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1. INTRODUCTION 

Nowadays, the dairy industry is facing an accelerated trend 
towards larger farm sizes and higher-yielding animals [1]. 
Consequently, the husbandry staff to animal ratio is decreasing 
[2] and the implications of mass-production systems on the 
welfare of dairy animals are troubling the consumers [3]. In 
response to these challenges, the development of new 
technologies has gained momentum.  

Precision livestock farming technologies have been developed 
to assess the welfare and health status of dairy animals by 
reducing labour demands [4]. A variety of systems using 

technologies (i.e., sensors, cameras, or microphones) are 
currently available and several countries are already investing in 
their development to be part of strategies to move toward 
sustainable agriculture [5].  

Through this system, the farmer can monitor the animals’ 
everyday lives irrespective of the size of the herd [6]. Particularly, 
they monitor the animal behaviours, the behavioural and 
biological changes that influence the animals’ health and welfare 
status [7]. The detection of such behavioural changes triggers a 
warning signal, suggesting an immediate action, and leading to an 
early problem diagnosis or an immediate housing practices 
assessment [8].  

ABSTRACT 
The paper discusses the challenges facing the dairy industry due to increased farm sizes and reduced staff-to-animal ratios, which are 
impacting animal welfare. The development of precision livestock farming (PLF) technologies has gained momentum to address these 
challenges. PLF technologies can assess animal welfare and health status by monitoring animal behavior and biological changes, and 
alerting farmers of any issues. However, the applicability of PLF tools in other productive phases of the dairy cattle is still limited. The 
article focuses on the challenges of managing unweaned dairy calves, particularly the variability in relation to when calves start 
consuming solid feed, and how PLF technologies can be used to monitor individual calf intake and manage weaning at the individual 
level. The attention is mainly focused on the advantages of using automated feeders for unweaned dairy calves, including labor savings, 
greater precision in measurement and control of individual intake of liquid and solid feed, and higher preweaning growth rates. In 
particular, a method is proposed, involving a 3D depth camera and a proper algorithm to measure the volume and weight of eaten feed. 
The method is preliminarily assessed in tests conducted in laboratory, which highlight a remarkable concurrence (differences as low as 
2 %) with respect to nominal values. 
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Currently, the most common devices used in cattle are 
accelerometers to detect calving, estrus and lameness (based on 
activity data); cameras to determine standing heat (combined 
with machine learning), body condition scores (BCS), and 
estimate weight; reticulum boluses to monitor estrus, calving and 
physiological factors (i.e., body temperature or pH); and ear 
sensors to monitor the temperature [5]. 

However, there is still a lack of knowledge on the applicability 
of precision livestock farming tools in other productive phases 
of the dairy cattle. 

2. PROBLEM STATEMENT 

The current calf management practices need profound 
changes to improve dairy calf health and survival, enhance the 
long-time performance of dairy heifers and satisfy consumer 
interests in farm animal welfare [9]. The development of calves 
depends on prenatal and postnatal conditions. At birth, calves 
are defined as functional monogastric, relying on nutrients from 
milk or milk replacer [10].  

Therefore, the pre-weaning stage represents a biological 
critical window that may affect the performance and overall well-
being of calves for their entire life [11]. Early weaning is adopted 
to accelerate the early intake of solid feed and the development 
of the forestomach system [12]. Nevertheless, a later weaning 
regimen allows a smooth transition of physiological functions 
from the pseudomonogastric status to full ruminant status 
avoiding potential consequences for later health and metabolic 
performance [12]. In later weaning method, body maturation of 
calves is supported not only by milk/milk replacer but also by 
solid feed (concentrate and hay). 

Nowadays, dairy calves are typically weaned from milk to 
solids according to a gradual weaning method (step-down 
technique) based on age [13]. It consists of gradually reducing the 
milk allowance, from four weeks of age until weaning. Still, even 
with the use of a step-down weaning program, a variability is 
observed in starter intakes of intensively managed calves, 
suggesting that the calves begin to consume starter based on their 
individual ability cope with early weaning [14].  

Heinrichs and Heinrichs [15] reported a 27 % coefficient of 
variance in the age to consume 0.91 kg of starter; de Passillé and 
Rushen [16] reported ranges of 59 days of age for calves to first 
consume 0.2 kg/day of starter and of 36 days to first consume 
1.4 kg/day of starter throughout the milk-feeding period 
(12 L/day). Similar results were reported for different levels of 
milk allowances ([17]-[18]). 

This variability in relation to when calves begin to consume 
starter suggests that individuals will vary in how well they cope 
with early weaning. Hence, moving toward individual-based and 
data-driven farm management, there is growing interest in 
monitoring the solid intake of unweaned dairy calves and 
managing weaning at the individual level [16]. 

3. RELATED WORKS 

In the last few years, there has been a growing interest in the 
use of automated feeders for unweaned dairy calves. The 
advantages of automated feeders include labor savings [19]; 
greater precision in the measurement and in the control of 
individual intakes of liquid and solid feed [16], [17]; simpler 
feeding of unweaned dairy calves more milk/milk replacer; and 
higher preweaning growth rates [10], [20].  

There is mounting evidence that high preweaning growth is 
associated, in some way, with increased first-lactation milk yield 

[21], [22]. Previous research demonstrated that the same 
automated feeder used for milk can be used to supply starter and 
record both milk and starter intake independently [16], [23], [24]. 
They gave calves access to automated feeders supplying milk and 
starter, controlled by a single computer (CF 1000 CS Combi, 
DeLaval Inc., Tumba, Sweden). This computer recognized 
individual calves from their radio frequency ID (RFID) tags and 
independently controlled and recorded milk and starter intake for 
each calf. Hay and water were available ad libitum from 
automated feeders that weighed the intake of each calf at each 
meal (RIC, Insentec B.V., Marknesse, the Netherlands). 

Rosenberger et al. (2017) [24] tested a step-down procedure, 
where milk allowance was initially reduced at 42 days of life and 
then again at weaning (50–54 days), providing social housing and 
access to forage, and observed a lack of difference in total starter 
intake throughout the experimental period. Still, in their 
conclusions, they stated that further research was needed to 
compare weaning protocols and identify which features are 
required to set up weaning protocols tailored to meet the needs 
of different individuals [16].  

In the present study, we used a 3D camera to accurately 
measure the volume and weight of dairy calves during the pre-
weaning period. 

4. PROPOSED METHOD 

The key idea underlying the proposed method is the 
exploitation of a 3D depth camera in order to digitize the 
distance with respect to the surface of the solid feed thus making 
it possible to estimate its volume and, knowing the density, the 
associated weight ([25]-[29]). In particular, the 3D camera is 
capable of reconstructing a suitable map of the distance of each 
pixel in its frame and, by means of straightforward calculations, 
the volume of the regions of interest. For the sake of clarity, the 
operating steps of the proposed method will be discussed in 
detail in the following with respect to an application example. 

1. The first step accounts for the digitization of the framed 
scene. To this aim, the camera subdivides its field of view 
into a defined number of pixels (let us suppose, for 
example, M × N pixels in the whole image) ([30]-[33]). 
The measured values are arranged according to an M × N 
matrix, whose entries are the distance of the specified 
pixel with respect to the camera. It is possible to provide 
an image in fake colours, where each colour corresponds 
to a specific distance with respect to the camera 
(Figure 1). 

2. The region of interest (i.e., the one whose volume we are 
interested in) is then determined by selecting the 
coordinates (i.e., row and column indexes) of two points 

 

Figure 1. Example of 3D distance map represented in false colours. 
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in the acquired 3D image (as an example, the points A 
and B in Figure 2). 

3. The coordinates of two further points are singled out (as 
an example, the points C and D in Figure 3) in order to 
define the distance of each point of the manger with 
respect to the camera. To this aim, the distance d of a 
generic point of the bottom of the trough (whose 
coordinates are referred to as x and y) is obtained 
according to a bi-linear approximated model: 

𝑑𝑏(𝑥, 𝑦)  =  
𝑑1 (𝑥𝐷 − 𝑥)  (𝑦𝐷 − 𝑦)

(𝑥𝐷 − 𝑥𝐶)  (𝑦𝐷 − 𝑦𝐶)
 + 

   +
𝑑2 (𝑥 − 𝑥𝐶) (𝑦𝐷 − 𝑦)

(𝑥𝐷 − 𝑥𝐶) (𝑦𝐷 − 𝑦𝐶 )
+ 

+
𝑑3 (𝑥𝐷 − 𝑥)(𝑦 − 𝑦𝐶) + 𝑑4(𝑥 − 𝑥𝐶) (𝑦 − 𝑦𝐶 )

(𝑥𝐷 − 𝑥𝐶) (𝑦𝐷 − 𝑦𝐶)
 

(1) 

where (𝑥𝐶 , 𝑦𝐶), (𝑥𝐷 , 𝑦𝐷), 𝑑1 and 𝑑4 are the coordinates 

of the pixel C and D, respectively; while, 𝑑2 and 𝑑3 
represent the distances of the points whose coordinates 

are equal to (𝑥𝐶 , 𝑦𝐷) and (𝑥𝐷 , 𝑦𝐶), respectively. 

4. The volume associated with the generic pixel (𝑥, 𝑦) can 
thus be evaluated as the parallelepipedon whose height is 
given by the difference between the distance of the pixel 

from the camera 𝑑(𝑥, 𝑦) and the estimated distance of 

the trough at the same pixel 𝑑𝑏(𝑥, 𝑦). As for the area 
associated with the pixel, it strictly depends on the 

distance with respect to the camera; in particular, said x 

and y the base and height of the pixel and  and  the 
angle defining the depth field of view, the area of the pixel 
(i,j) can be expressed as 

𝐴(𝑥, 𝑦)  =  ∆𝑥 ∆𝑦 =  

(𝑑(𝑥, 𝑦)  tan(𝛼)) (𝑑(𝑥, 𝑦) tan(𝛽)) 
(2) 

5. The volume of interest can be finally achieved by adding 
all the volumes of the pixels involved in the region of 
interest selected in step #2. 

5. MEASUREMENT SETUP 

To preliminarily assess the feasibility of the proposed method, 
a suitable measurement setup was implemented in laboratory 
conditions, using a 3D Depth camera, namely RealsenseTM D455 
by Intel© (Figure 4). 

The RealSense D455 is a high-resolution depth camera 
developed by Intel that utilizes Time-of-Flight (ToF) technology 
to provide accurate and detailed depth data [34]. It is a compact, 
lightweight device, measuring 101 mm × 24 mm × 9.5 mm and 
weighing only 45 g, making it easy to integrate into a wide range 
of applications. 
One of the key features of the RealSense D455 is its depth range, 
which extends from 10 cm to 10 m. This makes it well-suited for 
a variety of applications, including robotics, drones, augmented 
reality, virtual reality, and more. The camera is capable of 
capturing depth data with a resolution of up to 1024 × 768 
pixels, as well as colour data with a resolution of up to 
1920 × 1080 pixels. The RealSense D455 can capture data at 
frame rates of up to 90 frames per second, depending on the 
resolution and mode selected. It has a wide field of view, with a 
horizontal field of view of 91.2°, a vertical field of view of 65.5°, 
and a diagonal field of view of 100.6°. This allows the camera to 
capture a large area of the scene, making it easier to track objects 
and navigate through the environment. The main specifications 
are summarized in Table 1. 

The RealSense D455 uses a USB 3.1 Gen 1 Type-C interface 
for data transfer and power. It is compatible with a wide range 
of operating systems and development environments, and Intel 
provides an SDK (Software Development Kit) that allows 
developers to create their own applications and interfaces for the 
camera. 
In particular, the authors implemented a dedicated MATLABTM 
code to control the camera and retrieve the distances measured 
in the framed scene. The code involves the steps of the method 
described in Section 4. With specific regard to the identification 
of both region of interest and trough base, the MATLAB 
function ginput() was exploited to allow the user to graphically 
determine the extent of the considered regions according to 
shown distance image. 

 

Figure 2. Determination of the region of interest by selecting two opposite 
points A and B. 

 

Figure 3. Determination of the trough base by selecting two opposite 
points C and D. 

 

Figure 4. The 3D depth camera adopted for the preliminary method 
assessment. 
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6. PRELIMINARY RESULTS 

The 3D camera was installed on a camera holder whose 
distance from a reference plane could be modified and controlled 
thanks to a hand crank mechanism. The reference plane acted as 
the trough, and rabbit feed was exploited to assess the method's 
feasibility (Figure 5). The 3D camera was positioned at a distance 
of 65 cm from the reference plane. 

A starting volume of 1500 cm3 of feed was initially placed on 
the reference plane and the proposed method was applied to the 
acquired image. Figure 6 shows a picture (top image) along with 
the MATLAB reconstruction (bottom image) obtained by means of 

the proposed method; as for the measured volume, the value of 
1490 cm3 was obtained. 

The volume of feed was then reduced in two successive steps, 
whose value was 300 cm3 and 200 cm3, respectively. The 
associated MATLAB reconstructions are shown in Figure 7 and 
Figure 8, while the corresponding volume measures were equal 
to 1220 cm3 and 1007 cm3. As it can be appreciated, differences 
with respect to the nominal values always lower than 2 % were 
observed ([35]-[46]). 

7. CONCLUSIONS 

The paper presented a method based on both a 3D depth 
camera and a suitable digital signal processing algorithm for the 
measurement of feed volume for precision livestock farm 
applications. 

In particular, the 3D camera provides a distance map of the 
framed scene, and the algorithm allows extracting measures of 
both the feed surface and the trough base. Geometrical 
considerations allow measuring the volume of feed as the sum of 

 

Figure 5. Realized setup for volume measurements of rabbit feed. 

 

 

Figure 6. A picture (top) along with the reconstructed surface in the case of 
1500 cm3 of rabbit feed (bottom). 

 

Figure 7. Reconstructed surface in the presence of nominal feed volume 
equal to 1200 cm3. 

Table 1. Main specifications of the 3D camera Realsense D455 exploited for 
method feasibility assessment. 

Specifications Value 

Depth technology Time of Flight 

Depth Range 10 cm to 10 m 

Depth Resolution Up to 1024 × 768 pixels 

RGB resolution Up to 1920 × 1080 pixels 

Frame Rate Up to 90 fps (@640 × 480) 

Field of Views 87° × 58° 

Communication Interface USB 3.1 Gen-1 Type-C 

Dimensions 101 mm × 24 mm × 9.5 mm 

Weight 45 g 
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the volumes of all the parallelepipedon whose bases are 
associated with the pixel dimension at the measured distance and 
whose height is evaluated as the difference between the pixel 
measured and base-estimated distances.  

Preliminary tests to assess the feasibility of the proposed 
method were carried out in the laboratory, employing a 3D depth 
camera by Intel. The volume of rabbit feed (nominally decreasing 
from 1500 cm3 to 1000 cm3) was then measured with differences 
expressed in relative percentage values as low as 2 %. 

Ongoing activities are mainly focused on the metrological 
characterization of the proposed method with respect to possible 
parameters of the measurement setup, such as the distance and 
alignment of the camera, scene illumination and geometrical 
artifacts. 
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