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1. INTRODUCTION 

Broiler farming is an important activity in modern agricultural 
production. Chicken meat is one of the main sources of protein 
in the human diet, and the broiler industry is one of the largest 
in the world in terms of production and consumption [1].In 
addition to its relevance in food production, broiler farming also 
has a positive impact on the economy and the environment. The 
broiler industry is a generator of employment and contributes to 
the economic development of many regions. Moreover, the 
production of chicken meat is more efficient in terms of 
resources than the production of meat from other animals, which 
makes it a more environmentally sustainable option [2]. 

However, broiler farming also presents challenges and 
concerns, such as diseases control or maximizing the feed 
conversion ratio. One of the biggest challenges is ensuring the 
welfare of animals on the farms. Confining animals in limited 
spaces can cause health and behavioral problems, and it is 
important to take steps to improve their quality of life. 

When animals do not have enough space to move around and 
do their natural activities, they can develop physical and mental 
problems [3]. For example, chickens can suffer leg and wing 

deformities due to a lack of space to move and exercise [4]. In 
addition, when herds do not have enough space to grow and 
develop, they can also be more prone to diseases [5]. This also 
can affect the quality and performance of herds, reducing 
production [6]. It is also believed that having a significant inter-
individual distance has a positive impact on animal welfare, as in 
[7] and [8]. For this reason, efficient farm space management is a 
major challenge in modern broiler production [9] to get sufficient 
economic return from the house to make it economically 
sustainable and is also crucial for the health and well-being of the 
animals. 

In the context of broiler farms, “free usable space” refers to 
the amount of space available for the birds to move around and 
engage in natural behaviours. This is slightly different from other 
measures of space utilization on a farm, such as stocking density, 
which refers to the number of animals per unit of area. 

Stocking density is typically measured in terms of weight, such 
as kilograms per square meter, or in terms of the number of 
animals per square meter. It is a useful measure for comparing 
the density of different farms or for determining the maximum 
number of animals that can be raised in each space. However, it 
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does not consider the size and weight of the individual animals, 
or their ability to move around and engage in natural behaviours. 

In contrast, free usable space is a measure of the amount of 
space available for the animals to move around and engage in 
natural behaviours. It considers not only the density of the 
animals, but also their size and weight, as well as the local 
distribution of the animals within the farm. This makes it a more 
accurate measure of the animals' welfare and their ability to 
engage in natural behaviours. 

The amount of free usable space is a function of two factors: 
the local distribution of the birds, and the weight and volume of 
the birds. 

The local distribution of the birds refers to the spatial 
arrangement of the birds within the farm. In a well-designed 
farm, the birds should be distributed evenly throughout the 
space, with enough room for each bird to move around and 
access food, water, and other resources. 

The weight and volume of the birds is also an important 
factor in determining the amount of free space needed. As the 
birds grow and gain weight, they require more space to move 
around and engage in natural behaviours. This is because heavier 
birds have a larger volume, which means they take up more space 
in the farm. 

The development of accurate and efficient methods to 
estimate free usable space on farms is a major step to improve 
the production and ensure the sustainability of the sector. Until 
now, the only way to estimate useful free space on farms has been 
through manual measurements. However, these methods can be 
laborious, expensive, and inaccurate.  

Computer vision technology has allowed the development of 
more efficient methods to automate counting chickens on the 
farm [10].  

In this paper we want to present a new method for estimating 
percentage of free usable space in the farms. Our approach uses 
image processing techniques to analyse the images. This 
information can be useful for farmers who want to maximize the 
use of space on their facilities and increase the efficiency of their 
production. Furthermore, this method is much more accurate 
than manual chicken counting. 

The paper is organized as follows: 
• Algorithms and Methods: This section describes in 

detail the method used to estimate the amount of free usable 
space in a chicken farm from images captured from the top of 
the facility. 

• Experimental results: this section presents the results 
obtained by applying the method to a set of images of real 
chicken farms. 

• Conclusions and future lines of work: this section 
summarizes the main conclusions of the article and proposes 
future lines of work to further improve the precision and 
efficiency of the computer vision method to estimate the amount 
of free usable space in chicken farms and extract useful 
information from the data generated by our algorithm. 

2. ALGORITHMS AND METHODS 

In this section we explain the algorithms and methods used 
to estimate the free usable space. For this we have used an image 
semantic segmentation approach [11]. 

Semantic image segmentation is an image processing 
technique that aims to divide an image into different regions or 
segments and assign each of those regions a semantic label that 
describes its content. For example, in an image of a street with 

buildings, trees, and people, semantic segmentation could divide 
the image into different segments corresponding to each of those 
elements, and assign labels such as "building", "tree" and 
"person." This approach has been used successfully in many 
applications such as medical images [12] or autonomous driving 
[13]. 

There are different semantic segmentation algorithms that can 
be used to divide an image into different regions. The classic 
approaches, use a set of predefined rules to divide the image into 
segments and assign labels to them [14]. 

For instance, a rule may stipulate that entities sharing similar 
characteristics with a predefined criterion are to be collectively 
categorized under a specific label. This procedure can encompass 
techniques such as thresholding algorithms, which involve 
establishing a threshold for certain attributes, and then classifying 
all entities that fall beneath this threshold into a designated 
category. Additionally, methodologies like region growing 
algorithms [15], [16] initiate with a seed entity, subsequently 
incorporating adjacent entities into the collective group based on 
predetermined similarity criteria, which could include attributes 
like intensity values or spatial distances between entities. We also 
have algorithms based in rules that it uses edge detection 
techniques ([16] and [17]) to divide the image into different 
segments and then use object classification techniques to do so. 

On the other hand, we have algorithms based on deep 
learning [18] and [19], which use machine learning techniques 
based on deep neural networks to learn how to segment images 
and assign labels. To do this, we need to train them with a set of 
previously labelled images, and then they use what they have 
learned to segment new images and assign labels to them. One 
of the best-known deep learning-based algorithms for image 
segmentation is U-Net [20], which has been widely used in the 
medical field to detect tumours in MRIs. U-Net uses an 
autoencoder neural network architecture that combines high and 
low-resolution information for accurate image segmentation. 
Another algorithm based on deep learning is Mask R-CNN, 
which is another extremely popular method used for image 
segmentation in real time. Mask R-CNN [21], uses a 
convolutional neural network that can detect objects in an image 
and generates an accurate mask around each detected object. 
This mask can be used to segment the objects in the image and 
exclude the background. 

In general, deep learning is better than rule-based approaches 
for image segmentation due to its ability to learn automatically 
from a large data set and its ability to adapt to different situations, 
for instance, not all pixels of a colour like "grass" belong to 
"trees". This allows the model to be more accurate and 
generalizable in its image segmentation task. However, they 
usually require large manually labelled data sets to be trained. 

In our work we have decided to use a U-Net type architecture 
because it presents a particularly good balance between accuracy 
and computational cost. 

The U-Net is an architecture with an "encrypt" branch that 
contracts as you move through the network and a "decode" 
branch that expands as you move through the network to the 
output layer. In the coding branch, layers are stacked, and images 
are down-sampled as you move through the network, allowing 
the network to learn more abstract features as finer details are 
clumped together. In the decoding branch, the layers are 
unrolled, and the resolution of the images is increased again, 
allowing the network to combine these abstract features with the 
finer details to produce accurate segmentation of the image. 
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To train a U-Net, labelled images are needed, that is, images 
that have already been classified, usually by a human expert, and 
have a binary mask associated with each one. A binary mask is 
an image that contains only two values: 0 and 1. Pixels with a 
value of 0 represent the background of the image, while pixels 
with a value of 1 represent the object of interest. 

We have trained our model to be able to segment the image 
into two different masks or regions of interest. One region 
belongs to the farm floor, and another belongs to the space that 
cannot be used because it belongs to walls, pipes of drinkers or 
feeders or other kinds of objects that chickens cannot reach as 
we show in Figure 1. 

Once the two segmentation masks have been detected, what 
we do is count the total number of pixels in the mask belonging 
to the farm floor and the number of inaccessible pixels. And 
applying a simple formula that subtracts from the total number 
of pixels in the image the pixels that are not accessible, we 
calculate the percentage of pixels that belong to the ground, that 
is, the pixels percentage that belongs to the free usable space as 
we show in the following equation: 

% 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 =
#𝐹𝑙𝑜𝑜𝑟𝑃𝑖𝑥𝑒𝑙𝑠

#𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝑠 − #𝑈𝑛𝑢𝑠𝑎𝑏𝑙𝑒𝑃𝑖𝑥𝑒𝑙𝑠
× 100 .  (1)  

3. EXPERIMENTAL RESULTS 

In this section we show the experimental setup that we have 
used to test our model as well as the performance results that we 
have obtained in different scenarios. We also show charts of the 
evolution of the free usable space obtained throughout the cycle 
using our algorithm in different farms. 

Thus, to carry out experiments we have considered the 
following points: 

• We have used images of 6 different farms with cameras 
installed on top of the farm (from when the youngest chickens 
enter to the farm until they are ready to be taken to the 
slaughterhouse). This allows us to obtain a large number of 
images with different conditions and situations, which helps us 
to evaluate the generalizability of the model. Also, by using 
images from different farms, we can ensure that the model is not 
biased towards just one farm. 

• We have manually labelled 466 images to train and 218 
to test the model. By using a separate dataset to test the model, 
we can evaluate its performance on data that was not used to 
train it avoiding the overfitting problem. 

• The metric used to evaluate the model has been the 
Intersection Over Union (IoU). The IoU is a measure of 
similarity between two data sets and is calculated as the 
intersection between the two sets divided by their union. In our 
case, it is calculated as the intersection between the pixels labelled 

by the model and the pixels labelled by a human expert, divided 
by the union of both sets of pixels. This metric allows us to 
evaluate the accuracy of the model in identifying free usable 
space in the images. Values close to one mean better accuracy. 

Figure 2 shows some example images with the result of the 
segmentation algorithm. 
The images show the results of the segmentation masks, we can 
see that the performance of the model is quite good identifying 
the pixels of the ground and those of other elements in the farms, 
such as walls or machinery. However, it is not able to detect very 
well drinkers, feeders, and pipes when they are too far away. 

As discussed in the previous section, the U-Net architecture 
is based on an encoder-decoder, in which the encoder is used to 
reduce the dimensionality of the input image and extract relevant 
features, while the decoder is used to reconstruct the original 
image from these features. However, in some cases, the encoder 
can lose valuable information by reducing the dimensionality of 
the image, which can affect the accuracy of segmentation of the 
smallest elements in the image. This is because the further away 
these elements are from the image, the more difficult it is for the 
model to identify and segment them correctly. Therefore, the U-
Net architecture may have difficulty correctly segmenting smaller 
elements in the image. 

In any case, the total percentage of pixels in the pipes is not 
truly relevant when calculating the total percentage of free usable 
space pixels and the results are still particularly good despite this, 
since ground and walls are, in general, correctly detected. 

Table 1 shows the percentage of pixels that are within the IoU 
in relation to the dataset that has been manually labelled in the 
set of test images for each farm. The results show that the 
average percentage of pixels within the IoU (fourth column) is 
around 90 %, which indicates a good precision of the model in 
the segmentation of the images. 

 

Figure 1. Scheme representing the two output masks of our model given an 
RGB image.  

 
 

 
 

 

Figure 2. Examples of the predicted segmentation masks. Blue: floor, green: 
unusable space. 
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Finally, in Figure 3, we show the evolution of the free usable 
space during the first 32 days in six different production cycles. 
A camera located on the top of the farm was taking a picture 
every minute. The moments in which the light intensity was too 
low were discarded, and finally the mean free usable space was 
calculated using our algorithm. In some cases, the curves are not 
completely smooth, this may be because sometimes the chickens 
are unevenly distributed throughout the farm and there may be a 
larger group of chickens in front of the camera. However, the 
general trend in the evolution of free usable space is consistent 
with our observations and the growth rate of chickens. 

4. CONCLUSIONS AND FUTURE WORK 

The amount of free usable space in a broiler farm is an 
essential factor that needs to be carefully managed. To achieve 
this, we have presented a computer vision algorithm in this paper 
that is designed to estimate the amount of free usable space in an 
automated way. The algorithm is based on a U-Net architecture, 
which semantically segments image pixels by classifying each 
pixel according to its class. This automated process offers 
significant benefits over manual inspection, including better 
measurement accuracy and real-time data. 

The algorithm has been tested, and the results show that it is 
highly accurate, with an average Intersection over Union (IoU) 
around 90 %. The observations have also remained consistent 
throughout the entire production cycle, providing valuable 
insights into how the free usable space changes over time. 

While the algorithm has shown great promise, it still has some 
limitations. For instance, the model may have difficulty 
segmenting small objects such as feeder pipes and drinkers, 
which could impact its accuracy. To address this issue, the 
model's size can be increased by adding more convolutional 
layers to process higher resolution images with greater detail. 
However, this could lead to increased computational costs. 

In the future, the data generated by this algorithm can be used 
to conduct further studies. For instance, the relationship between 
the free usable space and the productive performance of the 
farm, such as the amount of feed consumed, and the amount of 
product obtained, can be analysed. Additionally, the algorithm 
can also be used to estimate the size of the animals and compare 
it with the expected size at each stage of the production cycle to 
ensure that the animals are progressing properly. This would 
enable size thresholds to be established, and this information 
could be used to identify and correct potential problems such as 
inadequate feeding or animal diseases. 

In addition to the potential uses mentioned above, it would 
also be interesting to conduct a comparative study of different 
image segmentation algorithms. Although the U-Net 
architecture has shown promising results in estimating the 
amount of free usable space, it would be worthwhile to 
investigate how other algorithms perform in terms of both 
computational cost and accuracy. This would allow for a better 
understanding of the strengths and weaknesses of different 
algorithms and could lead to the development of more efficient 
and accurate models in the future. Such studies could be useful 
for other applications of computer vision as well, where different 
segmentation algorithms could be compared to identify the best 
performing one.  
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