarm Clustered Optimization (PSCO) 
algorithm is utilized for parameter extraction in the solar PV 
model. It begins by dividing particles into clusters and employing 
the Particle Swarm Optimization (PSO) procedure to find 
solutions up to a specified iteration. subsequent iterations, 
particles incorporate knowledge from both the cluster leader and 
the best particle in the population, enabling convergence to 
various local solutions while avoiding local optima traps. Figure 4 
depicts the proposed algorithm for parameter extraction, which 
involves initializing the solar PV model, reading current and 
voltage measurements, and utilizing PSCO to minimize the cost 
function, Equation (5), and determine the best TDM model 
solution. 

 

Figure 3. PSCO algorithm.  
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4. IMPLEMENTATION SETUP 

The proposed PSCO algorithm (Figure 4) is employed to 
estimate the parameters of solar PV models, specifically the 
TDM model, using STP6-120/36 and PWP201 PV modules [30]. 
The algorithm's performance is evaluated by comparing it with 
EO (Equilibrium optimizer) [31], GWO (grey wolf optimizer) 
[32], RUN (Runge-Kutta optimizer) [33], SMA (slime mould 
algorithm) [34], WOA (whale optimization algorithm) [35], and 
GBO (gradient-based optimizer) [36]. The STP6-120/36 module 
is identified as monocrystalline, whereas the PWP201 module is 
classified as polycrystalline, both composed of 36 cells in series, 
as indicated in Table 1. To establish the solar PV model 
parameters, the PSCO algorithm settings are outlined in Table 2 
and Table 3. 

5. RESULTS AND DISCUSSION 

The objective is to estimate the nine parameters (Ist3, Ist2, Ist1, 
IP, Rsh, Rs, n1, n2, and n3) for the TDM PV modules STP6-120/36 
and PWP201. Table 3 presents the lower and upper boundaries 
for these parameters. The performance analysis of the PSCO 
algorithm and the compared algorithms is carried out by 
examining the P-V and I-V characteristics of the modules, as 
shown in Figure 5 and Figure 6, respectively. The convergence 
curves of the loss function are depicted in Figure 7 and Figure 8, 
while the absolute current error is shown in Figure 9 and 
Figure 10. The parameters obtained using the PSCO algorithm 
are listed in Table 4. 

 

Figure 4. Proposed framework to estimate the TDM parameter WITH PSCO.  

 

Figure 5. I-V and P-V curves (Photowatt-PWP201 module).  

 

Figure 6. I-V and P-V curves (STP6-120/36 module).  

Table 1. PV model. 

PV type Temp (◦C) (Ns × Np) Cells 

STP6-120/36 55 36 × 1 

Photowatt-PWP201 45 36 × 1 

Table 2. PSCO parameters. 

PV type 
Population 
number (N) 

Number of 
iterations (Tmax) 

number of 
decision variables 

(dim) 

STP6-120/36 50 1500 9 

Photowatt-PWP201 50 1500 9 

Table 3. Limits of the TDM model. 

Parameter 
STP6-120/36 Photowatt-PWP201 

Ub Lb Ub Lb 

Ist1, Ist2, Ist3 (µA) 50 0 50 0 

Iph (A) 8 0 2 0 

Rs (Ω) 0.36 0 2 0 

Rsh (Ω) 1500 0 2000 0 

n1, n2, n3 50 1 50 1 
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To evaluate the precision of the methods, we assess their 
predictive performance using three metrics: mean square error 
(MSE), root mean square error (RMSE), and normalized RMSE 
(NRMSE), denoted as [37]-[40]: 

𝑀𝑆𝐸 =
1

𝐿
∑  (𝐼es(𝑥) − 𝐼tr(𝑥))2

𝐿

𝑥=1

 , (12) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐼es,max − 𝐼es,min

  , (13) 

𝑅𝑀𝑆𝐸 = √
1

𝐿
∑  

𝐿

x=1

 (𝐼es(𝑥) − 𝐼mes(𝑥))2, (14) 

where L represents the total number of data points, where Ies and 
Imes represent the recorded and predicted output current values, 
respectively. 

As can be observed from Table 5. PSCO stands out as the 
superior algorithm in both the STP6 and PWP201 models, as 
evidenced by the provided numerical results. In the STP6 model, 
PSCO achieved an RMSE value of 0.0145 A, significantly lower 
than the values obtained by competing algorithms such as EO 
(0.0511 A), GWO (0.0575 A), RUN (0.0453 A), SMA (0.0163 A), 
WOA (0.0250 A), and GBO (0.0206 A). This trend continues 
when considering the NRMSE values, where PSCO attains a 
value of 0.0019, outperforming all other methods that exhibit 
higher NRMSE values. Similarly, PSCO excels in terms of MSE, 

with the lowest value of 2.0915 · 10-4, further highlighting its 
accuracy and precision in predicting the STP6 model. 

For the PWP201 model, PSCO continues to demonstrate its 
exceptional performance. It achieves the lowest RMSE value of 

 

Figure 7. Fitness function (Photowatt-PWP201 module).  

 

Figure 8. Fitness function (STP6-120/36 module).  

 

Figure 9. Absolute current error (Photowatt-PWP201 module).  

 

Figure 10. Absolute current error (STP6-120/36 module).  

Table 4. Parameters extracted for the TDM model. 

PV type 
Ist1 

(µA) 
Ist2 

(µA) 
Ist3 

(µA) 
Iph 

(A) 
Rs 

(Ω) 

Rsh 

(Ω) 
n1 n2 n3 

STP6-
120/36 

2.014 40.90 10.954 7.473 0.00467 18.28 1.33 34.08 26.29 

Photowatt-

PWP201 
26.98 2.85 27.31 1.031 0.0341 24.50 13.75 1.38 24.51 
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0.0019 A, surpassing the RMSE values of EO, GWO, RUN, 
SMA, WOA, and GBO. Moreover, PSCO also obtains the lowest 
NRMSE value of 0.0014, indicating its capability to provide more 
accurate predictions compared to alternative algorithms. In 
terms of MSE, PSCO again outperforms all other algorithms 

with the lowest value of 3.6290 · 10-6, while the MSE values for 
the other methods, namely EO, GWO, RUN, SMA, WOA, and 
GBO, are significantly higher. 

Table 6 summarizes the max, mean, min, and power errors, 
Equation (14), for three different algorithms. 

𝑃error=
1

𝐿
 ∑  |𝑃meas(𝑥) − 𝑃es(𝑥)|

𝐿

𝑥=1

 , (15) 

where Pes represents the estimated power, Pmeas denotes the 
measured power, and L indicates the total number of data points. 

By analyzing the numerical results from Table 6, we can 
compare the performance of the PSCO algorithm against other 
algorithms for the STP6 and PWP201 models. In the STP6 
model, PSCO exhibits a minimum error of 0.00064 A and a 
maximum error of 0.03913 A. Comparatively, other algorithms 
like EO, GWO, RUN, SMA, WOA, and GBO have higher 
minimum and maximum errors. Furthermore, the mean error for 
PSCO in the STP6 model is 0.01135 A, which is lower than the 
mean errors of the other algorithms. Additionally, PSCO 
achieves a power error of 0.16054 W, which is the lowest among 
all the methods considered. These results indicate that PSCO 
performs well in minimizing errors and accurately predicting the 
STP6 model. 

Shifting our focus to the PWP201 model, PSCO maintains 
its impressive performance. It achieves the smallest minimum 
error of 0.000004 A and the maximum error of 0.00403 A, 
outperforming the competing algorithms. The mean error for 
PSCO in the PWP201 model is 0.00152 A, which is also lower 
compared to the mean errors of the other algorithms. 
Additionally, PSCO achieves a power error of 0.01484 W, which 
is considerably lower than the power errors of EO, GWO, RUN, 
SMA, WOA, and GBO. These results highlight the accuracy and 
reliability of the PSCO algorithm in predicting the PWP201 
model with minimal errors. 

In summary, the numerical results consistently show that the 
PSCO algorithm outperforms other algorithms in both the STP6 
and PWP201 models. It achieves smaller minimum and 
maximum errors, lower mean errors, and reduced power errors. 
These results demonstrate the effectiveness of the PSCO 
algorithm in minimizing prediction errors and accurately 
estimating the target variables in the models. 

Figure 11 and Figure 12 offer a comprehensive visualization 
of the absolute current errors generated by various algorithms 
when applied to the solar modules. These boxplots serve as 
valuable tools for assessing the performance and accuracy of 
each method. In each boxplot, a red horizontal line signifies the 
mean error specific to that particular algorithm. The Interquartile 
Range (IQR), representing the range of data dispersion between 
the upper and lower edges of the box, provides a clear measure 
of how the data is distributed. Additionally, outliers, those data 
points falling outside the whiskers of the boxplot, are 
prominently identified. Altogether, these boxplots provide a 
visual summary of data variability and offer profound insights 
into the performance of each algorithm. 

These observations closely align with the data presented in 
both Table 5 and Table 6, further reinforcing the conclusions 
drawn from this research. They consistently show that errors 
associated with the PSCO algorithm are notably minimal. 
Roughly 75% of the data points closely approximate the true 
values, indicating an impressive level of accuracy. This 
consistency across the findings strongly emphasizes the efficacy 
of the proposed method in accurately estimating PSCO 
parameters. In conclusion, PSCO proves to be an effective and 
reliable choice for parameter estimation in photovoltaic models, 
offering precise and consistent results. 

6. CALCULATION SPEED 

In this segment, we assess the computational speed 
performance of optimization algorithms. We measured 
execution times for each algorithm concerning two solar PV 
types, and the findings are condensed in Table 7. Computation 
speed, quantified in seconds, is presented for all algorithms under 
uniform conditions, featuring a population size of 50 and a 
maximum iteration count of 1500. The algorithms also operated 
within the same predefined constraints, as detailed in Table 3. 

Table 7 offers valuable insights into the comparative 
performance of various algorithms, measured in terms of 

Table 5. Predictive performance indicators. 

PV type Methods 
RMSE 

(A) 
NRMSE MSE 

ST
P

6
-1

2
0

/3
6 

PSCO 0.0145 0.0019 2.0915 · 10-4 

EO 0.0511 0.0068 0.0026 

GWO 0.0575 0.0077 0.0033 

RUN 0.0453 0.0061 0.0020 

SMA 0.0163 0.0022 2.6620 · 10-4 

WOA 0.0250 0.0033 6.2478 · 10-4 

P
h

o
to

w
at

t-
P

W
P

2
01

 

PSCO 0.0019 0.0014 3.6290 · 10-6 

EO 0.0067 0.0050 4.5143 · 10-5 

GWO 0.0037 0.0028 1.3509 · 10-5 

RUN 0.0048 0.0036 2.2909 · 10-5 

SMA 0.0040 0.0030 1.5879 · 10-5 

WOA 0.0029 0.0022 8.3284 · 10-6 

Table 6. Min, Max, Mean and Power error. 

PV type Methods 
Min error 

(A) 
Max error 

(A) 
Mean error 

(A) 
Power error 

(W) 

ST
P

6
-1

2
0

/3
6 

PSCO 0.00064 0.03913 0.01135 0.16054 

EO 0.00118 0.05005 0.03901 0.55123 

GWO 0.00889 0.08019 0.04869 0.66071 

RUN 0.00377 0.07518 0.03793 0.51192 

SMA 0.00005 0.03790 0.01202 0.17104 

WOA 0.00129 0.05980 0.01981 0.27944 

P
h

o
to

w
at

t-
P

W
P

2
01

 

PSCO 0.000004 0.00403 0.00152 0.01484 

EO 0.00013 0.01385 0.00554 0.05650 

GWO 0.000238 0.00417 0.00298 0.03056 

RUN 0.000404 0.00711 0.004302 0.04872 

SMA 0.000501 0.00834 0.00327 0.03437 

WOA 0.000035 0.00431 0.00218 0.01967 

Table 7. Computation speed in seconds. 

PV type PSCO EO GWO RUN SMA WOA GBO 

PHOTOWATT-
PWP201  

169.71 2.22 0.55 8.63 7.14 1.58 2.632 

STP6-120/36 179.78 2.10 0.78 6.12 3.84 2.29 1.87 
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computation speed in seconds, for two distinct PV types: 
PHOTOWATT-PWP201 and STP6-120/36. The numerical 
results in this table underscore an essential trade-off between 
computation speed and accuracy, which is particularly 
pronounced in the case of the PSCO algorithm. 

First, let's acknowledge that PSCO, with computation speeds 
of 169.71 seconds for PHOTOWATT-PWP201 and 179.78 
seconds for STP6-120/36, takes significantly more time to 
process data than other algorithms. This might raise concerns 
about its efficiency, especially when time is a critical factor. 

However, when considering the accuracy of parameter 
estimations, PSCO's performance tells a different story. Its 
remarkable accuracy is evident when we reflect on the results 
presented in Table 5 and Table 6. The RMSE, MSE, MAPE, 
Min-max, and power error indicators consistently demonstrate 
that PSCO surpasses the other six algorithms. For instance, the 
RMSE values for PSCO are remarkably low at 0.0145 A and 
0.0019 A, and the power errors are the lowest at 0.16054 W and 
0.01484 W. These results emphasize the strength of PSCO in 
providing precise parameter estimates. 

While PSCO may be slower in terms of computation, it excels 
where it counts the most: accuracy. This contrast underlines the 

importance of carefully considering the specific needs of a 
project. In cases where precision is paramount, PSCO is an ideal 
choice. 

As we look ahead to future work, our objective is to optimize 
the computational speed of the PSCO algorithm without 
compromising its remarkable accuracy. We are committed to 
striking a better balance between speed and precision while 
maintaining the high standards of transparency that our research 
is built upon. This includes providing real values that researchers 
can rely on to further the field of photovoltaic parameter 
estimation. 

7. CONCLUSION  

In conclusion, this study introduces the Particle Swarm 
Clustered Optimization (PSCO) algorithm, a novel approach 
that leverages clusters within the particle population for 
enhanced communication and information sharing at localized 
levels. The effectiveness of PSCO is vividly demonstrated 
through its application in parameter extraction for the TDM in 
STP6-120/36 and Photowatt-PWP201 PV modules. Notably, 
PSCO outperforms existing state-of-the-art algorithms, attaining 
impressively low Root Mean Square Error (RMSE) values of 
0.0145 A and 0.0019 A. Moreover, it minimizes power errors to 
the greatest extent, achieving values as low as 0.16054 W and 
0.01484 W, underlining its superior accuracy. 

These results firmly establish the PSCO algorithm as an 
efficient and precise method for estimating parameters in 
photovoltaic models. The ability of PSCO to outshine its 
counterparts in accuracy and performance signifies its potential 
to revolutionize the field of photovoltaic modeling and drive 
further advancements in sustainable energy technologies. As the 
world continues to seek more efficient and reliable sources of 
renewable energy, the PSCO algorithm emerges as a promising 
tool to contribute to this important endeavor. 

While the PSCO algorithm may have been slower in terms of 
computation, it excels where it matters most: accuracy. This 
highlights the need to consider a project's specific requirements 
carefully. In cases where precision is paramount, PSCO is an 
ideal choice. Looking forward, our objective is to optimize the 
computational speed of the PSCO algorithm without 
compromising its remarkable accuracy, addressing its initial 
slowness. We are committed to achieving a better balance 
between speed and precision while maintaining the high 
standards of transparency in our research. This includes 
providing real, dependable values to advance the field of 
photovoltaic parameter estimation. 
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