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1. INTRODUCTION 

Animal welfare is becoming increasingly important to society 
[1]. Ruminant welfare must be of crucial interest as the number 
of herds is constantly growing to meet the demand for meat and 
milk [2]. 

A problem that is poorly investigated in ruminant welfare is 
plastic pollution in livestock farms and particularly in feedstuffs. 
In fact, a substantial amount of plastic material is used to store 
ruminant feed, especially for dairy cattle. For example, low 
density polyethylene (LDPE) films are widely used to cover 
horizontal silos and to wrap and tie bales [3]. Plastics undergo a 
systematic fragmentation, driven mainly by ultraviolet radiation 
and mechanical abrasion, generating small plastic fragments (< 5 
mm) called microplastics (MPs) [4]. MPs can be divided into two 
main categories: primary MPs that are directly released in the 
environment and secondary MPs originating from the 
fragmentation of large plastic litter [5]. It is crucial to 
acknowledge the environmental impact of MPs pollution 

because they can contaminate feeds through various channels 
like wind, rain, and other environmental elements. 

Recent studies have demonstrated the presence of MPs in 
cow blood and sheep feces, showing that ruminants ingest MPs 
[6], [7]. In fact, a pilot study has detected their presence in cow 
and pig feeds. Moreover, the presence of MPs was also 
confirmed in both meat and milk, indicating that they can be 
transferred into animal products and potentially pose health 
concerns for humans [8]. 

Until now, most MPs detection methods have been time-
consuming, requiring many steps and the use of reagents or 
enzymes. They are also extremely heterogeneous depending on 
the nature of the matrix being analyzed [9]. The actual analysis of 
MPs includes primarily microscopic and micro-spectroscopic 
techniques (micro-Raman; micro-FTIR spectroscopy), which 
can only be used in absence of contaminating organic and 
inorganic materials [10]. With these techniques, MPs are detected 
after different steps: 1) sampling (collection and preparation of 
samples); 2) extraction of MPs from the samples; 3) 
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quantification and identification of MPs [11], [12], [13]. 
Furthermore, the MPs extraction from feeds could be even more 
complicated and might require different steps for organic matter 
degradation, because feeds are considered complex samples due 
to their constituents which are difficult to remove and are 
composed of multiple elements [13]. Currently, there is no 
specific analytical method to detect MPs in feeds. They were 
extracted from feeds solely by van der Veen et al. [8], however, 
this protocol is not specific for feeds and involves the use of 
ungreen solvents such as methanol and tetrahydrofuran [14]. 

A possible solution to overcome these problems could be the 
use of the near-infrared spectroscopy (NIRS). NIRS has been 
used for decades as an innovative technique in agriculture, 
becoming the most widely used analytic process, including 
detection of contaminants and analysis of feeds and dairy 
products. The new generation of portable and handheld devices 
allows to perform the analyses during the production to evaluate 
results [14]. NIRS operates in the electromagnetic spectrum from 
667 to 2500 nm by measuring light scattered off and through a 
sample. NIR spectra are characterized by the broad overlapping 
bands of overtone and the combination of vibrations for a 
limited number of molecular vibrations (C–H, O–H, N–H). It 
can quickly determine material properties without altering the 
sample. Therefore, NIRS, when used in combination with 
chemometric methods, represent an important instrument for 
classification tasks and quantitative analyses. Due to its lower 
sensitivity to water and the possibility to work with quartz 
materials for fibers and optical elements, it can be used for the 
classification of most common synthetic polymers. Paul et al. [9] 
verified that NIRS is an ideal technology to detect MPs in soils; 
it can be applied for the automated sorting of plastic waste [15], 
often in combination with hyperspectral imaging [16]. Karlsson 
et al. [17] demonstrated the potential of three different 
hyperspectral imaging devices working in the NIRS in 
combination with multivariate data analysis for the mapping of 
MPs on filters. The NIRS for MPs has also been studied by other 
authors in soils [18], [19] and in waters [20]. However, up to now 
no study has investigated its use to detect MPs in feeds. 

The aim of this study was to investigate the ability of NIRS to 
detect MPs at different concentrations in ruminant feeds. 

2. MATERIALS AND METHODS 

Four common ruminant feeds (corn silage, rye grass silage, 
soybean meal, and mixed hay) and a total mixed ration (TMR) 
were used to assess the NIRS’ ability to identify the different 
concentrations of two types of MPs: LDPE and Polystyrene 
(PS). The feed samples were dried at 60 °C and ground with a 4 
mm sieve (mixed hay and soybean meal with a 2 mm sieve). The 
LDPE and PS polymers were ground under 5 mm and added to 
the feeds in the following proportions: 0.0, 0.1, 0.3 and 0.5 % 
(equivalent to 0, 1, 3 and 5 mg g-1 on a dry weight basis, 
respectively) (Figure 1). The samples were examined by a 
benchmark instrument, IdentiCheck™ FT-NIR-IR system (PE, 
Perkin-Elmer, Beaconsfield, England), in reflectance mode, 
spanning the range of 714-3333 nm and consisting of 2751 
absorbance points, as described in Schymanski et al. [21]. Each 
absorbance spectrum was the average of 26 scans and each sample 
was mixed and replicated 10 times. The absorbance spectra were 
imported by GRAMS/AITM 7.02 in the WinISI III software 
(Infrasoft International, Port Matilda, PA, USA) and processed, 
after standardization and first derivation, by means of the 
modified Partial Least Squares method. The performance of the 

models was assessed by a cross-validation, allowing elimination 
of outliers exceeding a critical ‘t di Student’ > 2.5 and ‘Global H 
(Mahalanobis distance on PLS scores)’ > 10 [22].  

Another smart NIRS instrument, the SCÏOTM v 1.2 molecular 
sensor (Consumer Physics Inc., Tel Aviv, Israel), was used for 
scanning the samples using a blue light over the 740-1070 nm 
NIR range. The 331 reflectance points of the spectra were 
processed by using the WinISI III software within each feed type 
but the R2 in calibration mode was set up averaging the 
prediction per each repeated sample. The full-range NIR-IR 
spectra (PE: 714-3333 nm) of the benchmark instrument was also 
cut at the 714-1070 nm (PE\) to compare the quality of the smart 
NIRS instrument. 

The concentrations of MPs were calculated based on raw 
values for each feed, or without considering the polymer types, 
or feed groups, or for concentrations. Otherwise, the relevance 
of the MP polymers in the NIR spectra was assessed by directly 
fitting three dummy variables (1 = none, 2 = LDPE, 3 = PS) in 
the total feeds model. The Ratio of Prediction to Deviation 
parameter (RPD) was calculated as the standard deviation (SD) 
divided by the standard error in cross-validation (SECV) and 
served as a performance indicator. Moreover, some spectral 
features of the SCÏOTM were studied individually in each feed 
differentiating the whole class of contaminated MPs from the 
non-contaminated samples by the ratio ln(RMPs/RFeed), where 
RMPs is the reflectance of feed contaminated by MPs, and RFeed is 
the reflectance of non-contaminated feed. Furthermore, a 
stepwise regression was applied to select the most prominent 
wavelengths to identify the type of plastic and to predict the 
quantities of MPs in each feed. 

 

Figure 1. Ground mixed hay contaminated with different concentrations of 
LDPE (0, 1, 3, 5 mg g-1). LDPE particles are highlighted with red circles. 
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3. RESULTS AND DISCUSSION 

The NIR spectra of MPs at 1 to 5 mg g-1 concentration were 
clearly identifiable in the PE of the fodder (mixed hay and 
silages), soybean meal, and TMR (Table 1, R2). In the PE\, the 
ability to identify MPs concentrations decreased with the SECV 
ranging from 0.64 to 1.13 mg g-1, while the SECV in the PE 
yielded smaller values ranging from 0.35 to 0.63 mg g-1. 

The overall NIR ability to differentiate a group (feeds, MP 
types, or concentrations) in PE was reliable (R2: 0.94, 0.92, 0.92 
respectively, Table 1) with a slight decrease compared to the 
ability when calibrated in individual feeds. However, the overall 
ability in the PE\ notably decreased (R2: 0.66, 0.63, 0.54 
respectively). 

Figure 2 reports a calibration plot corresponding to the R2 of 
0.92 for the total concentration of Table 1 with a standard error 

in calibration (SEC) of 0.50 mg g-1, and the R2 in cross-validation 
(1 - VR) reduced to 0.80. 

As it can be seen in Table 1, the analysis of PE in the overall 
concentrations resulted in the RPD of 2.2 which is apt to 
“approximate” quantitative prediction [22]. However, in the 
PE\, the RPD dropped to 1.4, which is not suitable for 
prediction. On the other hand, a single calibration for each feed 
improved the RPD compared to the overall calibration for both 
the spectral ranges, with a more noticeable enhancement for PE 
than for PE\. The decrease of the RPD in the overall calibration 
could be due to the excessive heterogeneity of the matrices used 
for calibration.  

The present results were summarized in an accuracy of about 
0.81 or 1.29 mg g-1, as shown by the SECV for the overall 
concentration from the PE or PE\ spectral ranges obtained from 
the instrument. The detection limit at the zero concentration was 
calculated at 0.4 mg g-1 as an intercept of the linear equation in 
Figure 2. 

The SCÏOTM performances appeared satisfactory only in 
separate calibrations when the predictions from triplicated 
samples were averaged and then paired with the assigned data. In 
fact, in Table 2, the average R2 was 0.69 and the average SEC was 
limited to 0.79 mg g-1 which was apparently better than the SEC 
of 1.23 mg g-1 obtained from the PE\ of the overall pooled feeds 
(Table 1). Figure 3 shows a plot of the measured vs predicted MP 
concentrations from the mixed hay dataset, as an example, by 
using the SCÏOTM instrument. The SEC was 0.86 mg g-1. 

Table 1. Results of the calibration and cross-validation statistics (without outliers) for microplastic contamination determinations in various items on the NIR 
spectra of the devices (PE = Perkin Elmer, 714-3333 nm; PE\ = PE selected, 714-1070 nm; SD = standard deviation; SEC = standard error in calibration; R2 in 
calibration; SECV = standard error in cross-validation; 1–VR = R2 in cross-validation; RPD = ratio of prediction to deviation calculated as SD / SECV [22]). 

Items Theses Instrument n 
Mean 
mg g-1 

SD 
mg g-1 

SEC 
mg g-1 

R2 
SECV 
mg g-1 

1-VR RPD 

Corn silage Concentration 
PE 65 2.63 1.86 0.17 0.99 0.49 0.93 3.8 

PE\ 62 2.48 1.84 0.66 0.87 1.13 0.62 1.6 

Mixed hay Concentration 
PE 61 2.52 1.76 0.10 1.00 0.39 0.95 4.5 

PE\ 61 2.67 1.80 0.46 0.93 0.75 0.83 2.4 

Rye grass silage Concentration 
PE 61 2.48 1.81 0.11 1.00 0.46 0.94 3.9 

PE\ 60 2.42 1.79 0.56 0.90 0.87 0.76 2.1 

Soybean meal Concentration 
PE 60 2.50 1.79 0.14 0.99 0.35 0.96 5.1 

PE\ 60 2.47 1.80 0.47 0.93 0.64 0.87 2.8 

Total mixed ration Concentration 
PE 87 1.95 1.92 0.31 0.97 0.63 0.89 3.1 

PE\ 84 1.93 1.91 0.57 0.91 0.81 0.82 2.3 

Overall 

Feeds 
PE 325 3.15 1.38 0.33 0.94 0.56 0.84 2.5 

PE\ 314 3.16 1.35 0.78 0.66 0.87 0.59 1.6 

MP Types 
PE 325 1.34 0.63 0.18 0.92 0.28 0.81 2.3 

PE\ 329 1.36 0.62 0.38 0.63 0.42 0.54 1.5 

Concentrations 
PE 323 2.36 1.81 0.50 0.92 0.81 0.80 2.2 

PE\ 326 2.39 1.81 1.23 0.54 1.29 0.49 1.4 

 

Figure 2. Plot of the measured vs predicted microplastic concentrations from 
the total dataset using the benchmark instrument with the full spectra (PE: 
714-3333 nm). The standard error in calibration was 0.50 mg g-1. 

Table 2. Results of the calibration of the microplastics concentrations on the 
NIR spectra of the device SCÏOTM (740-1070 nm) with average prediction per 
repeated sample (SD = standard deviation; R2 in calibration; SEC = standard 
error in calibration). 

Feed n 
Mean 
mg g-1 

SD 
mg g-1 

SEC 
mg g-1 

R2 

Corn silage 43 1.49 1.18 0.35 0.93 

Mixed hay 41 1.64 1.16 0.86 0.74 

Rye grass silage 40 1.63 1.19 0.96 0.38 

Soybean meal 41 1.51 1.14 0.77 0.65 

Total mixed ration 43 1.56 1.18 0.67 0.84 

Average  1.57 1.17 0.79 0.69 
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A systematic feature of the SCÏOTM spectra obtained from 
contaminated samples is a different reflectance pattern. As 
shown in Figure 4, the ratio ln(RMPs/RFeeds) for the 3 mg g-1 
contaminated feeds was higher than the ones at 1 mg g-1, which 

was equivalent in all the tested feeds and TMR. This result could 
be derived from a higher reflectance of the blue light flashed by 
the SCÏOTM across the entire spectral range, when the feed was 
more contaminated. As expected, due to its complex organic 
composition, the raw feeds were more prone to absorbing the 
radiation than the pure plastic materials, making them more 
reflective.  

In the SCÏOTM spectra for the four feeds and TMR, it is 
interesting to consider the first representative wavelengths 
selected by the stepwise regression for two theses (the percentage 
of MPs and type of MPs), and their univariate coefficients of 
determination (r2). Initially, it is evident that no special spectral 
range is highlighted as all the predominant wavelengths vary 
(Figure 5). Additionally, the percentage of MPs is tendentially 
better predicted compared to identifying the type of MPs except 
for rye grass silage, as indicated by an average r2 of 0.53 and 0.40 
respectively.  

In summary, NIRS is more accurate in predicting the quantity 
of MPs rather than identifying the type of MPs.  

4. CONCLUSIONS 

The direct scan of raw samples of common animal feeds and 
TMR prepared by standard methods for NIRS examination 
performed by the benchmark NIR-IR -not from a smart NIRS 
instrument - was able to detect MPs pollution at least up to 
1 mg g-1 (~1 g kg-1) within the range of 0 to 0.5 mg g-1. A specific 

 

Figure 3. Plot of the measured vs predicted microplastics concentrations 
from the mixed hay dataset using the SCIÖTM (740-1070 nm). The standard 
error in calibration was 0.86 mg g-1.  

  

Figure 4. Different reflectance pattern expressed in ratio ln(RMPs/RFeed), where RMPS = the reflectance of feed contaminated by microplastics and RFeed = the 
reflectance of non-contaminated feed, for 1 and 3 mg g-1 of microplastics across the four feeds (Corn = corn silage, Hay = mixed hay, Rye = rye grass silage, Soy 
= soybean meal) and total mixed ration (TMR) in the SCÏOTM spectra (740-1070 nm). 
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calibration for a single feed enhanced the ability of NIRS to 
discriminate polluted samples. 

The real challenge in creating a database for the identification 
of MPs in feeds lies in finding feeds which are definitely free of 
MPs. Currently, the diffusion of MPs is such which seems to be 
nearly impossible to find plastic-free feeds in farms. Following 
these preliminary results, any validation on other samples/feeds 
with different and powerful NIRS tools is encouraged.  
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