
ACTA IMEKO 
ISSN: 2221-870X 
June 2024, Volume 13, Number 2, 1 - 15 

 

ACTA IMEKO | www.imeko.org June 2024 | Volume 13 | Number 2 | 1 

Deep learning methodologies based on metaheuristics for 
predictive engine maintenance 

Pradeep Kumar D1, Sowmya B J2, Anita Kanavalli1, Supreeth S3, Shruthi G3, Rohith S4 

1 Department of Computer Science and Engineering, M S Ramaiah Institute of Technology, Bengaluru, India  
2 Department of Artificial Intelligence and Data Science, M S Ramaiah Institute of Technology, Bengaluru, India  
3 School of Computer Science and Engineering, REVA University, Yelahanka, Bengaluru, India  
4 Department of Electronics & Communication Engineering, Nagarjuna College of Engineering & Technology, Bengaluru, 562110, India  

 

 

Section: RESEARCH PAPER  

Keywords: Predictive maintenance; deep learning; metaheuristic algorithms; remaining useful life 

Citation: Pradeep Kumar D, Sowmya B J, Anita Kanavalli, Supreeth S, Shruthi G, Rohith S, Deep learning methodologies based on metaheuristics for 
predictive engine maintenance, Acta IMEKO, vol. 13 (2024) no. 2, pp. 1-15. DOI: 10.21014/actaimeko.v13i2.1667  

Section Editor: Laura Fabbiano, Politecnico di Bari, Italy  

Received September 2, 2023; In final form April 17, 2024; Published June 2024 

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

Corresponding author: Supreeth S, e-mail: supreeth1588@gmail.com  

 

1. INTRODUCTION 

Aircraft engines are critical components of any aircraft, and 
their failure can result in significant safety risks, operational 
disruptions, and financial losses for airlines and their customers. 
Therefore, implementing a robust predictive maintenance 
programme is crucial ensuring aircraft engine reliability and 
safety, in the aviation sector, predictive maintenance is an 
important procedure, particularly when it comes to aircraft 
engines.  

It involves the use of advanced technology, data analytics, and 
machine learning algorithms to predict potential issues with an 
engine before they occur, enabling maintenance teams to 
proactively address the problem before it causes unplanned 
downtime or a catastrophic failure. In this study, we demonstrate 
the design and improvement of a deep learning model that can 
precisely forecast the Remaining Useful Life (RUL) of aircraft 
engines and classify the usability of an engine, with meta-
heuristic methods to optimize the model's performance. Meta-

heuristic techniques find the optimal set of hyperparameters and 
architecture for the deep learning model, which will improve its 
performance on the task of predictive maintenance. Currently, 
fault diagnosis models are being developed to identify the root 
cause of failures and enable maintenance teams to address the 
underlying issues, as are decision support systems that can 
provide real-time recommendations based on sensor data and 
other parameters. With this model, the novelty presents itself in 
the combination of a metaheuristic algorithm and a deep learning 
framework, which, to the authors’ knowledge, has not been 
undertaken till date for both tasks of engine viability 
classification and remaining useful life prediction. Secondly, this 
model provides a scheme for feature selection to optimize the 
results better while reducing the computational time. 
Furthermore, the model is generalized to allow for its extension 
to other machines whose remaining useful life is to be estimated 
using a host of sensor measurements like home appliances or 
motor vehicles.  

ABSTRACT 
Recently, there has been an increase in concerns about the accessibility, security, and reliability of aviation engines. To prevent engine 
failures which can be quite serious, it is important to take effective measures. The objective is to create a deep learning simulation that 
can accurately predict an aircraft engine's viability and remaining usefulness using meta-heuristic techniques to improve its 
performance. These techniques discover the optimal hyper parameters and architecture for the deep learning model. This will help 
minimize downtime and maintenance costs for the aircraft fleet by handling complex data such as sensor readings and past maintenance 
records while also adapting to changing conditions over time. Since training deep learning models can be computationally intensive, 
meta-heuristic methods increase their robustness. The aim is to enhance performance by increasing the accuracy rate and reducing 
mean squared losses of multiple deep learning methods used for predicting aircraft engine maintenance by hybridizing them with 
metaheuristic algorithms. 
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2. RELATED WORKS 

The work literature survey consists of three phases. The first 
phase involved examining references on the use of deep learning 
frameworks to aircraft engine predictive maintenance. Second 
phase concentrated on the use of metaheuristic algorithms in 
conjunction with deep learning frameworks for this task. In the 
third and final phase, the researchers searched for papers on the 
most important features to consider and challenges encountered 
during predictive maintenance. 

The inspiration for using metaheuristic algorithms in 
conjunction with Deep Learning techniques for Predictive 
Maintenance of Aircraft engines stemmed from the research 
outlined in [1]. The paper proposes an improved approach for 
identifying engine issues in aeroplanes using a combination of 
the Grasshopper Optimization Algorithm (GOA) and the Echo 
State Network (ESN). The proposed approach involves training 
an ESN, a kind of recurrent neural network with a track record 
of success in time-series prediction challenges, on engine 
vibration data to predict potential faults. Then, the reservoir size, 
spectral radius, and feedback scaling of the GOA, a metaheuristic 
optimisation algorithm inspired by the swarming activity of 
grasshoppers, are employed to optimise the ESN's parameters. 
The proposed approach achieved an average prediction accuracy 
of 97.9 %, which is higher than the accuracy achieved by Back 
Propagation Neural Network (BPNN) (94.4 %), Support Vector 
Machines (SVM) (93.1 %), and Decision Tree (DT) (90.3 %). 
The ability of the GOA to identify the best parameters for the 
ESN is credited by the authors as the reason for the suggested 
approach's increased performance. In conclusion, the authors 
recommend the use of the proposed approach as an effective 
tool predicting engine faults in real-world applications.  

The paper [2] showcases the development of a model 
comprising two deep learning techniques to accomplish the task 
of estimating an aircraft engine’s remaining usable life, which is 
the number of flights an engine can take before it is deemed unfit 
to fly. The need for combining CNN (Convolutional Neural 
Network) and LSTM (Long Short-Term Memory) - CLSTM, is 
that the former has shown promise in extracting useful features, 
while the latter has showcased its strength in dealing with time 
series data similar to the ones used in Predictive Maintenance 
tasks. The authors thus conclude that the proposed CLSTM 
model is successful in learning the historical data well and using 
it to accurately predict the useful residual life of an aircraft 
engine. As a future scope, they have mentioned working on the 
design of an energy efficient-based approach.  

In [3], provides an insight into understanding the trends and 
challenges of our problem statement. The paper covers an 
outline of the various machine learning, approaches used in 
predictive maintenance, covering more complex methods like 
deep learning and reinforcement learning as well as more 
conventional methods. The paper also discusses the challenges 
associated with predictive maintenance for aircraft engines, the 
main challenges being the significant amount of data generated 
by the engines, the need for a comprehensive understanding of 
the complex mechanisms of the engines, and lastly, those 
concerning data quality, data imbalance, feature selection, and 
the interpretability of models. The authors recommend the 
development of hybrid models that combine different machine 
learning strategies to increase the accuracy and reliability of 
predictive models, incorporating additional sources of data, such 
as maintenance records, weather data, and flight data, and lastly, 
developing standardized frameworks to evaluate the 

performance of such models, as steps to improve the current 
trends.  

To get a feel for feature selection for this particular problem 
statement, [4] was consulted. In order to define the needs for 
Prognostics and Health Management (PHM) systems that 
support predictive maintenance in the aviation industry, the 
research study suggests a systematic methodology. PHM systems 
work to increase the safety and dependability of aircraft by 
anticipating and detecting issues, thereby enabling maintenance 
providers to take preventive measures. The proposed 
methodology consists of six phases: problem definition, 
stakeholder analysis, data collection, requirement identification, 
requirement validation, and requirement prioritization. The 
authors provide detailed guidelines for each phase, including the 
methods and tools that can be used to facilitate the process. The 
paper presents a case study that identifies various requirements, 
including the need for real-time monitoring, fault detection, and 
decision support tools. In conclusion, the authors recommend 
that the methodology proposed can be applied to other aviation 
systems and facilitates the development of effective PHM 
systems that improve the safety and reliability of aircraft 
operations. 

In [5], provides an overview of current work on aircraft 
hydraulic systems and engine predictive maintenance and 
identifies emerging trends and challenges. By studying aircraft 
hydraulic data, a machine learning strategy has been applied for 
condition monitoring. The dataset consists of actuation system 
and elevator position information and is monitored to identify 
significant changes that may be potential indicators of ongoing 
failures. The problem considered in the experiment was to detect 
error patterns and trigger anomaly alerts when the liquid level 
reached critical values. The results of the window-based pattern 
detection for prognostics are presented in the study in order to 
increase accuracy and predict faults before they arise. 
Additionally, an LSTM-based prognostic technique for 
predicting aircraft faults is presented in this study. The model can 
predict engine behaviour with accuracy. 

In the paper [6], for a fleet of aircraft, a dynamic maintenance 
architecture is suggested where component RUL prognostics are 
frequently updated. To produce RUL prognostics, a CNN is 
suggested. To schedule maintenance on aircraft, an integer linear 
programme is employed. The CNN model is applied to each of 
the datasets, and the obtained RUL prognostics are evaluated 
using the Root Mean Squared Error (RMSE) metric. 

The maintenance task schedule would start as soon as the 
alarm is triggered. The maintenance framework parameters are 
determined using a genetic algorithm. Long-term statistics 
indicate that only 7.4 % of the overall maintenance expenditures 
are attributable to engine problems. The proposed maintenance 
planning framework can be easily applied to other aircraft 
components. 

In [7], serves as a state-of-the-art overview for identifying new 
solutions being applied to predictive maintenance issues and 
plotting the present landscape of the field. The purpose of this 
overview is to identify and highlight future research encounters 
and prospects in this area. This is extended by identifying which 
predictive models and tools have been applied to these and other 
datasets in various PdM applications. Outlines of different 
projects like the Distributed Aircraft Maintenance Environment 
(DAME), UPTIME and in order to highlight the expansion in 
both academia and industry, PdM uses industrial services. The 
difficulties that researchers in this subject will face are 
imbalanced datasets, high dimensionality, industrial challenges 
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such as start-up costs, and learning barriers. Therefore, PdM can 
be optimized over alternative maintenance strategies to 
maximize the RUL of aircraft components. These enhancements 
which further automate and optimise these processes, allowing 
aircraft operators and manufacturers to significantly cut 
maintenance costs. 

In order to discover operational factors, a data-driven strategy 
is used to collect historical operational and maintenance data 
from an airline operator. Reliability estimates are produced using 
both time-independent and time-dependent Proportional 
Hazard Models (PHMs), strategies which include operational 
parameters as covariates. The proposed methodology [8] was as 
follows: data import for fleet-wide maintenance and flights; flight 
identification to determine which flights contributed to the 
unexpected component failure, identifying operational factors by 
ultimate value/maximum difference analysis, reliability 
modelling and future predictions. According to the results of the 
analysis of historical data, the frequency of unscheduled 
occurrences can be decreased by adopting new maintenance 
schedules developed from the proposed dependability models, 
and that they which outperform accuracy-focused time-based 
models. 

The strategy proposed in this paper [9] is a framework for 
incorporating probabilistic RUL prognostics based issue was 
formulated while maintenance operations are initiated in 
response to estimations of the RUL distribution. These RUL 
distribution estimations enable more efficient maintenance 
planning. The Deep Reinforcement Learning (DRL) technique 
offers threshold-free, adaptive, and flexible maintenance 
planning as a result. Unlike the case where engines are changed 
at the mean-estimated-RUL, the overall maintenance cost is 
decreased by 29.3 % when using the DRL strategy. The engines' 
wasted life is also kept to just 12.81 cycles, and 95.6 % of 
unscheduled maintenance is avoided. 

The proposed strategy [10] includes all steps necessary to 
carry out the RUL prediction with ambiguity and decision-
making for maintenance. A LUE model (Local Uncertainty 
Estimation) with bidirectional long-short-term memory (Bi-
LSTM) was developed to quantify the uncertainty of RUL 
prediction considering the prediction aspect. By linking the built-
in RUL distribution to maintenance-related costs, the 
Maintenance Cost Rate (MCR), or maintenance cost per unit of 
operational time, a function is created to address the post-
prediction issue. The timing pertaining to maintenance activities 
can be chosen by maximising the MCR function with a focus on 
the operational management's economic requirements. NASA's 
aero-engine deterioration dataset and experimental findings 
demonstrate the viability of the suggested data-driven technique 
of predictive maintenance Also, three options for the cost 
structure are offered to demonstrate the adaptability of the 
suggested technique. All sensor values are normalised using the 
Z-score standardisation method into a new data set with a 
variance of one and an average value of zero. The outcomes of 
95 % confidence level online interval and point prediction for 
RUL. 

This study [11] suggests using GRU (Gated Recurrent Unit) 
to identify RUL on aircraft engines in order to conduct a 
preventive maintenance strategy. The main takeaway from the 
experiment's findings is that a new method can be developed that 
has a faster prediction process than other methods, a more 
straightforward method of calculation for determining the epoch 
value, and results that are close to the original value in terms of 
both economics and RUL prediction using GRU. Long short-

term memory (LSTM) neural networks, which are specialised in 
extracting sensor temporal information, are one of the best and 
most well-liked DL models to produce a prediction, especially to 
identify PdM on aviation engines. The training period of LSTM 
is substantially longer than that of other algorithms, despite the 
fact that its accuracy is higher than that of other algorithms. It 
remains difficult to figure out how to shorten training time while 
still guaranteeing great accuracy. One particular instance of the 
LSTM is the gated recurrent unit (GRU). Compared to LSTM, it 
requires less training time. In this paper, the GRU method uses 
200 epochs and a minimal amount of compute to accurately 
forecast the estimated RUL of the C-MAPSS dataset.  

In this research [12], an algorithm may be used to forecast the 
RUL. This solution has a substantially higher predictive power 
than earlier studies that used different methods. Only five 
variables had the greatest influence on the RUL, according to an 
examination of the variables' respective weights acting as 
predictors. In this study, four distinct kernel types linear, 
polynomial, radial basis, and sigmoidal were tested for the SVM 
model's training. The parameters of the hyper parameters and the 
selection of the ideal kernel function for each problem are crucial 
stages in the SVM model's training process. A substantial public 
database was used to test the method's validity, and the outcomes 
were compared to those obtained using a vector auto-regressive 
moving average (VARMA) model. The results reveal that the 
suggested model outperformed the VARMA model by a wide 
margin. 

The paper proposes a framework [13] for foreseeing 
incredibly uncommon failure events in aircraft maintenance 
using DRL. The proposed framework uses historical 
maintenance data to identify critical variables that affect the 
occurrence of rare failures and to provide recommendations for 
resource allocation for effective maintenance strategies. 
According to the authors, the proposed DRL-based framework 
can be extended to other industries, such as healthcare, 
transportation, and energy, to improve maintenance practices 
and prevent catastrophic events. In conclusion, the study 
demonstrates the feasibility and effectiveness of using DRL for 
anticipating very uncommon failure events in aircraft 
maintenance. The framework includes a reward function that 
promotes the DRL algorithm to learn how to prioritize variables 
and allocate resources for maintenance tasks. The authors 
compare the proposed DRL performance approach with 
traditional machine learning models and show that the DRL 
approach outperforms these models in predicting rare failures.  

In this article, we present an integrated machine learning 
model [14] for predicting rare aircraft component failures using 
log-based datasets. The proposed tactic combines multiple 
machine learning algorithms such as clustering, classification, 
and regression to predict the RUL of aircraft components and 
identify rare failure occurrences. The study uses a dataset 
containing maintenance logs of multiple aircraft components for 
the training and testing of an integrated machine learning model. 
The authors filter meaningful features, use clustering algorithms 
to group similar components, and then use classification 
algorithms to predict the probability of failures. Finally, they use 
regression algorithms to estimate each component's RUL and 
provide maintenance recommendations. The results indicate that 
the integrated machine learning tactic is superior to other models 
at making predictions about the RUL of aircraft components and 
identifying rare failures. According to the authors, the proposed 
model can be used to optimize maintenance practices and reduce 
the occurrence of catastrophic events in aviation.  
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A framework for prognosis and health management (PHM) 
[15] of aircraft is proposed in the study and uses a number of 
deep learning techniques. The suggested methodology seeks to 
determine the health state of aircraft components and anticipate 
their RUL based on sensor data. To extract features from sensor 
data and forecast the RUL of aeroplane components, the authors 
mix different deep learning methods, including Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
and auto encoders. The proposed framework is assessed using a 
variety of performance metrics, including mean absolute error 
(MAE) and Root Mean Square Error (RMSE), and alternative 
machine learning models, including decision trees and Support 
Vector Machines (SVMs), are compared. The findings 
demonstrate that the suggested framework performs better in 
forecasting the RUL of aircraft components than the other 
models. The authors also propose an approach using auto 
encoders to learn the components' typical behaviour and spot 
irregularities in their sensor data. The authors evaluate the 
approach using a subset of the dataset and show that it can 
accurately detect anomalies and identify the health status of 
components.  

The paper proposes an intelligent predictive maintenance 
approach [16] for aeroengines using a digital twin-based 
framework. A digital twin is a virtual replica of a physical system 
that simulates its behaviour in real-time and can be used for 
various applications, including predictive maintenance. The 
framework includes three main components: a digital twin, a 
health assessment module, and a predictive maintenance module. 
The study evaluates the proposed approach using a dataset 
containing sensor measurements of aeroengines. The authors 
train and test the proposed framework using the dataset and 
evaluate its performance in forecasting the RUL of aeroengines. 
The findings demonstrate that the suggested method may 
produce maintenance suggestions and properly anticipate the 
RUL of aeroengines. The authors also conducted a sensitivity 
analysis to assess the robustness of the suggested strategy under 
different levels of data noise and show that it is resilient to noise 
in the sensor data. The authors advise that the suggested strategy 
can potentially improve maintenance practices in aviation and 
recommend further research to optimize its performance. 

Kernel parameter settings in the SVM training procedure have 
a significant impact on regression accuracy which is a step in this 
method of optimization [17]. The model used only needs to 
know the present state of the same data; it does not need to be 
aware of the aircraft engine's previous status. This approach 
offers the benefit of robustness of system against potential 
memory register failures. In order to reduce costs associated with 
RUL prediction, the Particle Swarm Optimization (PSO) method 
was effectively applied in this study to optimize the 
hyperparameters corresponding to the best SVM model for the 
RUL prediction from the other observed quality characteristics. 
This research has produced a hybrid PSO-RBF-SVM-based 
model. The findings show that the generalisation capability 
obtained with just the SVM-based regressor is considerably 
worse than that obtained with the PSO-SVM regression method. 
A coefficient of determination of 0.9034 was discovered using 
experimental data and this hybrid PSO-RBF-SVM-based model. 
This predictive model's lack of dependence on knowledge of the 
engine's previous operational states is one of its major 
advantages. 

In this article [18], a comparative study of existing machine 
learning algorithms for predicting the remaining service life of 
aircraft turbofan engines is performed. The turbofan engine 

dataset from NASA's Prognostics Data Repository was used to 
create the machine learning model. The errors' root mean squares 
were displayed, and it was found that the random forest method 
produced the best outcomes. The random forest approach allows 
a large number of observations to participate in the prediction 
while simultaneously capturing the variation of several input 
variables. It was found that all ten algorithms consistently 
generated proportionate accuracy for the various algorithms put 
to the test.  

The paper proposes a method for predicting [19] the 
remaining useful life (RUL) of machinery using an Artificial Bee 
Colony (ABC) algorithm optimized Echo State Network (ESN). 
The proposed method consists of two main steps. In the first 
step, the ESN is used to extract the relevant features from the 
raw sensor data. The extracted features are then used to predict 
the RUL of the machinery using the ABC algorithm in the 
second step. To optimize the hyper parameters of the ESN, the 
ABC algorithm is used improve the accuracy of the RUL 
prediction. The proposed method is validated using a turbofan 
engine dataset from the Prognostics Data Repository. The results 
show that the proposed method outperforms other existing 
methods for RUL prediction, even in terms of computational 
efficiency and real-time implementation. This method can 
potentially be applied to other datasets to predict the RUL of 
machinery and has potential for use in industrial settings. 

The paper proposes a technique for predicting [20] the RUL 
of machinery using Recurrent Neural Networks (RNNs). The 
proposed method is based on a time-series analysis of the sensor 
data and the use of RNNs to predict the RUL. The paper 
compares the proposed RNN method with other existing 
methods for RUL prediction, including the Kalman filter and the 
support vector machine. The results depict that the RNN 
strategy outperforms the other methods in terms of accuracy, 
robustness. Handling missing data and addressing how the 
sensor data and RUL have a non-linear connection. The paper 
also discusses the practical issues associated with implementing 
the RNN method in an industrial setting, which requires vast 
amounts of training data, the challenge of selecting appropriate 
hyper parameters, and the potential for overfitting. The method 
has the potential to be used in industrial settings for predictive 
maintenance, however, more investigation is required to gauge 
its efficacy on other datasets and address practical 
implementation issues. 

The paper [21] proposes a method for predicting the 
remaining useful life (RUL) of machinery using deep 
convolutional neural networks (DCNNs). The proposed method 
involves training the DCNNs on sensor data to predict the RUL 
of the machinery. The features are automatically extracted from 
the sensor data by the DCNNs and utilised to forecast the RUL. 
The method is evaluated using a dataset from the Prognostics 
Data Repository, and the results show that the proposed method 
outperforms other existing methods for RUL prediction, 
including long short-term memory networks, deep belief 
networks, and support vector regression. The paper also 
discusses the limitations of the proposed method, which require 
vast amounts of training data, the complexity of deciphering the 
DCNNs' output, and the potential for overfitting. The paper 
suggests several ways to address these limitations, including the 
use of transfer learning, visualization techniques, and 
regularization techniques. The proposed method has the 
potential to be used in industrial settings for predictive 
maintenance, but further research is needed to address the 
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limitations of the method and evaluate its effectiveness on other 
datasets [22]. 

The proposed method [23] utilizes an improved version of 
the C-Loss Extreme Learning Machine (ELM) algorithm. The 
authors show that their method outperforms traditional machine 
learning techniques in terms of precision and computational 
effectiveness, including Support Vector Regression and Random 
Forest Regression. Furthermore, the authors demonstrate the 
practical usefulness of their approach by applying it to real-world 
scenarios. They provide an example of using their RUL 
prediction model to perform proactive maintenance on a fleet of 
aero engines, which can help reduce downtime and maintenance 
costs. Overall, the approach is said to have important 
implications for the aviation industry and offers a promising 
alternative to traditional machine learning techniques to help 
optimize maintenance and repair schedules for aero engine fleets. 

The next step in developing an effective model for predicting 
the residual useful life of an aero engine was to combine more 
than one deep learning algorithm [24]. The proposed method 
uses the proposed method uses a combination of CNN and 
bidirectional Long Short-Term Memory (LSTM) networks to 
analyze time-series sensor data and predict possible machine 
failures. The proposed approach involves preprocessing raw 
sensor data using a CNN, which is then fed into a bi-directional 
LSTM network, to model the long-term temporal dependencies 
between the different sensor signals. This allows the network to 
effectively capture the complex dynamics of machine health, 
including both short-term and long-term changes in sensor 
signals. The authors demonstrate the success of their strategy 
using a dataset of vibration signals from rotating machinery, 
collected under different operating conditions and with different 
fault types. They compare their proposed method with various 
other machine learning techniques that include decision trees, 
support vector machines (SVM), and random forests. According 
to the findings, the suggested strategy performs better in terms 
of accuracy, sensitivity, and specificity than these other methods. 
They also evaluate the robustness of their proposed approach to 
noisy data, by introducing various levels of noise to the vibration 
signals. The results depict that the proposed tactic is more robust 
to noise than the other machine learning techniques. 

Another approach based on deep learning for predicting the 
remaining useful life of aircraft engines can be seen in [25]. It 
proposes a novel approach for predicting the RUL of engineered 
systems using vanilla LSTM neural networks. An additional aim 
is to address the issues of RUL estimation in engineered systems, 
such as limited data availability and the need for accurate and 
timely predictions. The proposed approach involves using a 
vanilla LSTM network to model the RUL of technical systems 
using standard LSTM networks. The authors evaluate the 
effectiveness of their proposed approach using a dataset of 
engine RUL, which includes sensor measurements and 
maintenance records. They compare the performance of their 
method to several other machine learning strategies, such as 
Support Vector Regression (SVR) and Random Forest 
Regression (RFR).  

The findings show that the proposed strategy outperforms 
the other machine learning techniques with regards to accuracy 
and computational effectiveness. They note that the proposed 
method may not be suitable for all types of engineered systems, 
and that additional data pre-processing and feature engineering 
may be necessary in some cases. They also suggest that further 
research could explore the use of more complex LSTM 
networks, as well as the integration of other types of data. The 

outcomes of a case study show how helpful this technique is in 
practise for real-world applications and hint that it can be a useful 
tool for enhancing the safety and dependability of engineered 
systems across a range of industries. 

The Table 1 shows the summary of the different 
methodologies. 

3. DESIGN AND IMPLEMENTATION 

3.1. Dataset definition and processing 

The data for this project has been taken from a publicly 
available dataset repository hosted by NASA's Prognostics 
Centre (National Aeronautics and Space Administration). This is 
a collection of datasets donated by universities, institutions, and 
companies. The data repository attentions exclusively on forecast 
datasets, i.e., datasets that can be used to develop forecasting 
algorithms. Most of these are time series data from the previous 
normal state to the failed state. 

A tool for simulating realistic data for big commercial 
turbofan engines is the Commercial Modular Aero-Propulsion 
System Simulation (C-MAPSS) was used to simulate engine 
degradation during the dataset collection process. This records 
multiple sensor channels to track the evolution of faults. Every 
flight is made up of a number of different flight circumstances, 
each with a sufficient linear transition time that allows the engine 
to switch from one to the next. The parameters for each flight 
are the flight circumstances, health indicators, measurement 
temperatures, and pressure measurements. A flight is a complete 
flight recording sampled at 1 Hz. There were problems with the 
intake engine fan, the high-pressure turbine, low pressure 
turbine, low pressure compressor, and high-pressure 
compressor. 

The dataset is organized as csv files having the following 
columns - unit number (to denote the flight engine being 
sampled), cycles (to indicate the flight cycle number for which 
the data is provided), 3 operational settings (which have an 
impact on the engine performance), 21 sensor measurements 
hosting a variety of temperature measurements, pressure 
measures, and health indicators. 

The concepts of variance threshold and correlation 
coefficient analysis are used to select features; for the former, we 
eliminate parameters whose values appear to have a nearly 
constant trend across all flight cycles of operation, and for the 
latter, we select any one column from a pair of closely correlated 
parameters. As seen in Figure 1, for the sensor measurements, 
we plotted the values of their standard deviation across all the 
rows of the dataset. Values that were extremely close to the x-
axis were discarded. Thus, here we discarded sensor 
measurements 1, 5, 6, 16, 18 and 19. 

 

Figure 1. Plot of standard deviations of sensor values for feature selection.  
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Table 1. Summary of the different methodologies. 

Paper 
Reference 

Key Focus Methodology and Algorithms Results 
Recommendations and 
Conclusions 

[1] 
Predictive Maintenance using GOA 
and ESN 

Train ESN on engine vibration 
data; Optimize using GOA 

Achieved 97.9 % prediction 
accuracy; Outperformed BPNN, 
SVM, DT 

Recommends the proposed 
approach for real-world 
applications 

[2] 
Remaining Usable Life Prediction 
using CNN and LSTM 

Develops CLSTM model for 
estimating engine's remaining 
usable life 

Successful learning of historical 
data; Future scope includes 
energy-efficient approach 

 

[3] 
Trends and Challenges in 
Predictive Maintenance 

Review of ML approaches; 
Challenges in aircraft maintenance 

Recommends hybrid models, 
additional data sources, and 
standardized frameworks 

 

[4] 
Feature Selection for Prognostics 
and Health Management 

Systematic methodology for PHM 
system needs; Case study 

Guidelines for PHM system 
development; Applicable to other 
aviation systems 

 

[5] 
Aircraft Hydraulic System 
Monitoring and LSTM Prognostics 

Machine learning for condition 
monitoring; LSTM for prognostics 

LSTM-based model accurately 
predicts engine behaviour 

Overview of aircraft hydraulic 
systems and predictive 
maintenance 

[6] 
Dynamic Maintenance 
Architecture using CNN 

CNN for RUL prognostics; ILP for 
maintenance scheduling 

CNN-based RUL prognostics 
evaluated using RMSE metric 

Suggested maintenance planning 
framework for aircraft 
components 

[7] 
State-of-the-Art Overview of 
Predictive Maintenance 

Overview of projects and 
challenges; Optimization of PdM 

Challenges include imbalanced 
datasets and high dimensionality 

Optimization of PdM over 
alternative maintenance strategies 

[8] 
Operational Factors and Reliability 
Estimates 

Data-driven strategy using PHMs; 
Improved maintenance schedules 

Improved reliability estimates 
decrease unscheduled occurrences 

Methodology applied to decrease 
unscheduled occurrences 

[9] 
DRL for Maintenance Planning DRL strategy for maintenance 

planning; Improved overall cost 
DRL strategy decreases overall 
maintenance cost by 29.3 % 

Efficient maintenance planning 
based on probabilistic RUL 
prognostics 

[10] 
RUL Prediction with Ambiguity and 
Decision-making 

Bi-LSTM for RUL prediction with 
ambiguity; Maintenance cost 
function 

Method considers uncertainty and 
maintenance-related costs 

Adaptive maintenance timing 
based on economic requirements 

[11] 
GRU for Preventive Maintenance GRU for RUL prediction; Faster 

prediction process 
GRU method has faster prediction 
process and simpler calculation 

Challenges in shortening LSTM 
training time while maintaining 
accuracy 

[12] 
Improved SVM Model for RUL 
Prediction 

SVM model with hybrid PSO-RBF-
SVM; Outperforms VARMA 

Proposed model achieves high 
coefficient of determination 

SVM model outperforms VARMA 
model 

[13] 
DRL Framework for Anticipating 
Rare Failure Events 

DRL-based framework for rare 
failure events; Outperforms 
traditional models 

DRL approach outperforms 
traditional models in predicting 
rare failures 

DRL-based approach applicable to 
various industries 

[14] 
Integrated Machine Learning 
Model for RUL Prediction 

Clustering, classification, and 
regression for RUL prediction 

Integrated model superior in 
predicting RUL and identifying rare 
failures 

Model optimization for 
maintenance practices in aviation 

[15] 
PHM Framework using CNNs, 
RNNs, and Autoencoders 

Framework for PHM using deep 
learning techniques 

Proposed framework outperforms 
other models in forecasting RUL 

Autoencoders for anomaly 
detection in sensor data 

[16] 
Digital Twin-based Predictive 
Maintenance 

Predictive maintenance using 
digital twin; Robust to noise 

Proposed approach produces 
maintenance suggestions and 
accurately predicts RUL 

Potential improvement of 
maintenance practices in aviation 

[17] 
SVM Training with PSO 
Optimization 

PSO optimization for SVM 
regression parameters 

Hybrid PSO-RBF-SVM-based model 
outperforms SVM-based regressor 

Robust regression accuracy with 
PSO optimization 

[18] 
Comparative Study of ML 
Algorithms for Turbofan Engines 

Comparative study for RUL 
prediction; Random Forest tops 

Random Forest method produces 
best outcomes; Consistent 
accuracy among methods 

Comparative analysis of machine 
learning algorithms for RUL 
prediction 

[19] 
ABC-Optimized ESN for RUL 
Prediction 

ABC algorithm for optimizing ESN; 
Outperforms existing methods 

Proposed method outperforms 
existing methods in RUL prediction 

Real-time implementation 
potential and computational 
efficiency 

[20] 
RNN-based RUL Prediction Time-series analysis using RNNs; 

Outperforms other methods 
RNN strategy excels in accuracy, 
robustness, and handling missing 
data 

Practical challenges include data 
availability and hyperparameter 
selection 

[21] 
DCNNs for RUL Prediction Predicting RUL using DCNNs; 

Outperforms other DL models 
DCNNs outperform LSTM, DBN, 
and SVR in RUL prediction 

Limitations include vast training 
data requirement and complexity 

[22] 
C-Loss ELM Algorithm for 
Improved Predictions 

Improved C-Loss ELM algorithm 
for precision and efficiency 

Outperforms traditional ML 
techniques like SVR and Random 
Forest 

Practical usefulness demonstrated 
in proactive maintenance 

[23] 
LSTM and CNN Combination for 
RUL Prediction 

CNN for preprocessing and LSTM 
for modelling temporal 
dependencies 

Proposed method outperforms 
decision trees, SVM, and random 
forests 

More robust to noise than other 
machine learning techniques 

[24] 
Combining CNN and Bidirectional 
LSTM for Machinery Health 

Combination for analysing time-
series sensor data; Outperforms 
other methods 

Robust to noisy data; Superior 
accuracy, sensitivity, and 
specificity 

Potential for real-world application 
in predicting machine failures 
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Upon generating the correlation graph between 
the parameters, it was observed that sensor 
measurements 9 and 14 were highly correlated, so 
the decision was taken to drop column 14 and 
retain column 9. For the operational settings, it was 
observed that operational setting 3 had a standard 
deviation of 0.0, so it was discarded as well. 

Lastly, a column for the remaining useful life, 
which will serve as the target variable for the 
supervised learning model, had to be included in 
the training dataset for each aircraft cycle, and this 
was obtained by subtracting the maximum cycle 
number for that specific unit from the current cycle 
number.  

The proposed model's architecture model is 
depicted in Figure 2. Collecting and preparing the 
data is the first and most crucial step of machine 
learning. It involves selecting the right data sources, 
cleaning, and transforming the data to ensure its 
quality, and preparing it for the model. The next 
step is to transform the data into a format that can 
be easily analysed and used to train the model. This 
includes techniques such as data normalization. 

The next step involves selecting and extracting 
the applicable characteristics from the data that can 
help in predicting the outcome. Hyper parameter 
tuning is the next step in the workflow that 
involves fine-tuning the hyper parameters of the 
model to achieve better performance. The best 
collection of hyper parameters must be chosen for 
hyper parameter adjustment that minimize the 
error or maximize the accuracy of the model. This 
is done by trying out different combinations of 
hyper parameters and evaluating the performance 
of the model on a validation set. Hyper parameter 
tuning is an iterative process that may require 
several rounds of experimentation and evaluation 
until the optimal set of hyper parameters is found. 
Metaheuristic algorithms are optimization 
algorithms that can efficiently search through large 
and complex search spaces to identify the ideal 
combination of hyperparameters. They are 
particularly useful for hyper parameter tuning 
because they can search through a huge number of 
hyper parameters efficiently and effectively, 
without being trapped in the local optima and can 
optimize the hyper parameters of a complex 
machine learning model without requiring 
knowledge of its internal workings or the 
underlying data distribution. The next step involves 
using the selected model to train on the prepared 
data using the most optimal parameters obtained 
from the last step. The next step involves 
evaluating the trained model's performance on a test set of data. 
Performance metrics for the model include accuracy, precision, 
recall, and F1 score. 

3.2. Whale Optimization Algorithm 

Whales are mammals that can reach to 30 m and 180 tonnes 
in height and weight, respectively. There are multiple species of 
this fascinating creature but the species of interest in this 
algorithm are called Humpback whales. Whales are regarded as 
highly emotional and clever mammals that usually forage in 

communities. The hunting strategy of Humpback whales is 
noteworthy, referred to as bubble-net feeding method, which 
was only observed from the surface of oceans for a long time. 
Summarising their hunting behaviour, the whales dive to a depth 
of about 12 metres and begin making bubbles around the prey in 
a spiral shape, thus tricking the fish into thinking they are trapped 
within a cylindrical column. This column goes on shrinking in 
size until the prey is confined to a spot and the whales can 
consume it. The pseudocode for the same can be seen in 
Pseudocode 1. 

 

Figure 2. Architecture of the proposed model.  
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Pseudocode 1: WOA 

Input: Xi 
Output: X* 

1 Initialize the population Xi(i= 1,2,…n) 
2 Calculate the fitness of each search agent 
3 X* = the best search agent 
4 while(t<maximum_number_of_iterations) 
5       for each search agent 
6      Update a,A,C,l,p 
7      if(p<0.5) 
8             if(|A|<1) 
9                   Update the position of the current 

                   search agent  
10            else if(|A|>1) 
11                    Select a random search agent 

                   (Xrand) 
12                    Update the position of the current search agent 
13            end if 
14       else if(p>0.5) 
15             Update the position of the current search agent  
16       end if 
17       end for 
18       Check if any search agent goes beyond the search space and adjust 

        it 
19       Calculate the fitness of each search agent 
20       Update X* if there is a better solution 
21        t = t+1 
22 end while 
23 return X* 

3.3. Binary Classification of Engine Flight Capability 

a) LSTM model without hybridization 

The first task that the project aims to tackle is that of binary 
classification of an engine’s capability to take flight. This is 
decided based on the parameter of engine’s RUL of the engine 
when compared to a fixed value. The RUL of an aircraft engine 
refers to the time or use that an engine has left before it needs to 
be replaced or overhauled. RUL estimation is an important task 
in aircraft maintenance, as it helps to predict potential engine 
failures and schedule maintenance activities more efficiently.  

If RUL is greater than the specified value, the engine is 
considered airworthy; otherwise, it is classified as unflyable. This 
task of binary classification has been addressed with the help of 
an LSTM model given its strength in the field of analysing time 
series data similar the dataset considered for this study.  

The first step in this process is the selection of a random seed. 
The random seed in an LSTM network determines the starting 
point of the random number generator used during the training 
of the model. By setting a fixed random seed, the LSTM model 
will generate the same sequence of random numbers each time it 
is trained, ensuring that the results are reproducible.  

Setting a random seed is particularly important when 
conducting experiments or comparing different models, as it 
allows researchers to ensure that any differences in performance 
are due to the differences in the models themselves, and not due 
to chance variations in the random initialization of the model.  

This is followed by loading the training, testing, and ground 
truth datasets into the environment. The datasets are such that 
the columns aren’t annotated. Thus, the first pre-processing step 
would be to annotate the dataset. The dataset is then sorted to 
make the analysis easier. The dataset is sorted using the ’id’ 
column, which is a unique identifier assigned to every engine in 
the dataset, followed by a sort based on ’cycle’ column. The cycle 
column is an indicator of which flight cycle’s sensor values have 
been recorded in that particular row. This is followed by a feature 
selection process and the addition of an RUL column. 

Following this procedure for data preprocessing, we create 
two additional labels called ’label1’ and ’label2’ with threshold 
values of w1 and w2, both of which dictate the limits of the RUL 
values to determine the viability of an engine to continue taking 
flights.  

The data must be normalized for smooth analysis of the 
dataset, using the MinMaxScaler normalizer found in Keras. For 
the testing dataset, the ground truth values are available, hence, 
they are merged with it to create a new column called ’max’ for 
each ’id’ which holds the value of the maximum possible flights 
the engine can take before it is decommissioned. The same 
procedure is repeated with the testing dataset as well. The ’label1’ 
and ’label2’ columns created before for the training set are also 
created for the testing set to determine the limits of RUL values 
to determine the viability of an engine to continue taking flights.  

Following this the training and testing data frames are 
separated into the features and target columns. They are 
reshaped into a 3-dimensional array consisting of - the number 
of time steps, the features and the samples.  

The model design chosen here was one consisting of 4 LSTM 
units, 1 Dense unit with a sigmoid activation function, and it was 
created using an Adam optimizer and a binary cross-entropy loss 
function. This generated 325 trainable parameters. The sequence 
length chosen was 50. The performance indicators identified in 
this study are accuracy, recall, accuracy, F1 score, and other 
performance indicators. If the RUL is greater than the specified 
value, the engine is considered efficient; otherwise, it is classified 
as unflyable. 

This task of binary classification has been addressed with the 
help of an LSTM model, given its strength in the field of 
analyzing time series data similar to the dataset considered for 
this study. An algorithm for the same is given in Figure 3. 

The first task that the project aims to tackle is the binary 
classification of an engine’s capability to take flight. This is 
decided based on the residual useful life (RUL) of the engine 
when compared to a fixed value. When RUL exceeds the 
specified value, then the engine is considered capable; otherwise, 
it is classified as incapable of flying.  

This task of binary classification has been addressed with the 
help of an LSTM model given its strength in the field of analyzing 
time series data similar to the dataset considered for this study in 
Pseudo Code 2.  

Pseudo Code 2: LSTM algorithm for binary classification of 
Engine Flight Capability 

Input: Training Datasets 
Output: RUL Values 

1 Perform feature selection  
2 Load the training and test datasets, group by UnitNumber, add a 

RUL column. 
3 Create dataframes for training and testing as well as a dataframe of 

true RULs for testing units. 
4 Scale the features in the training and testing datasets. 
5 Define the sequence length and feature columns to be used in 

generating the training and test data. 
6 Prepare the training data into a 3D numpy array with the shape of 

(samples, time steps, features). 
7 Prepare the training labels into a 1D numpy array. 
8 Prepare the test data into a 3D numpy array with the shape of 

(samples, time steps, features). 
9 Define a Sequential model with LSTM layer(s), followed by Dense 

layer(s) and Activation layer(s). 
10 Compile the model with RMSprop or Adam optimizer. 
11 Fit the built-in model using batch size and epochs to the training set 

of data. 
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12 Using the evaluate() method, assess the model against the test set 
of data. 

13 Apply the predict() procedure to each unit in the test data set to 
determine the RUL. 

14 Return the predicted RUL values in a pandas DataFrame with 
corresponding unit numbers. 

b) LSTM model with hybridization 

The previous approach of just using LSTM alone for the 
purpose of deciding the viability of an engine was not up to the 
required accuracy levels. Thus, to further improve the 
performance of this classification model it was identified that the 
task of hyperparameter tuning was necessary.  

Hyperparameter tuning is an essential part of developing 
machine learning models. Hyperparameters are values that are 
set before training a model, and they affect the behaviour of the 
model during training. For instance, the hyperparameters in a 
LSTM model, the hyperparameters could include the number of 
covert units, learning rate, dropout rate, the number of epochs, 
and so on.  

Finding the best hyperparameters for an LSTM model can be 
challenging because there are often many different 
hyperparameters to optimize, and the search space can be vast. 
Grid search and random search are two traditional methods of 
hyperparameter tuning. Grid search involves defining a set of 
hyperparameters to be tested, and then training the model for 
each combination of hyperparameters. This method can be time-
consuming, and it becomes computationally expensive for high-
dimensional search spaces. Random search, on the other hand, 
selects hyperparameters at random from a given distribution. 
This method is less computationally expensive than grid search, 
but it can still be time-consuming, especially when searching for 
optimal hyperparameters.  

Metaheuristic algorithms are a family of optimization 
algorithms that can be used to solve complex optimization 
problems like hyperparameter tuning. These algorithms are 
inspired by natural processes such as evolution, swarm 
behaviour, and annealing. They are designed to explore the 
search space efficiently and find optimal solutions.  

One significant advantage of using metaheuristic algorithms 
for hyperparameter tuning of LSTM models is their ability to 
explore the search space efficiently. In contrast to traditional 
methods such as grid search and random search, metaheuristic 
algorithms can search the hyperparameter space more 
intelligently. This is because they use intelligent search strategies 
that can quickly find promising areas of the search space.  

Another benefit of using metaheuristic algorithms for 
hyperparameter tuning of LSTM models is improved 
optimization. Metaheuristic algorithms are designed to avoid 
getting stuck in local optima. In contrast, traditional methods like 
grid search and random search can get trapped in local optima, 
which can result in suboptimal solutions.  

The Whale Optimisation Algorithm (WOA) is a metaheuristic 
optimization algorithm that draws inspiration from humpback 
whales' hunting strategies. It has been used for various 
optimization problems, including hyperparameter tuning for 
machine learning models like deep neural networks [26], [27]. 

In our use case, we have decided to tune the following hyper 
parameters: LSTM layers, wherein they take a value between 1 
and 3, LSTM units per layer, wherein they can take any value 
between 50 and 100, dropout-bounds, wherein any value for the 
dropout rate between 0 and 0.5 is chosen: and learning rate 
bounds - wherein any value between 0.000001 and 0.001 is 
preferred for the learning rate.  

Data preparation for the model is done in a similarly to the 
previous LSTM model itself. The modification manifests itself in 
the introduction of the Whale Optimization Algorithm to find 
the optimal set of hyper parameters. Initially a whale population 
is initialised with every whale being an n-membered tuple holding 
random values for the n hyper parameters chosen, such that the 
values are within the bounds defined in the search space. The 
zeroth whale is chosen as the global best whale in the zeroth 
iteration to start off the optimization process. An LSTM model 
is then created for every set of hyperparameters and trained and 
validated on the dataset. The concept of Early Stopping is 
incorporated into the model to ensure the efficient utilisation of 
both time and computational resources. The fitness function 
chosen here is one to measure which whale has the lowest value 
of binary-cross-entropy loss. Naturally, the set of hyper 
parameters that gives the lowest value of binary-cross-entropy 
loss, is the best performing agent of the lot. With the updating 
of the whales’ positions, their values are then updated in the 
direction of the best agent. After updating, a check is done to 
ensure that the hyper parameter values are within the bounding 
ranges defined initially. This optimization process is repeated 
over a fixed number of iterations to finally obtain the global best 
agent whose fitness value, which is its binary cross entropy loss 
value, is called best fitness and whose hyperparameters are called 
the best parameters as in Pseudo Code 3. 

Pseudo Code 3: WOA+LSTM algorithm for binary 
classification of Engine Flight Capability 

Input: Training Dataset 
Output: Binary Classification for LSTM model 

1 Set the random seed. 
2 Load training, testing and ground truth datasets and annotate column 

names. 
3 Sort training data by the 'id' and 'cycle' columns. 
4 Perform feature selection and add RUL column. 
5 Create label1 and label2 columns with threshold values 'w1' and 'w0'. 
5 if RUL <= W1 
6      label as 1 
7 else 
8      label as 0. 
9 if RUL <= W0 

10      label as 2. 
11 Normalize 'cycle' column in training and testing data frames 
12 Merge ground truth with the testing data frame to create new column 

'max' for each 'id’ 
13  Merge training with new ground truth data frame based on 'id' 

column to add 'RUL' to the testing data frame. 
14 Create two new label columns 'label1' and 'label2' in the testing data 

frame based on the same threshold values as the training data frame. 
15 Separate the features and target columns from the training and 

testing data frames. 
16 Reshape the training and testing features into a 3D array of shape. 
17 Define a binary classification LSTM model. 
18 Compile the model using binary cross-entropy loss and the Adam 

optimizer. 
19 Fit and evaluate the model on necessary metrics 

3.4. Remaining Useful Life Prediction 

a) LSTM model without hybridization 
The second task that this paper will deal with is the prediction 

of the RUL of an aircraft engine. RUL is a measure of the 
number of flights an engine can take given its current state. This 
metric depends on a number of factors, like the combination of 
sensor values or even operating conditions. Thus, it is the job of 
the deep learning model to be able to effectively predict the RUL 
of a flight engine given the collection of sensor measurements 
and operating conditions.  
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The first step in this process is performing feature selection. 
We have employed a procedure similar to the Binary 
Classification Model. This is followed by a scaling of the sensor 
values in the dataset. The features are scaled using the 
MinMaxScaler. MinMaxScaler is a data normalization technique 
commonly used in machine learning to scale characteristics of 
input data to a specific range. 

In Keras, the MinMaxScaler is implemented in the pre-
processing module, and it can be used to scale input features 
ranges 0 and 1. This is accomplished by subtracting the minimum 
value of the feature and dividing it by the range (i.e., the 
difference between the maximum and minimum values). This 
scaling technique is especially useful for tactics that are sensitive 
to the scale of the input features, such as neural networks. By 
scaling the features, the model can converge faster and may 
achieve better accuracy. 

A sequence length of 50 is defined for this model to ensure 
enough prior information is used to predict the value of the 
residual useful life of the engine in the test set. The training data 
is prepared into the 3-dimensional arrays consisting of features, 
time steps, and samples. The training labels, which are the RUL 
values, are ordered into a 1-dimensional array. This is followed 
by making the test set into a similar 3-dimensional array 
consisting of features, time steps, and samples. A Sequential 
model is defined for this problem statement consisting of an 
appropriate number of LSTM layers, followed by Dense and 
Activation Layers.  

The model is compiled using RMSProp and Adam optimizer 
function. RMSProp is an optimization algorithm commonly used 
in deep learning to update a neural network's weights during 
training. It stands for Root Mean Square Propagation and is 
designed to reduce the impact of large gradients in the 
optimization process, which can lead to slow convergence or 
divergence of the model. RMSProp calculates a moving average 
of the squared gradients and uses this to normalize the learning 
rate for each weight. This normalization helps to prevent 
oscillations in the optimization process and allows for faster 
convergence. RMSProp is particularly useful for models with 
sparse gradients, such as those with ReLU activation functions, 
and it is commonly used in conjunction with other optimization 
techniques such as Adam.  

This compiled model is then fit to the training data and 
evaluated on the test dataset to predict the RUL values for the 
same. These RUL values are then returned in a pandas 
Dataframe for better readability. Each predicted RUL value is 
affixed with the corresponding unit number to make the results 
more legible. 

The algorithm for this approach using just an LSTM model is 
outlined in Pseudo Code 4. 

Pseudo Code 4: LSTM model for RUL prediction 

Input: Training Datasets 
Output: Model with Adam Optimizer 

1 Perform feature selection 
2 Load the training and test datasets, group by UnitNumber, add a RUL 

column. 
3 Create dataframes for training and testing as well as a dataframe of 

true RULs for testing units. 
4 Scale the features in the training and testing datasets. 
5 Define the sequence length and feature columns to be used in 

generating the training and test data. 
6 Prepare the training data into a 3D numpy array with the shape of 

(samples, time steps, features). 
7 Prepare the training labels into a 1D numpy array. 

8 Prepare the test data into a 3D numpy array with the shape of 
(samples, time steps, features). 

9 Define a Sequential model with LSTM layer(s), followed by Dense 
layer(s) and Activation layer(s). 

10 Compile the model with RMSprop or Adam optimizer. 
11 Fit the built-in model using batch size and epochs to the training set 

of data. 
12 Evaluate the model on the test data set using evaluate () method. 
13 Utilizing the predict () approach, forecast the RUL for each unit in the 

test data set. 
14 Return the predicted RUL values in a pandas Data Frame with 

corresponding unit numbers. 

b) LSTM model with hybridization  
The previous strategy of solely using LSTM to assess an 

engine's viability did not achieve the necessary levels of accuracy. 
Thus, it was determined that hyperparameter tuning was required 
to further enhance the performance of this classification model. 
To create a hybrid entity capable of effectively carrying out the 
task at hand, the Whale Optimization Algorithm was combined 
with the designed LSTM model. Metaheuristic algorithms have 
shown promise in this task for previous problem statements, 
which is why this decision was made. In Figure 7.6, the algorithm 
for this strategy is highlighted. 

The scaling of features in the training and testing datasets is 
carried out using the Min/Max Scaler function. The LSTM 
model hyperparameters include the sequence length, number of 
LSTM units, number of dense units, dropout rate, learning rate, 
and number of epochs. The LSTM model is defined using Keras 
Sequential and adds a masking layer, a LSTM layer with the 
provided number of units and a linear activation function, an 
LSTM layer with the specified number of units and a dropout 
rate, and a final dense layer with a single unit. 

Furthermore, fitness function for WOA takes in the LSTM 
model, the training and testing dataframes, and the 
hyperparameters and returns the RMSE for the predicted RULs. 

The data preparation for the model is done in a manner 
similar to the previous LSTM model itself. The modification 
manifests itself in the introduction of the Whale Optimization 
Algorithm to find the optimal set of hyper parameters. Initially a 
whale population is initialised with every whale being an n-
membered tuple holding random values for the n hyper 
parameters chosen, such that the values are within the bounds 
defined in the search space. The zeroth whale is chosen as the 
global best whale in the zeroth iteration to start off the 
optimization process. An LSTM model is then created for every 
set of hyper parameters and trained and validated on the dataset. 
The concept of Early Stopping is incorporated into the model to 
ensure the efficient utilisation of both time and computational 
resources. The fitness function chosen here is one to measure 
which whale has the lowest MSE loss value. Naturally, the set of 
hyper parameters which gives the lowest value of MSE loss value 
is the best performing agent of the lot. When updating the 
whales’ position, their values are then updated in the direction of 
the best agent. After updating, a check is done to ensure that the 
hyper parameter values are within the bounding ranges defined 
initially. Over a predetermined number of iterations, this 
optimization process is repeated and then finally gives the global 
best agent whose fitness value which is its MSE loss value is 
called best fitness, and hyper parameters are called best 
parameters.  

The previous strategy of solely using LSTM to assess an 
engine's viability did not achieve the necessary levels of accuracy. 
Thus, it was determined that hyper parameter tuning was 
required to further enhance the performance of this classification 
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model. To create a hybrid entity [28] capable of effectively 
carrying out the task at hand, the Whale Optimization Algorithm 
was combined with the designed LSTM model. Metaheuristic 
algorithms have shown promise in this task for previous problem 
statements, which is why this decision was made. In Pseudo 
Code 5, the algorithm for this strategy is highlighted. 

The MinMaxScaler function is used to scale the features in the 
training and testing datasets. The LSTM model hyperparameters 
include the sequence length, number of LSTM units, number of 
dense units, dropout rate, learning rate, and number of epochs. 
The LSTM model is defined using keras Sequential and adds a 
masking layer, a LSTM layer with the provided number of units 
and a linear activation function, an LSTM layer with the specified 
number of units and a dropout rate, and a final dense layer with 
a single unit. 

Furthermore, fitness function for WOA takes in the LSTM 
model, the training and testing data frames, and the hyper 
parameters and returns the RMSE for the predicted RULs. 

Pseudo Code 5: LSTM+WOA model for Remaining Useful 
Life Prediction 

Input: Training Datasets 
Output: Whale optimized LSTM model 

1 Perform feature selection 
2 Load the training and test datasets, group by UnitNumber, add a RUL 

column. 
3 Create dataframes for training and testing as well as a dataframe of 

true RULs for testing units. 
4 Scale the features in the training and testing datasets. 
5 Define the sequence length and feature columns to be used in 

generating the training and test data. 
6 Prepare the training data into a 3D numpy array with the shape of 

(samples, time steps, features). 
7 Prepare the training labels into a 1D numpy array. 
8 Prepare the test data into a 3D numpy array with the shape of 

(samples, time steps, features). 
9 Define the hyperparameters for the LSTM model. 

10 Define the LSTM model. 
11 Compile the LSTM model using the RMSprop optimizer and learning 

rate that have been selected. 
12 Define the fitness function for WOA. 
13 The hyperparameters of the LSTM model should be optimised using 

the WOA algorithm. 
14 Train the LSTM model using the optimized hyperparameters and early 

stopping. 
15 Predict the RULs for each unit using the trained LSTM model. 
16 Calculate the RMSE and plot the predicted RULs against the true RULs. 

The computational complexity of a Long Short-Term 
Memory (LSTM) model can be analysed based on the operations 
performed in each time step. The complexity includes Input 
Transformation, Memory cell updates. Considering all these 
components together, the overall computational complexity per 
time step for an LSTM unit is roughly O (dm + 4dm + 4m^2 + 
do). In practice, the dominating factors are often the matrix 
multiplications involving the input and hidden state. 

The Whale Optimization Algorithm (WOA) is a metaheuristic 
optimization algorithm inspired by the social behaviour of 
humpback whales. 

The optimization technique reduced the computational 
complexity of the LSTM model. 

4. RESULTS AND INFERENCES 

4.1 Binary Classification of Engine Flight Capability 

Several deep learning techniques to forecast the binary 
classification of engine flight capability have been utilized, and 

model performance has been assessed through the use of 
accuracy and loss metrics. The results were then visualized 
through plotted graphs, which were compared and contrasted to 
determine the most effective approach. These graphs offer 
insight into the potential of deep learning methods for predicting 
engine flight capability, and the importance of choosing the best 
approach for a certain dataset. 

1) LSTM WOA 
The graph in Figure 3 displays the accuracy of a model that 

utilizes LSTM hybridized with WOA to predict the binary 
classification of engine flight capability. The accuracy of the 
model is shown on the y-axis, while the x-axis indicates the 
number of epochs. The model achieved an impressive 98.32 % 
accuracy by the end of the training process, demonstrating the 
efficacy of this approach for accurately forecasting engine flight 
capability. 

The graph presented in Figure 4 depicts the loss of a model 
that utilizes LSTM hybridized with WOA to predict the binary 
classification of engine flight capability. The number of epochs 

 

Figure 3. LSTM + WOA Accuracy graph.  

 

Figure 4. LSTM + WOA loss graph.  

 

Figure 5. LSTM + WOA actual and predicted values graph.  
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is shown on the x-axis, and the y-axis shows the model loss. The 
model achieved a final loss of 0.032, indicating that it was 
successful in minimizing the distinction between expected and 
actual values. This graph highlights the effectiveness of the 
LSTM hybridized with WOA approach for accurately predicting 
engine flight capability. 

The graph in Figure 5 plots the actual and predicted values of 
a model that utilizes LSTM hybridized with WOA to predict the 
binary classification of engine flight capability. The graph 
displays the degree to which the projected and actual values 
match, providing insight into the accuracy and efficacy of the 
model. 

2) LSTM 
The graph in Figure 6 displays the accuracy of a model that 

utilizes LSTM to predict the binary classification of engine flight 
capability. The model's accuracy is shown by the y-axis, while the 
number of epochs is represented by the x-axis. The model 
achieved 95.53 % accuracy by the end of the training process. 

The graph presented in Figure 7 depicts the loss of a model 
that utilizes LSTM h to predict the binary classification of engine 
flight capability. The number of epochs is shown on the x-axis, 
and the y-axis shows the model loss. The model achieved a final 
loss of 0.1176. 

The binary classification of engine flight capability is 
predicted using an LSTM model, and the graph shown in 
Figure 8 shows the actual and anticipated values of the model. 
Unfortunately, the graph suggests that there was a significant gap 
between the anticipated and real values, indicating that the model 
did not do well in properly predicting the values. This graph 
highlights the limitations of the LSTM model in this particular 

application and indicates the need for further development and 
exploration of other modelling techniques. 

3) 1D- CNN 
The accuracy of a model that applies 1D-CNN to predict the 

binary classification of engine flight capability is shown in the 
graph in Figure 9. The y-axis displays the model's accuracy, and 
the x-axis displays the number of epochs. At the conclusion of 
the training procedure, the model had a 94 % accuracy rate. 

The graph presented in Figure 9 depicts the loss of a model 
that utilizes CNN to predict the binary classification of engine 
flight capability. The number of epochs is shown on the x-axis, 
and the y-axis shows the model loss. The model achieved a final 
loss of 0.5738. 

The graph presented in Figure 10 depicts the actual and 
predicted values of a CNN model used to predict the binary 
classification of engine flight capability. Unfortunately, the graph 
suggests that the model didn't work very well. In accurately 
predicting the values, with a large discrepancy between the 
predicted and actual values. This graph highlights the limitations 
of the CNN model in this particular application and indicates the 

 

Figure 6. LSTM accuracy graph.  

 

Figure 7. LSTM loss graph.  

 

Figure 8. LSTM actual and predicted values graph.  

 

Figure 9. 1D - CNN accuracy graph and 1D - CNN loss graph.  

 

Figure 10. 1D - CNN actual and predicted values graph.  
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need for further development and exploration of other 
modelling techniques. 

4) Deep CNN 
The accuracy of a model that applies Deep CNN to predict 

the binary classification of engine flight capability is shown in the 
graph in Figure 11. The y-axis displays the model's accuracy, and 
the x-axis displays the number of epochs. At the conclusion of 
the training procedure, the model had an 87.99 % accuracy rate. 

The graph presented in Figure 11 depicts the loss of a model 
that utilizes CNN to predict the binary classification of engine 
flight capability. The number of epochs is shown on the x-axis, 
and the y-axis shows the model loss. The model achieved a final 
loss of 0.2685. 

The graph presented in Figure 12 depicts the actual and 
predicted values of a CNN model used to predict the binary 
classification of engine flight capability. Unfortunately, the graph 
suggests that the model could not accurately predict the value 
with a large discrepancy among the predicted and actual values. 
This graph highlights the limitations of the CNN model in this 
particular application and indicates the need for further 
development and exploration of other modelling techniques. 

4.2 Remaining Useful Life Prediction 

Predicting the RUL of aircraft engines using a variety of deep 
learning approaches [29], [30] was one of the goals of our 
research. The performance of each model was evaluated by 
plotting the mean squared error metrics and comparing the 
results. The plotted graphs offer a clear visual representation of 
the performance of each technique and allow us to determine 
which method is most effective for a given dataset. 

1) LSTM+WOA 
Figure 13's graph shows the mean squared error of an LSTM 

model combined with a WOA that was used to estimate the RUL 
left in an aviation engine. The number of epochs is shown on the 
x-axis, and the y-axis shows the mean squared error. The graph 
demonstrates that the model achieved a mean squared error of 
1368.43 by the end of the training process. This graph provides 

a helpful instrument for evaluating the performance of the model 
and identifying areas for improvement, offering valuable insights 
into the potential of this technique for RUL prediction. 

2) LSTM 
The graph shown in Figure 14 shows the mean square error 

(MSE) of an LSTM model used to predict the RUL of aircraft 
engines. The y-axis shows the MSE while the x-axis shows the 
number of epochs. The graph shows that the model achieved an 
MSE of 2412.25 at the end of the training process. 

3) 1D-CNN 
The mean square error (MSE) of a 1D CNN model used to 

predict the residual useful life (RUL) of aircraft engines is shown 
in the graph in Figure 15. The number of epochs is shown on 
the x-axis, and the y-axis indicates the MSE. The graph shows 

 

Figure 11. Deep CNN accuracy graph and Deep CNN loss graph.  

 

Figure 12. Deep CNN actual and predicted values graph.  

 

Figure 13. LSTM + WOA MSE graph.  

 

Figure 14. LSTM MSE graph 

 

Figure 15. 1D - CNN MSE graph 
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that the model had an MSE of 2353.1779 at the end of the 
training period. 

4) Deep CNN 
The graph shown in Figure 16 shows the mean square error 

(MSE) of a Deep CNN model used to predict the RUL of aircraft 
engines. The y-axis shows the MSE while the x-axis shows the 
number of epochs. The graph shows that the model achieved an 
MSE of 2232.49 at the end of the training process. 

i) Remaining Useful Life Prediction 
The Table 2 below summarizes the performance of various 

deep learning models using the mean squared error (MSE) 
metric. MSE measures the mean squared difference between 
predicted and actual values. A low MSE value indicates better 
performance, as it means that the predicted values are closer to 
the actual values. 

ii) Binary Classification of Engine Flight Capability 
The Table 3 below shows the values of accuracy and loss 

metrics used to compare the performance of various deep 
learning techniques. 

The model's accuracy is defined by dividing the total number 
of predictions by the number of accurate ones. In other words, 
it is a measure of how well the model correctly classified the data. 
A higher accuracy score is considered better, as it indicates that 
the model is making fewer errors. On the other hand, the loss of 
the model is the difference between the predicted and actual 
values, calculated using a loss function. A lower loss score is 
considered better, as it indicates that the predicted values are 
closer to the actual values. 

5. CONCLUSIONS 

The LSTM model, 1D CNN model and Deep CNN model 
achieved a mean squared error (MSE) of 2412.25, 2353.18 and 
2232.49, respectively at the end of training, indicating that the 
predictions were not very accurate. The LSTM + WOA model, 

on the other hand, achieved a significantly lower MSE of 1368 at 
the end of training, indicating that the predictions were more 
accurate compared to the LSTM model. In the context of 
predicting the binary classification of engine flight capability, the 
LSTM model attained a precision of 95.53 %, which is a good 
performance. The CNN model also attained accuracy of 94 %. 
However, when the same task was performed using LSTM 
hybridized with WOA, the accuracy increased significantly to 
98.32 %. It should also be considered that the time taken by 
LSTM + WOA model is almost double the time taken by LSTM 
model. Therefore, the decision between the two models would 
depend on the particular use case and the 
accuracy/computability trade-off. The proposed research work 
has two objectives: to predict if an engine is capable of taking 
flight based on its Remaining Useful Life Parameter if available, 
and if not, to first predict the RUL by looking at its sensor 
measurement values and using regression principles to generate 
this value. Aircraft engine failure is a very serious issue given the 
sudden increase in the number of civilian and military aircraft 
that are currently in service. Numerous studies have gone into 
finding the reasons for faults in engines that contribute to engine 
failure. However, our project aims to predict the number of safe 
flights an engine can take, depending on how its sensors work 
currently. This serves as a useful precautionary study with 
significant impact to the aviation industry. With improved 
accuracy in this field, we can be guaranteed of safer flights, which 
can save both human lives and maintenance costs. The results 
suggest that the LSTM model hybridized with WOA performs 
better than the CNN model and the basic LSTM model for both 
classification and regression tasks related to predicting the 
performance of aircraft engines. 

The limitations of the hybridized model in the real time data 
are Training Complexity, Non-Differentiability and Hyper 
Parameter Tuning.  

The same model can be used to optimize the performance of 
Financial Time Series Prediction, Energy Consumption 
Forecasting, Healthcare Predictive Modelling, Smart Grid 
Optimization. 
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