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1. INTRODUCTION 

Methane (CH4) is a powerful greenhouse gas, second only to 
carbon dioxide (CO2) in terms of its contribution to global 
warming (IPCC, 2021) [1]. Methane has a Global Warming 
Potential (GWP) 85 times that of CO2 over a period of 20 years, 
although CO2 has an atmospheric lifetime of thousands of years, 
while methane disappears in about 10-15 years [1]. The rapid 
decay of methane and its high impact on atmospheric 
temperature make it a primary objective to curb in a timely and 
effective manner the climate change. According to the recent 
report of the International Energy Agency (IEA, 2021) reducing 
anthropogenic methane emissions is one of the most effective 

strategies, including in economic terms, to rapidly reduce the rate 
of warming and contribute significantly to efforts to limit the 
increasing global temperature [2].  

Animal agriculture is responsible for 8 % – 10.8 % of Global 
green House Gas (GHG) emissions as assessed by IPCC 
accounting and, on the basis of lifecycle analysis, the contribution 
of livestock is up to 18% of GHG emissions [3]. Nevertheless, 
livestock farms are typically not equipped by any instrumentation 
suited to quantify the methane emission from animals. 

On the other hand, several studies have been performed to 
evaluate the effect of feed on gas emissions, having the aim of 
allowing a continuous selection of animals [4]. In [5] and [6], a 
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review work discussing the perspectives to methane emission 
mitigation is presented. 
In Figure 1, a generic overview of the IoT based monitoring of 
the CH4 emissions from ruminants is depicted. The role of IoT 
based measurement systems is well described in literature [7], and 
the requirements in the design of an IoT based measurement 
system were analyzed in depth in [8]-[16]. 

In this paper, a brief overview of proposed technique aimed 
to measure the enteric CH4 emissions in ruminants together with 
the description of the first hardware prototype are presented.  

The choice of the CH4 sensor was done by analysing the state-
of-the-art sensing methods, which briefly are reported in the next 
Section. The adopted proposal considers the non-invasive way 
to capture the enteric CH4 emissions in ruminants by using a 
metal sleeve with gas sensing holes and tubes to drive the 
captured gas to the gas sensor. 

The paper is organized as follows. In Section II, a short 
overview regarding the CH4 emissions monitoring in ruminants, 
measurements methods and IoT based sensors for monitoring is 
presented. The integration to the IoT platforms for smart 
livestock management is briefly introduced in Section 3, while in 
Section 4, the proposed monitoring system is described. Lastly, 
in Section 5, several conclusions and future work directions are 
summarized. 

2. METHANE GAS EMISSION MEASUREMENT 

In this section, a short overview of the literature concerning 
the measurement of CH4 produced by ruminants is reported. 
First of all, the enteric CH4 emissions in ruminants can be 
monitored by doing direct or indirect measurements. The 
literature describing measurement methods and sensors systems 
for measuring CH4 production from ruminants is covering a 
wider interest nowadays and many implementation issues are 
discussed in [17]-[23]. Thus, according to the surveyed literature, 
a rough classification of the main available techniques can be 
provided according to following aspects: 

• Duration of the measure time windows. Some approaches aim to 
collect all the daily production of the methane produced by 
animals. Instead, in [24] it is proposed to collect the gas 
emission in reduced time window (i.e., during rumination) to 
estimate the global emissions. In this way, by monitoring the 

cows ruminant behaviour using a wearable sensor, the 
accuracy of the enteric methane emissions could be 
drastically improved. Beyond the mentioned articles above, 
there are also several research works published in literature 
proposing measurement prototypes capable to real-time 
monitoring of the enteric methane emissions in ruminants. 
For example, in [25], a statistical analysis over a prototype 
which has been developed to measure in real-time the 
greenhouse gases emitted by livestock (i.e., in particular, the 
CH4 and CO2) is presented. The measurements were 
obtained during normal grazing conditions, thus in order to 
be consistent, the obtained data from measurements, the 
time-stamps (before and after each measurement) of the 
animal feedings were taken. 

• Capability to relate the emission measurement to individual animals or 
to group of animals. This aspect is mainly relevant when a cross 
comparison has to be operated among animals in terms of 
genetic make-up or feeding. In [26], a prototype that has been 
developed for measuring the single cattle emission of CH4 
and CO2 is presented. The prototype consists of: (i) two gas 
sensors (i.e., one for CH4 and one CO2), (ii) a transceiver, (iii) 
a support type structure attached to the head of the animal 
comprising straps that are attached to this structure, and a 
(iv) a battery. The main disadvantage of the proposed system 
in [26] is related to the existing real risk of damage of the used 
components due to the mechanical shocks. 

• Integration in real livestock farms. In [27], a research study 
reporting experimental results from a real integration of a 
monitoring system for methane emission from ruminants in 
real livestock farms, is presented. The analysis is done 
adopting a Bayesian network which models the relationships 
among various factors that are related to the enteric methane 
emissions from cows. 

• Impact on animals’ welfare. For example, systems like the one 
presented in [28] requires that each cow is trained to use an 
automatic head-chamber system. Main benefits are: (i) the 
simplicity, (ii) non-intrusive method, and (iii) less expensive 
and easy way to be operated. The system described in [28] 
uses a Radio-Frequency Identification (RFID) system for 
each animal. 

3. IOT FOR SMART LIVESTOCK MANAGEMENT 

Internet-of-Things (IoT) technology has been proved that can 
make a breakthrough in livestock management by connecting 
biological information of livestock and environmental 
information obtained by IoT sensors to farmers. This is 
important when the farm is located in remote location and data 
should be transmitted in cloud for remote management [29]-[31]. 

For this specific case, an IoT-based system can be typically 
formed by [32]-[33]: (i) a physical layer (PL) known as a 
perception layer, managing the measurement of physical 
quantities that are desired to be monitored, (ii) a communication 
layer (CL) for data transmission/reception, and (iii) an 
application layer (AP) for agricultural and livestock farming 
applications. For example, in order to sense in real-time the 
greenhouses, at the PL level, the sensor nodes are mounted in 
various areas, like [34]-[36]: (i) farms, (ii) crops, (iii) livestocks, 
etc. The main sensors which forms usually a Wireless Sensor 
Network (WSN) are responsible to measure the temperature, 
humidity, soil moisture, pressure, pH, particulate matter, and not 
least the outdoor area (farm field) and indoor area (greenhouse) 
quality [37], [38]. The CL has the main role to data transmission 

 

Figure 1. Generic scheme for Internet-of-Things based monitoring of enteric 
methane CH4 emissions from ruminants. 
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to AL by using IoT specific telecommunications networks. 
However, in order to implement CL, the available solutions that 
could be adopted should take into account the data rate for the 
information quantity, distance coverage, and power 
consumption. Among the existing low power wide area (LPWA) 
technologies [39], the LoRa (long-range) and NB-IoT (narrow-
band) are the two leading emergent solution. On the other hand, 
LoRaWAN has to be considered as the suitable candidate in low-
power and small data-rate applications, while Wi-Fi should be 
preferred where large data throughput is desired for specific 
applications (e.g., visual and IR cameras). The main used 
protocols for IoT agricultural and livestock farming applications 
are: (i) the Message Queue Telemetry Transport (MQTT) 
protocol, (ii) the Constrained Application Protocol (CoAP), (iii) 
the Extensible Messaging and Presence Protocol (XMPP), (iv) 
the Advanced Message Queuing Protocol (AMQP), (v) the Data 
Distribution Service (DDS) protocol, (vi) the Representational 
State Transfer Hypertext Transfer Protocol (REST HTTP), and 
(vii) the WebSocket protocol. In [40], it is shown that in most 
cases MQTT outperforms the other IoT protocols, while the use 
of CoAP protocol can be considered as the next best option since 
it attains very promising performance in most network 
performance indicators. 

In the next Section, a preliminary description of the proposed 
approach is briefly presented. The implemented IoT based 
measurement system is capable to acquire and manage the 
climate and bioclimate data at farm level and it may use further 
processing by means of machine learning and artificial 
intelligence methods to assist livestock farming. According to 
analysed and surveyed literature, the proposed approach in this 
paper adopts the MQTT broker to allow for the implemented 
IoT sensors to send the acquired data to a central communication 
point. In particular, the Eclipse Mosquitto, which is an open 
source (EPL/EDL licensed) message broker that implements the 
MQTT protocol, was adopted. Eclipse Mosquitto is responsible 
for routing all messages between the sender (i.e., the IoT sensors 
acting as publishers) and the intended recipient (e.g., a Telegraf 
agent acting as the subscriber). Next, the Telegraf can process 
and format the data to make them suitable for InfluxDB (i.e., this 
is a database that stores time series). InfluxDB provides a simple 
syntax to perform queries and efficiently add metadata. Finally, 
Grafana, which is an interactive web application used to easily 
visualize the data, can present to the final user the data provided 
by the IoT sensors. Thus, by using an IoT standard framework, 
such as the one composed by EclipseMosquitto/ 
Telegraf/InfluxDB/Grafana, ensures that data is properly 
organized, enhances compatibility between different systems, 
and allows an easy data evaluation by the end user. 

4. PROPOSED APPROACH 

The paper aims to propose a methane IoT sensor to be 
integrated into a livestock farming. The adopted strategy consists 
in measuring methane concentration produced by Mediterranean 
buffalo in a real farm environment. 

4.1. Enteric CH4 sensing system 

The adopted sensor to measure CH4 is the Guardian NG [41]. 
A picture of the sensor is shown in Figure 2, while the main 
specifications are reported in Table 1 

The Guardian range of infrared gas monitors supplied by 
Edinburgh Sensors offers near-analyser quality continuous 
sampling, measurement and display of target gas concentrations. 

The implemented measured technique is based on dual 
wavelength nondispersive infrared (NDIR) technology. 
NDIR is an optical sensing technique where IR radiation 
interacts with the targeted analyte and it is absorbed depending 
on the specific absorption spectrum. The sensor performs an 
indirect concentration measurement based on the Beer-Lambert 
law [42]: 

𝐼(𝜆) = 𝐼o(𝜆) ∙ e−𝛼(𝜆)∙𝑐∙𝑙  , (1) 

where 𝐼(𝜆) and 𝐼o(𝜆) are the intensities of detected and emitted 

radiation, respectively, at a particular wavelength 𝜆 and its unit is 

W/m2, 𝛼(𝜆) is the gas absorption coefficient (product of gas 
concentration and specific absorptivity of the gas); c is the gas 
concentration; and l is the path length. 

The absorption coefficient 𝛼(𝜆) is specific for each gas; in 
particular, CH4 exhibits an absorption spectrum centred at 3 µm 
and 8 µm. The NDIR gas sensor consists of an IR emitter, 
detector, optical filter, gas chamber, and circuit elements for 
signal processing. The gas stream throughout the chamber is 
obtained by a pump ensuring 1 litre per minute flow rate. The 
presence of the pump slows down the dynamics of the sensor; 
the response time increases with the increase of the pump tube 
length, thus requiring to install the sensor near the gas is drawn 
in. The Guardian range provides high accuracy detection and 
measurement of CH4 gas, where detection level ranges between 
0÷5 % by volume. The sensor provides reliability, accuracy, long-
term stability plus low maintenance requirements, thanks to the 
proprietary infrared sensor technology. The Guardian is supplied 
with LCD display and digital alarm set-point controls, housed in 
a robust plastic IP54 rated enclosure to prevent the ingress of 
particulates and water.  

The Guardian sensor have been preferred to the other sensors 
based on electrochemical transduction [43]-[44], where the active 
component is involved in a chemical reaction with the target gas, 
thus varying a specific physical property (e.g., resistance, 
refractive index, current density). Electrochemical sensors 
properly operate in lower concentration ranges (i.e., few tens of 
ppm), but typically exhibit a drift over the time due to the 
degradation of the sensible component, thus requiring regular 
maintenance and frequent calibrations. 

 

Figure 2 The Guardian NG CH4 gas measurement system [41]. 

Table 1. Guardian NG specifications. 

Parameter Value 

Range 0 ÷ 5 % 

Accuracy ± 2 % 

Response Time T90 ≤ 30 s 

Warm-up time 1 minute (initial) 30 minutes (full specifications) 

Output 4-20 mA analogue output @ 10 V 

Enclosure rating IP54 

Power consumption 13 W typical 
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4.2. Data acquisition system 

The output of the Guardian NG [41] sensor is delivered 
through a current loop. To this aim, a precision resistance of 500 
Ω is used (see Figure 3), where a maximum output voltage of 
10V is obtained which corresponds to the maximum sensing 
range of CH4. Therefore, in order to acquire the signal delivered 
by the sensor, being placed at a distance varying from several 
meters up to several tens of meters, a current loop from the 
sensor to the workstation was created, using a National 
Instruments data acquisition card (Figure 3). 
An acquisition software was developed in LabVIEW 
environment which manage the entire acquisition process. The 
software is therefore divided into two parts: (i) an acquisition part 
and data saving in file, and (ii) a part managing the data sending 
in cloud for further processing and decision control. The 
flowchart of the software architecture is depicted in Figure 4. 

First of all, the time stamp is made, to fix the date and time of 
the acquisition. Then, at the start, the DAQ assistant is 
configured for the declared time stamp, then the data acquisition 
card from channel AI0 acquires the desired number of samples, 
at the desired sample rate in the desired mode, and writes them 
into file. Once the acquisition process receives a stop request, it 
sends to the Gateway the file for further elaboration and enters 
in a wait for next command state. The sampling process through 
the DAQ assistant from the National Instruments data 
acquisition card uses a configuration to acquire 10 samples, at a 
frequency of 50 Hz in continuous mode. 

4.3. Field placement and experimental data 

In the proposed solution, the methane sensor is installed in 
the stable, embedded in an automated milking machine (see 

Figure 5), thus allowing to monitor the gas emission of the 
buffalo always in the same conditions (i.e., during milking). In 
particular, when the animal is confined inside the equipment, the 
pump draws the exhaled gas from small holes realized in a steel 
tube located just in front of it. To ensure that the buffalo keeps 
the face close to the tube and to favour gas belching, a small 
manger has been placed just below the tube and provided with a 
highly appealing feed, as shown in Figure 6. 

The milking machine identifies the animal by means of an 
RFID system. 

In Figure 7 the behaviour of the CH4 concentration over the 
whole day is reported. It exhibits a peculiar shape dominated by 
peaks occurring as a buffalo approaching the sensor input (i.e., 
the buffalo in the milking robot close). The amplitude of peaks 
ranges in the interval of 0-4500 ppm.  

 

Figure 3. Scheme of the DAQ setup. 

 

Figure 4. Flowchart example of the LabVIEW executing code. 

 

Figure 5. Field placement of the CH4 gas emission sensing from ruminants. 

 

Figure 6. Drawing showing the field placement of the CH4 gas emission sensor 
in the milking robot. 

 

Figure 7. Measurement of CH4 concentration over a day. 
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Thanks to a suitable response time, the sensor properly senses 
the emitted gas concentration even in the reduced time windows 
when the buffalo assumes the right position, while providing the 
background values when the milking robot is empty.  

It should be remarked that the emission value can be obtained 
by integrating the gas concentration over the time windows the 
milking machine associate to the specific buffalo, but subtracted 
by the base value, determined as the initial concentration value 
in the same time period. 

4.4. Advantages and drawbacks of the proposed approach 

The proposed technique provides the following advantages: 

• it ensures an accurate measure of instantaneous methane 
concentration; 

• it allows to monitor the methane emissions in specific animal 
condition (i.e., just before milking); 

• it is able to associate the measures to an individual cattle 
thanks to RFID technology; 

• it is suitable to be integrated in real farms; as an example, the 
proposed sensor is successfully integrated in a milking 
machine; 

• it does not impact on animal welfare. 
Nevertheless, the following critical aspects have yet to be 
addressed: 

• methane gas emission is evaluated far from the rumination 
phase, thus limiting the amount of gas the buffalo produces 
during the measure; 

• since the stable is an open system, the instantaneous 
concentration of CH4 can be related to the emissions only if 
it is assumed that the entire expired gas is drawn by the pump 
and the measure is not affected by any other emission 
contribution. 

5. CONCLUSIONS 

In this paper, the recent advances in sensors technologies and 
their IoT-based measurement systems adopted for enteric 
methane emission monitoring in ruminants was presented.  

Moreover, a methane concentration measurement system to 
be installed in real buffalo livestock farm was presented and the 
choice of its components discussed.  

The system, integrated in a milking machine, is designed to 
periodically monitor the emission of individual buffalos in 
specific conditions (i.e., during milking) without significantly 
affecting the animal welfare.  
Future work is directed to investigate a robust technique to relate 
isolated measurements of methane instantaneous concentration 
to the amount of gas emission of a buffalo during the whole day. 
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