
ACTA IMEKO 
ISSN: 2221-870X 
June 2024, Volume 13, Number 2, 1 - 9 

 

ACTA IMEKO | www.imeko.org June 2024 | Volume 13 | Number 2 | 1 

EEG measurements-based study for evaluating acoustic 
human perception: A pilot study 

Silvia Angela Mansi1, Reza Jamali2, Gianmarco Battista3, Marco Arnesano1, Milena Martarelli2, Paolo 
Chiariotti4, Paolo Castellini2 

1 Università Telematica eCampus, 22060 Novedrate (CO), Italy  
2 Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche , 60131 Ancona, Italy  
3 Department of Engineering and Architecture, University of Parma, 43121 Parma, Italy  
4 Department of Mechanical Engineering, Politecnico di Milano, Milano, 20156, Italy 

 

 

Section: RESEARCH PAPER  

Keywords: Sound quality; acoustic perception; electroencephalogram (EEG); wearable device 

Citation: S. A. Mansi, R. Jamali, G. Battista, M. Arnesano, M. Martarelli, P. Chiariotti, P. Castellini, EEG measurements-based study for evaluating acoustic 
human perception: A pilot study, Acta IMEKO, vol. 13 (2024) no. 2, pp. 1-9. DOI: 10.21014/actaimeko.v13i2.1698  

Section Editor: Francesco Lamonaca, University of Calabria, Italy  

Received October 20, 2023; In final form April 3, 2024; Published June 2024 

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

Funding: This project has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under 
the Marie Sklodowska-Curie Grant Agreement nº 858018.  

Corresponding author: Silvia Angela Mansi, e-mail: silviaangela.mansi@uniecampus.it  

 

1. INTRODUCTION 

The assessment of sound quality plays a critical role across 
numerous contexts such as audio technology, product 
development, consumer electronics, telecommunications, 
automotive, entertainment, and the buildings sector. The 
acoustic indoor environmental quality (IEQ) of a building refers 
to the quality of the acoustic environment inside the building. It 
encompasses various factors related to sound and noise that can 
affect the comfort, well-being, and productivity of occupants [1], 
[2]. Acoustic IEQ is an important aspect of building design, 
particularly in spaces where speech intelligibility, privacy, and 
noise reduction are important. Positive acoustic conditions 
contribute to a more pleasant and functional space, while poor 

acoustic conditions can lead to discomfort, stress, and reduced 
performance. While objective sound quality metrics such as 
loudness, sharpness, roughness, and others serve as valuable 
insights into the technical facets of sound characterization, 
subjective evaluations by human listeners remain essential in 
capturing the perceptual and mental dimensions of sound quality 
[3], [4]. 

Jury testing (JT), also known as subjective sound quality 
evaluation, is one of the most diffuse approaches for assessing 
the perceived sound quality. The practice of JT consists of 
playing the set of sounds to be evaluated to a group of pre-
instructed listeners, or better “jurors”, who rank the sound by 
answering to pre-defined questions about the sounds, according 
to their own perspectives. However, the JT poses several 
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challenges. On the one hand, subjective preferences are varied 
by individual preferences, cognitive biases, cultural background, 
environmental effects, and human perception. Furthermore, 
because the single juror might have different reaction to the same 
sound exposure, not all responses might be trustworthy. On the 
other hand, the test setup needs to be carefully planned in order 
to collect the required data regarding the sounds.  

Recognizing these challenges, researchers and practitioners 
have devoted significant efforts to improve JT outcome in terms 
of reliability, accuracy, and repeatability of subjective evaluations 
while accounting for the complex nature of sound quality.  

Previous research in this field has explored various paths for 
improving JT sound quality metrics. In [5], [6] it has been 
demonstrated that objective sound quality metrics have high 
correlation with the evaluation of discomfort given by 
participants to jury tests applied to the annoyance estimation of 
interior noise in helicopters and car cabins. Studies have 
investigated the integration of subjective and objective measures, 
combining perceptual evaluations with objective metrics derived 
from psychoacoustic models, acoustic analysis, and machine 
learning algorithms [7], [8]. By leveraging both human perception 
and technical measurements, researchers aim to establish a more 
holistic framework for sound quality assessment. Additionally, 
advancements have been made in the development of 
standardized test protocols and methodologies. These 
standardized protocols provide a consistent and controlled 
environment for subjective evaluations, facilitating comparisons 
between different products [9], [10]. Another helpful tool is the 
virtual reality. Robotham, et al. focused on sound quality 
assessment in Virtual Reality (VR) applications; this study 
compares different evaluation methods, including traditional jury 
testing, paired comparison tests, and rating scales. The authors 
emphasize the need for adapting sound quality evaluation 
approaches to the unique characteristics and challenges of VR 
environments [11]. 

Furthermore, advancements in statistical analysis techniques 
contributed to enhance the reliability and consistency of the 
results obtained from JT. Zhang, et al. demonstrated the 
importance of sample size determination and statistical 
modelling in reducing variability and enhancing the accuracy of 
JT outcomes [12]. 

The integration of wearable devices and physiological 
monitoring tools has also emerged as a promising approach for 
improving JT sound quality metrics. Wearable devices can 
capture real-time biometric data, such as heart rate, skin 
conductance, and brainwave activity, which can provide insights 
into listeners' physiological responses to audio stimuli. By 
correlating physiological measures with subjective ratings, 
researchers can gain a deeper understanding of the underlying 
mechanisms and physiological bases of sound quality perception 
[13]. 

Electroencephalography (EEG) refers to the process or 
technique of recording and analyzing the electrical activity of the 
brain through the use of an electroencephalogram [14]. 
Brainwaves are detected using electrodes placed on the scalp 
according to the 10-20 system [15] and they are classified 
according to their frequency content. Each brainwave class 
corresponds to a particular state of mind. In general, delta waves 
(0.1 Hz – 4 Hz) are associated with deep sleep, theta waves (4 Hz 
– 7.5 Hz) are related to consciousness sleep towards drowsiness, 
alpha waves (7.5 Hz – 12 Hz) are the prominent rhythm in 
relaxing and passive attention activities, beta (12 Hz – 30 Hz) is 
associated with active thinking and gamma waves (30 Hz – 

45 Hz) are prominent during high mental activities. EEG has 
been largely adopted in the field of acoustic perception, given the 
possibility to monitor the human physiological response changes 
in real-time. Generally, the brain’s electrical activity changes in 
response to the process of perception and cognition of 
environmental stimuli. 

 Earlier research results of human brain physiology have 
shown that brain activities occur simultaneously with external 
stimulation (visual and acoustic stimuli) [16], [17]. In the acoustic 
field, for example, Trimmel [18] noticed that noise exposure can 
change the activity of the central nervous system, and the degree 
of impact is related to sound types and Sound Pressure Level 
(SPL). Other studies found a correlation between EEG power 
spectral densities (PSDs) and individual acoustic perception. 
some of these investigated the relationship between emotional 
state and EEG response induced by acoustic stimuli.  

 Schmidt and Trainor [19] presented happy and sad musical 
excerpts and found decreased alpha power at left frontal 
electrodes during happy music, whereas sad music was associated 
with a more pronounced alpha power decrease at the right 
frontal leads. Kabuto et al. [20] analysed the PSDs changes 
induced by pleasant music, showing that alpha-power is high 
under the psychosomatic state with "pleasant and calm" feelings, 
and that its increase is related to relaxation.  

J. L. Walker [21] reported a correlation between self-reports 
of paying little attention to the music and high theta- and high 
delta-wave production.  

Nevertheless, none of the above-mentioned studies used 
wearable device to investigate brain responses to audio stimuli. 
The recent development of non-invasive wearable sensing 
technologies highlights the potential of monitoring specific 
human physiological signals throughout daily life, having more 
reliable signals that can be correlated to human preference and 
perception, rather than potentially biased surveys-only data 
sources. Wearable EEG devices have found various applications 
across different fields due to their portability and non-invasive 
nature. They have been used in developing Brain-Computer 
Interfaces (BCIs), allowing individuals to control electronic 
devices or computers directly with their brain signals. This 
technology has applications in assistive technologies for people 
with disabilities and may enable hands-free control [22]. EEG 
wearables have been demonstrated to be capable of assessing 
cognitive performance, attention levels, and mental workload in 
real-time [23]. Studies revealed their applicability also in 
monitoring sleep stages, and identifying sleep-related disorders 
[24]. Another field of application includes monitoring stress 
levels and emotional responses, useful in various settings such as 
workplace stress management programs and research on 
emotional well-being [25]. In general, EEG portable devices 
offer several advantages: they are low cost, simple to be used, 
their comfortable design allows to reduce the time of application, 
and more importantly, they considerably attenuate the 
obstructiveness of measurements, making the experimental time 
not unpleasant for the participants. However, they are strongly 
prone to collect environmental noise and artifacts due to subject 
movements (e.g., eyeblink, muscular artifacts), which means that 
acquired data need to be processed before they became reliable 
for acoustic perception measurements. 

The aim of the presented study is to evaluate the applicability 
of wearable sensor in the field of acoustic perception estimation 
when targeting sounds and noises in automotive applications. 
The experimental protocol, the signal processing procedure, and 
the statistical analysis are illustrated together with results from 
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the measurement campaign performed in a controlled 
environment. Results demonstrate the feasibility of the proposed 
approach, that could be used as a pilot investigation towards JT 
application. 

The paper is organised in five sections. Section 2 presents the 
measurement equipment used, the JT protocol and the audio 
signals submitted to the jurors. Section 3 describes the data 
processing methodology and the statistical analysis while Section 
4 reports the results achieved. In Section 5 and 6 the discussion 
of results and the conclusions are drawn.  

2. MATERIALS AND METHODS 

2.1. Measurement equipment  

2.1.1. EEG device 

A brain sensing headband, Muse 2 (Interexon Inc.) [26], was used 
for recording EEG signals. Researchers provided evidence that 
Muse is an effective portable tool for continuous recording EEG 
data [27], [28], appliable outside its designed functionality 
(meditation and training device). The EEG signals were obtained 
from 4 electrodes. The two electrodes are on the forehead (left 
and right of the reference: AF7, AF8, silver made) and one 
electrode above each ear (TP9 and TP10, conductive silicone -
rubber). Three reference electrodes (FPz - CMS/DRL) are 
placed in the middle between the two input electrodes on the 
forehead, Figure 1. EEG data were recorded using the Muse 
application [29] paired with a smartphone via Bluetooth Low 
Energy (BLE) at 256 Hz sampling frequency.  

2.1.2. Earphones 

Over-ear headphones are not compatible with the usage of 
Muse 2 EEG headband because they would cause bad adhesion 
of the electrodes. Therefore, a compact earphone, the Sony 
MDR-E9LP, were utilized (Figure 2). 

2.2. Experimental procedure 

To estimate the effective sample size of subjects for the 
experimental campaign, the G*Power3 statistical test was 
performed [30]. Table 1 shows the priori analysis setting. 

The obtained sample size was 36 and 38 for the parametric 
and non-parametric tests, respectively. 

The experimental campaign accounted for 43 subjects, 21 
females and 22 males. The listeners were between 19 to 61 years 
old; but the 80 percent of the sample was in the range of 28 ± 7 
years old. 

The experiments took place in the acoustic laboratory of 
“Università Politecnica delle Marche’’, Italy, in September 2022. 

More specifically, the subject, once entered the test room, was 
instructed about the test (where to sit, how to wear physiological 

monitoring devices, and when to answer the questionnaire in 
Google Form accessible via QR code). All subjects signed the 
informed consent. Each test session lasted 6 min; the subjects 
were exposed to three different audio signals; each audio signal 
was preceded by a minute of silence. After each sounds exposure 
the subjects filled out a questionnaire to indicate their acoustic 
perception about the audio signals they listened to, Figure 3. 
EEG acquisition was done continuously. Subjects were 
instructed to stay as quiet as possible during the 6 minutes of 
physiological data collection, just sitting and relaxing to reduce 
measurement artifacts due to body movements, Figure 2. Finally, 
it is worth noting that recruited subjects were instructed not to 
smoke, not to perform any intense physical effort, not to eat or 
drink coffee or any other exciting beverage since at least 1 hour 
before their scheduled tests. All the tests took place in the 
morning from 10 AM to 1 PM and in the afternoon, in the time 
slot from 2:30 PM to 6:30 PM. The questionnaire the subjects 
were asked to fill aimed at describing the subjects’ acoustic 
perception of each sound in terms of annoying/pleasant, 

 

Figure 1. Left: MUSE 2 headband sensors overview. Right: Top-down view of 
the EEG electrode positions on the subject’s head.  

Table 1. CAPTION. 

Parameters Values 

Required power level (1 - 𝛽) 0.95 

Prespecified significant level 𝛼 0.05 

Effect size f 0.25 

Number of measurements 3 

Number of groups 1 

Statistical test repeated measures - within factor ANOVA 
and test Wilcoxon signed-rank test 

 

Figure 2. Measurements of EEG signals with Muse 2 headband during test 
session. 

 

Figure 3. JT protocol submitted to each juror.  
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relaxing/stressful, quiet/loud sensations on a 5-point Likert scale 
ranging from 1, meaning annoying/relaxing/quiet, up to 5, 
meaning pleasant/stressful/loud. In this evaluation scale, the 
sense of neutrality was set at level 3 [31]. 

2.3. Auditory stimuli characteristics 

In this subsection, we provide a detailed description of the 
acoustic stimuli utilized in our experiment. The acoustic 
description begins with a fundamental audio spectral metrics, 
which serve as key introduction indicators in our analysis. 

2.3.1. Definition of audio spectral metrics 

Several audio spectral metrics, commonly adopted in the field 
of audio analysis, are used here to provide an objective 
description of the spectral characteristics of sound signals, 
making them valuable tools for audio signal analysis and 
processing [32]. For time varying signals the metrics are 
computed from the spectrogram. The spectrograms are 
computed for time chunks lasting 0.4 s and overlapped of 90%. 
A Hanning time window is applied to reduce the leakage. The 
resulting spectrograms are depicted in Figure 4 for the frequency 
range from 40 Hz to 10 kHz, which corresponds to the range 
used for audio metrics computation. For each time chunk, the 

audio power spectrum (PS) is denoted by 𝑃(𝑏), where 𝑏 
represents the discrete frequency bins in the range of analysis. 

Spectral Centroid 
The Spectral Centroid (CNT) represents the center of mass 

of the power spectrum on the frequency axis. It indicates where 
the bulk of the acoustic energy is concentrated in the frequency 
domain. A higher CNT value typically corresponds to a brighter 

sound, while a lower value indicates a darker or bass-heavy 
sound. The CNT indicator is calculated as follows: 

𝐶𝑁𝑇 = 𝜇𝑏 =
∑ 𝑏𝑓 ⋅ 𝑃(𝑏)

∑ 𝑃(𝑏)𝑓

 .  

Spectral Spread 
The Spectral Spread (SPR) is the standard deviation of the PS 

around the spectral CNT. This represents an indication of the 
bandwidth of the spectrum.  

𝑆𝑃𝑅 = 𝜎𝑏 = √
∑ (𝑏 − 𝜇𝑓)

2
𝑃(𝑏)𝑓

∑ 𝑃(𝑏)𝑓

  . 

Spectral Skewness 
The Spectral Skewness (SKW) quantifies the asymmetry of 

the spectral distribution around the CNT. It measures whether 
the distribution is skewed to the left or right with respect to the 
centroid. Positive values indicate a dominance of low 
frequencies, while negative values a dominance of high 
frequencies. It is calculated as: 

𝑆𝐾𝑊 =
∑ (𝑏 − 𝜇𝑏)3

𝑓 ⋅ 𝑃(𝑏)

(𝜎𝑏)3 ∑ 𝑃(𝑏)𝑏

 . 

Spectral Kurtosis 
The Spectral Kurtosis (KUR) is used to assess the "peakiness" 

of the spectral distribution. It actually measures the flatness, or 
non-Gaussianity, of the spectrum around its CNT and is 
calculated as follows: 

𝐾𝑈𝑅 =
∑ (𝑏 − 𝜇𝑏)4𝑃(𝑏)𝑏

(𝜎𝑏)4 ∑ 𝑃(𝑏)𝑏

 . 

Spectral Entropy 
The Spectral Entropy (ENT) measures the degree of disorder 

in the spectral distribution of a signal. The more frequencies 
contribute to the full spectrum, also considering their amplitude, 
the higher the ENT. For example, a pure tone has low Spectral 
ENT, while white noise PS has higher ENT. However, pink 
noise PS has less ENT of white noise. It is calculated using 
Shannon's ENT formula: 

𝐸𝑁𝑇 = −
1

log 𝑁𝑏
∑ 𝑃(𝑏)𝑏 ⋅ log(𝑃(𝑏)) . 

Spectral Flux 
The Spectral Flux (FLX) is a measure of the spectrum changes 

over time. It is computed using two consecutive spectra in the 

spectrogram, denoted respectively by 𝑃(𝑏, 𝑡) and 𝑃(𝑏, 𝑡 − 1): 

𝐹𝐿𝑋(𝑡) = (∑(𝑃(𝑏, 𝑡) − 𝑃(𝑏, 𝑡 − 1))
2

𝑓

)

1
2

 .  

2.3.2. Spectral metrics of the auditory stimuli provided to subjects 

In this study, three distinct sounds were used to stimulate 
emotions in listeners. These sounds were chosen to be 
significantly different from each other. Figure 4 depicts the 
spectrograms corresponding to the three audio stimuli, while 
Table 2 reports the spectral metrics associated with each of the 
three sounds. In the table, the average of each metric together 

a)  

b)  

c)  

Figure 4. Spectrograms illustrating the spectral content of three sound stimuli 
over time. (a) engine noise, (b) soothing music, and (c) road noise.  
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with the ranges assumed by the metric itself is given. The average 
is calculated over time for each metric and it represents the 
barycentre of the values assumed by the metric in the whole 
audio duration. The comparison of these objective values among 
the three sounds makes it possible to draw an acoustic profile for 
each of them and to highlight the differences. 

Audio 1 (A1) is the sound an internal combustion engine of a 
sports car, which should elicit the idea of power, mechanical 
precision, and intensity. This sound has a CNT of 210 Hz and a 
SPR of 330 Hz. The high KUR value (775) confirms the 
prevalence of tones in the sound, while the positive SKW (22.5) 
indicates that lower tones are predominant. The ENT is 
moderate (0.33), while the FLX is the highest compared to the 
other two sounds. 

Audio 2 (A2) consists of soothing music, which evokes feelings 
of tranquillity, relaxation, and harmony. This sound exhibits a 
CNT value of 126 Hz and a SPR of 70 Hz, indicating a lower 
frequency concentration. The SKW is almost neutral (2.2) and 
the KUR (10) is the lowest among the three sounds, therefore, 
there are not really dominating peaks in the spectrum. 
Low ENT and FLX values, respectively 0.27 and 0.00069, 
suggest a relatively simple and stationary distribution of 
frequencies. 

Audio 3 (A3) represents road traffic noise, which connotes a 
noisy and stressful environment. This sound is characterized by 
the highest CNT and SPT values, respectively of 538 Hz and 686 
Hz., suggesting a relevant content in a broader frequency range. 
The SKW (5.2) and the KUR (46) are moderate compared to the 
Sound No. 1. This sound has the highest ENT (0.57), thus 
meaning that many frequencies contribute to the sound, on the 
average. The FLX is the lowest one (0.00058) due to the presence 
of constant background noise.  

3. DATA ANALYSIS  

3.1. EEG pre-processing and features extraction 

Muse 2 headband sensor has an on-board Digital Signal 
Processing (DSP) module which pre-processes raw data using a 
noise filter (0.1 – 45 bandpass and notch at 60 Hz), eye blink and 
jaw clench artifact removal and Frequency Domain analysis 
(window of 256 samples, with a step of 22) giving the access to 
the PSD of five frequency bands Delta (0.5 – 4 Hz), Theta 

(4 – 8 Hz), Alpha (8 – 12 Hz), Beta (12 – 30 Hz) and Gamma 
(> 30 Hz) [33]. 

For each one of the five frequency bands, across the 4 input 
channels (TP9, AF7, AF8, and TP10), the following features 
were computed: 

• Relative power: 

∑ 𝐵𝑖
0 / ∑ 𝑇𝑖

0  (1) 
where B is the power of signal in a specific frequency 
band T is the total power 

• Frontal Asymmetry (FA) and Temporal Asymmetry (TA) using 
the formulas (2) and (3): 

FA: 𝐵𝐴𝐹8 - 𝐵𝐴𝐹7 (2) 

TA: 𝐵𝑇𝑃10 - 𝐵𝑇𝑃9 (3) 

• Band ratio in each channel: 
alpha/beta . (4) 

From now on, the capitalized terms Delta, Theta, Alpha, Beta, 
and Gamma will be used to denote the absolute power of the 
signal in each frequency band, along with the reference electrode. 
The term "Relative" accompanied by the corresponding band 
name will be employed to refer to relative power within the 
respective bands. 

3.2. Statistical analysis 

3.2.1. Statistics on EEG data 

The relative frequency of individual responses about personal 
perception of sounds were computed. A Python custom code 
was developed to perform statistical analysis to establish the 
correlation level between individual acoustic perception and 
EEG features changes under the three audios stimuli. The 
outlier’s identification and removal were performed using the Z-
score method (cut-off value equal 2). According to the Guide to 
the expression of uncertainty in measurement (GUM) [34], the 

mean (𝑓)̅ and the standard uncertainty of the mean (𝑢𝑓) of each 

EEG features were calculated. The Shapiro test [35], and Bartlett 
test [36] were performed to verify the assumption of normality 
and the homogeneity of variance, respectively. Across the entire 
group of features only the (delta_AF8) revealed a non-gaussian 
distribution. Two types of statistical methods were used to 
compare means of EEG features across variables based on 
repeated observations in different conditions, the repeated 
measures ANOVA model [37] in case of satisfaction of both 
normality and homogeneity of data, and the Kruskal-Wallies non 
parametric test [38] on contrary. Finally, the EEG features ability 
to discriminate between A1-A2, A1-A3, and A2-A3 was 
investigated with a post-hoc analysis using Dwass-Steel-
Critchlow-Fligner pairwise comparison test [39]. 

3.2.2. Correlation between EEG features and audio metrics 

To identify a possible relationship between EEG features and 
audio metrics, the Pearson’s correlation coefficient is calculated 
using MATLAB “corrcoef” function. Only the statistically 
significant EEG features, obtained from the post-hoc analysis 
were used to compute the correlation with audio metrics. The 
time-averaged audio metrics of Table 2 are used for all subjects. 

4. RESULTS AND DISCUSSION 

4.1. Questionnaire for the evaluation of the subjective perception 

The statistical analysis of the questionnaire results is 
summarized in Figure 5. The results of relative frequency 
distribution of subjective acoustic perception revealed that A1 
was perceived more annoying than pleasant (39% of subjects’ 

Table 2. Spectral metrics of the sounds. Time averages and extreme values of 
the metrics are indicated. 

Audio Description 
CNT 
(Hz) 

SPR  
(Hz) 

A1 Engine noise 210 [88, 1106] 330 [134, 2100] 

A2 Music 126 [100, 168] 70 [38, 110] 

A3 Road noise 402 [239, 1031] 686 [363, 2100] 

  SKW KUR 

A1 Engine noise 22.5 [2.8, 36.1] 775 [12, 1633] 

A2 Music 2.2 [0.8, 4.5] 10 [3, 32] 

A3 Road noise 5.2 [2.9, 7.7] 46 [12, 97] 

  ENT FLX 

A1 Engine noise 0.33 [0.15, 0.73] 1.95e-3 [8.06e-5, 7.12e-3] 

A2 Music 0.27 [0.19, 0.33] 6.93e-4 [1.42e-4, 1.95e-3] 

A3 Road noise 0.57 [0.47, 0.71] 5.84e-4 [4.01e-5, 2.30e-3] 
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score equal 2), more stressful than relaxing (43% of responses 
for score 4), and more than 50% of subjects perceived A1 neutral 
in terms of quiet/loud perception. For the A2 sound, more than 
70% of subjects gave a score equal to 5 (pleasant); this sound was 
perceived mostly relaxing (78% for a score equal to 1) and 
quiet/loud almost neutral (score 2 – 3). The results related to A3 
showed that the perception of 37%, and 28% (score 2 and 1 
respectively) of subjects was annoying, it was also perceived 
stressful, only the 6% of subjects gave a score minor than 3 
(relaxing), in terms of quiet/loud most of the responses were in 
the range from 3 to 5 (loud). 

4.2. Correlation between EEG features and subjective perception 

In general, EEG measurements showed a correlation with 
acoustic perception in terms of increase or decrease of power of 
brain waves. Higher value of Delta in right frontal and temporal 
electrodes (TP10, AF8), and Theta TP10 were found under A1 
exposure compared to the others, as reported in Table 3. As 
reported in see Table 4 and Figure 6, the post-hoc analysis 
revealed a statistical difference between both A1-A2, and A1-A3 
for Delta TP10, Delta AF8, and Theta TP10 (significant values 
were accepted for p-value < 0.05 - significant level alpha = 0,05-). 
Relative Alpha TP10 showed higher values in A2 condition. An 
increase of TA Alpha was found under A3 audio exposure. TA 
showed a statistical difference in contrasts A2-A3, and A1-A3.  
Slow-waves delta and theta in the right temporal site showed a 
correlation with score on the ‘’annoying’’ scale in A1 and A3. 
Delta waves are the lowest recorded brain waves in human being. 
They are associated with the deepest level of relaxation and 
restorative, healing sleep. Delta activity has been assessed to be 
also prominent in some emotional experience. J. L. Walker [40] 
found a correlation between high-delta and high-theta 
production and “unpleasant’’ music. The results of study showed 
also a correlation between high delta activity and “pay little 
attention’’, supporting the hypothesis that predominant delta 
activity is modulated by annoying sound perception. The results 
about theta increase induced by annoying sound is in line with 

Zheng-Guang Li et al. [41] work, they found that theta waves 
increased with subjective annoyance under noise exposure. 

Concerning alpha activity, a correlation between high 
attentiveness to sounds, pleasant/relaxing state and the increase 
of alpha waves has been demonstrated. An emotionally 
significant stimulus automatically attracts attention [42] and it is, 
therefore, conceivable that due to the pleasant emotions induced 
in the course of the consonant pieces, participants listened more 
attentively to the pleasant-sounding excerpts. The results of the 
present work are in line with [43], [44]. 

Statistical difference was also found between A2 and A3 
audios exposure for TA Alpha, showing a higher value when 
subjects were exposed to the A3 sounds, suggesting a greeter 
activation of the right hemisphere of the brain during audio 
stimuli processing. Interhemispheric asymmetry is explained by 

Table 3. Repeated measured ANOVA - Kruskal-Walli’s test results. 
Significance level alpha = 0.05. 

EEG features 
(𝒇̅  ± 𝒖𝒇 )  

A1 

(𝒇̅  ± 𝒖𝒇 ) 

A2 

(𝒇̅  ± 𝒖𝒇 ) 

A3 

H-
statistic 

p- 
value 

Delta TP9 0.6 ± 0.07 0.5 ± 0.08 0.5 ± 0.06 7.5 0.001 

Delta AF7 0.6 ± 0.06 0.5 ± 0.09 0.5 ± 0.08 5.1 0.009 

Delta AF8 0.7 ± 0.06 0.6 ± 0.08 0.6 ± 0.09 10.6 0.005 

Delta TP10 0.7 ± 0.05 0.5 ± 0.07 0.5 ± 0.06 16.7 < 0.001 

Theta AF7 0.2 ± 0.07 0.2 ± 0.06 0.2 ± 0.06 3.3 0.04 

Theta AF8 0.3 ± 0.07 0.3 ± 0.07 0.2 ± 0.07 5.6 0.005 

Theta TP10 0.4 ± 0.06 0.3 ± 0.06 0.3 ± 0.04 11.1 < 0.001 

Alpha AF7 0.4 ± 0.05 0.3 ± 0.05 0.3 ± 0.04 4.9 0.01 

Alpha AF8 0.4 ± 0.05 0.4 ± 0.06 0.3 ± 0.06 5.5 0.006 

Beta TP10 0.4 ± 0.03 0.4 ± 0.04 0.4 ± 0.04 4.5 0.01 

Gamma TP9 0.1 ± 0.06 0.03 ± 0.05 0.5 ± 0.06 3.3 0.04 

Gamma TP10 0.1 ± 0.04 0.05 ± 0.05 0.03 ± 0.04 4.8 0.01 

Relative Delta 
TP10 

0.3 ± 0.02 0.3 ± 0.02 0.3 ± 0.04 3.6 
0.03 

Relative Alpha 
TP10 

0.3 ± 0.02 0.3 ± 0.02 0.3 ± 0.02 11.9 
< 0.001 

Relative 
Gamma TP10 

0.04 ± 0.02 0.03 ± 0.02 0.01 ± 0.02 4.1 
0.02 

TA Theta -0.04 ± 0.03 -0.02 ± 0.03 0.01 ± 0.02 3.4 0.04 

TA Alpha -0.06 ± 0.03 -0.003 ± 0.03 0.05 ± 0.03 8.3 0.001 

Table 4. Dwass_Seel_Critchlow-Fligner pairwaise comparison results. 
Significance level alpha = 0.05. (* stands for p-value < 0.001). 

EEG features 
A1-A2 A1-A3 

p-values 
A2-A3 

Delta TP9 0.1 0.1 0.9 

Delta AF7 0.1 0.2 0.9 

Delta AF8 0.01 0.01 0.9 

Delta TP10 0.004 0.001* 0.9 

Theta AF7 0.3 0.2 0.9 

Theta AF8 0.3 0.1 0.7 

Theta TP10 0.04 0.01 0.9 

Alpha AF7 0.5 0.2 0.8 

Alpha AF8 0.7 0.2 0.6 

Beta TP10 0.8 0.5 0.5 

Gamma TP9 0.3 0.2 0.9 

Gamma TP10 0.4 0.9 0.8 

Relative Delta TP10 0.2 0.1 0.3 

Relative Alpha TP10 0.01 0.2 0.9 

Relative Gamma TP10 0.7 0.2 0.7 

TA Theta 0.6 0.1 0.3 

TA Alpha 0.8 0.01 0.03 

 

 

 

Figure 5. Frequency distribution in percentage (%) of individual acoustic 
perception, and illustrating the average ratings for each dimension. 
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the study of functional lateralization in subcortical and cortical 
auditory circuits. However, none of the hemispheres can be said 
to process distinct aspects of audio inputs with absolute 
dominance. This is consistent with the core tenets of the notion 
of system dynamic localization of functions, which postulates 
that the entire brain participates in the realization of each 
function through the collaboration of distributed neuron 
ensembles[45]. The higher value of TA alpha under A3 exposure 
is supported by M. J. Jafari et al. [46], they found an increase of 
alpha bands when the participants were exposed to background 
noise. 

4.3. Correlation between EEG features and audio metrics 

The correlation analysis, described in Section 3.2.2, between 
EEG features and the audio spectral metrics are reported in 

Table 5. Even though the results revealed a moderate linear 
relationship, the corresponding p-values confirm the significance 
of these correlations. All the audio metrics used in this analysis 
show a statistically significant correlation with at least one EEG 
feature. These results are consistent with other studies in this 
field. The highest correlation occurs between EEG metrics and 
spectral SKW, spectral kurtosis and FLX. This is confirmed from 
previous studies reported in literature [47] where it has been 
demonstrated that spectral SKW and kurtosis are widely 
correlated with perceived affective quality of soundscape and 
specifically with traffic noise. 

5. CONCLUSION 

The presented research aimed at evaluating individual 
acoustic perception to audio stimuli using a wearable device. A 
laboratory-based experimental protocol was conducted to 
expose voluntaries subjects (43 in total) to three different audios.  

EEG data collection was pursued through commercially 
available wearable device. The results partially confirmed 
previous researcher outcomes in the field of acoustic perception 
to audio stimuli, highlighting the reliability of EEG 
measurements through wearable sensor.  

The results showed moderate to substantial correlations 
between subjective reactions to audios and EEG indicators taken 
during audio listening tests. The present study found significant 
differences between the three audio stimuli in terms of increase 
and decrease of specific EEG features. Considering the relative 
frequency distribution of subjective acoustic perception collected 
via questionnaire, A1 was perceived annoying, stressful and with 
neutral loudness, A2 was perceived by almost subjects relaxing  

and pleasant, A3 was categorized as annoying and stressful 
sounds. Those subjective perception found support into 
statistical differences of power of brain waves. Delta power (in 
TP10 and AF8 channels) and Theta TP10 showed higher value 
when subjects were exposed to A1 suggesting the hypothesis that 
those brain waves are modulated by annoying perception of 
audio stimuli, relative alpha had higher value under pleasant 
sound exposure (A2), TA in alpha frequency band was higher 

Table 5. Pearson’s correlation coefficients and p-values between audio 
metrics and EEG features. Significance level alpha = 0.05. 

Audio 
Metrics 

Delta  
AF8 

Delta  
TP10 

Theta  
TP10 

Relative 
Alpha TP10 

TA  
Alpha 

(R-value) 

CNT +0.11 -0.08 -0.09 -0.01 0.25 

SPR -0.07 -0.04 -0.05 -0.05 0.23 

SKW 0.26 0.32 0.28 -0.27 -0.16 

KUR 0.27 0.33 0.28 -0.27 -0.18 

ENT -0.14 -0.12 -0.12 0.02 0.27 

FLX 0.27 0.33 0.29 -0.26 -0.20 

(p-value) 

CNT 0.2287 0.3605 0.3123 0.8845 0.0040 

SPR 0.4145 0.6615 0.5493 0.5844 0.0082 

SKW 0.0027 0.0002 0.0014 0.0019 0.0732 

KUR 0.0020 0.0002 0.0011 0.0023 0.0413 

ENT 0.1185 0.1730 0.1634 0.8060 0.0022 

FLX 0.0017 0.0002 0.0010 0.0032 0.0203  

  

 
Figure 6. Histograms of Dwass_Seel_Critchlow-Fligner pairwaise comparison. 

The 𝑓̅ and 𝑢𝑓 of EEG statistically significant by contrast A1-A2, A1-A3, A2-A3. 
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under A3 audio exposure (annoying/stressful) suggesting right 
lateralization of brain in processing sound content and a relation 
with negative emotion due to the presence of background noise 
in A3. 

The present work is a pilot study for understanding the 
applicability of EEG measures for acoustic perception evaluation 
and it has demonstrated the potential of EEG measurements to 
increase objectivity in auditory perception. This methodology 
can be applied across various fields, for instance, in the 
evaluation of jurors’ involvement in the acoustic jury tests and 
judicial domain, as demonstrated in this paper. Other application 
scenarios can be emotion recognition under acoustic stimuli or  
those where the subject cooperation is limited, such as cases 
involving degenerative diseases. 

Wearable EEG measures in jury tests have both advantages 
and limitations. Understanding these can help determine the 
suitability and potential of using EEG technology in this context.  

In terms of advantages, it is important to underline the fact 
that wearable EEG devices are non-invasive and can be relatively 
comfortable to wear, minimizing interference with jurors' normal 
activities. EEG can provide biometric data that may be useful for 
assessing juror engagement, stress levels, or emotional reactions 
during trials. EEG provides objective data on brain activity, 
which can complement subjective assessments of juror 
behaviour and decision-making.  

Nevertheless, wearable EEG devices typically have limited 
spatial resolution compared to traditional EEG setups, which 
can impact the precision of data collected. EEG measurements 
can be affected by external factors such as noise and 
electromagnetic interference, potentially leading to data 
inaccuracies. Individual differences in baseline brain activity and 
electrode placement can introduce variability in EEG data, 
making it challenging to establish consistent benchmarks. An 
important future step will be to improve the quality of EEG 
signals acquired from wearable devices with a limited number of 
electrodes. This can be achieved by means of optimization of 
signal processing for data cleaning and artifact removal. Future 
works should also investigate methodologies for EEG and audio 
feature extraction and correlation, for example, more advanced 
statistical techniques and machine learning. 

Another issue is the choice of a compatible earphone and 
EEG wearable device which became crucial in term of 
comfortable wearability for jurors, to ensure that they do not 
interfere with jury members' ability to concentrate or deliberate 
effectively. Also, these aspects have room for further 
improvements and can be object of future works. 

Implementing EEG technology in the context of jury tests 
requires careful consideration of these limitations to addressing 
associated challenges. Furthermore, additional research would be 
useful in the study for continuously refining the use of EEG 
technology in jury tests based on feedback, research findings, and 
technological advancements.  
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