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1. INTRODUCTION 

When measurement results are employed in the decision-
making procedures, the associated measurement uncertainty [1], 
[2] should be considered [3]-[8]. The present Standards in 
conformity assessment [9]-[10] define a decision rule, which is 
based on a given tolerance limit and the measurement uncertainty 
associated to the measured value. However, the application of 
this decision rule leaves a risk of taking a wrong decision; this 
risk is generally evaluated only a posteriori. Furthermore, very few 
practical indications are given to define the acceptance limits 
given the expected measurement uncertainty and the Maximum 
Admissible Risk (MAR) of incorrect assessment. 

On the other hand, in the Authors’ opinion, practical 
indications are necessary, particularly when dealing with critical 
measurements, such as the ones involving human health and the 
environment. For this reason, in a previous paper [11], the 
Authors have proposed a decision-making procedure which not 
only considers measurement uncertainty and the tolerance limits, 

but also considers the desired MAR. The procedure proposed in 
[11] yields a decision with an associated risk of wrong decision 
that is kept lower than the assumed MAR.  

In that paper, the decision-making procedure has been 
explained in detail and, to apply it, closed-form formulas have 
been strictly evaluated, under specific assumptions.  

Hence, the aim of this paper is to generalize the proposed 
decision-making procedure, so that it can be applied also when 
the assumptions required to employ closed-form formulas do 
not hold. 

In particular, a more general procedure is needed when the 
equation representing the pdf associated to the measurement 
result is not known, or, if known, the cumulative probability 
function cannot be obtained in closed form. Therefore, under 
these assumptions, Monte-Carlo simulations [12] can provide the 
desired result. 

Hence, this paper implements, in a numerical way, the same 
method proposed in [11], and considers also cases in which it 
cannot be implemented in closed form. 

ABSTRACT 
According to the standards, decision-making procedures generally consider both a threshold that should not be exceeded and the 
measurement uncertainty that is associated to the measurement result. However, the general indications given in the Standards, in their 
examples, refer to the particular case when the measurand distributes according to a normal PDF. But a generalization to other cases is 
not considered and is not straightforward.  
In a previous paper, the Authors proposed a decision-making procedure which not only considers the measurement uncertainty and the 
threshold, but also considers a Maximum Admissible Risk. The proposed procedure leads to decisions taken with a risk of a wrong 
decision lower than the given Maximum Admissible Risk. In particular, closed-form formulas were derived under specific assumptions 
for the distributions of the measured values. Hence, the aim of this paper is to generalize the proposed decision rule and method for 
setting acceptance and rejection limits, by applying the Monte-Carlo method. In this way, it can be generally applied, even when the 
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In next Section 2, the method proposed in [11] is briefly 
recalled, for the sake of clarity, although without entering into 
the mathematical details. Section 3 will then present the 
generalized method and different examples of applications are 
provided. The same case studies considered in [11] are here 
solved by applying the proposed general method, in order to 
validate it. Finally, an experimental validation is given in Section 
4 and some conclusions are drawn in Section 5. 

2. OVERVIEW OF THE PROPOSED DECISION RULE BASED 
ON THE MAXIMUM ADMISSIBLE RISK 

In [11], a decision-making procedure was defined, based on: 

• The given upper (TU) or lower (TL) tolerance limits. 

• The measurement uncertainty and the probability density 
function (PDF) associated to the measurement result. 

• The Maximum Admissible Risk (MAR). 
In this section, the proposed method is briefly recalled, 

without entering into the mathematical details, for which the 
reader is addressed to [11]. 

Given the PDF 𝑝(𝑥) associated to the measurement result, 
the cumulative distribution function (CDF) is evaluated as: 

𝐹𝑋(𝑥) = ∫ 𝑝(𝑡) 𝑑𝑡
𝑥

−∞

 . (1) 

It is well-known that, for every value x, the value taken by the 
CDF FX(x) represents the probability that variable X is lower 
than x; similarly, 1 – FX(x) represents the probability that variable 
X is greater than x. 

Therefore, if the tolerance limits 𝑇U or 𝑇L shall not be 
exceeded and the MAR is given, then, the following inequalities 
shall be satisfied: 

{
𝐹X(𝑇U) ≥ 1 − MAR when 𝑥 < 𝑇U is required

𝐹X(𝑇L) ≤ MAR when 𝑥 > 𝑇L is required
 . (2) 

Therefore, the values of the acceptance limits 𝐴U or 𝐴L (which 
ensure that the probability that the tolerance limits are exceeded 
is exactly equal to MAR) can be found by solving: 

{
𝐴U|𝐹X(𝑇U) = 1 − MAR if 𝑥 < 𝑇U is required

𝐴L|𝐹X(𝑇L) = MAR if 𝑥 > 𝑇L is required
 . (3) 

Of course, the solution of the above equations is strictly 
related to the CDF, that depends on the PDF associated with the 
measurement result.  

In [11], the above equations have been solved in closed form 
under the following assumptions [11]. 

2.1. Normal PDF 

Let us suppose that 𝑝(𝑥) is a normal PDF with standard 

deviation σ. Then, it follows [11]: 

𝐴U,L = 𝑇U,L ∓ √2 𝜎 ⋅ erfinv(1 − 2 ⋅ MAR) , (4) 

where erfinv is the inverse error function.  
Therefore, to obtain the acceptance limit 𝐴U or 𝐴L, the 

tolerance limit is shifted to the left (or right) by quantity 

√2 ⋅ 𝜎 ⋅ erfinv(1 − 2 ∙ 𝑀𝐴𝑅). In particular, according to the 
recommendations in [3]: 

o The limit is shifted to the left when 𝑥m ≤ 𝑇U is required 
and guarded acceptance is applied. 

o The limit is shifted to the left when 𝑥m ≥ 𝑇L is required 
and guarded rejection is applied. 

o The limit is shifted to the right when 𝑥m ≥ 𝑇L is required 
and guarded acceptance is applied. 

o The limit is shifted to the right when 𝑥m ≤ 𝑇U is required 
and guarded rejection is applied. 

2.2. Uniform PDF 

Let us suppose that 𝑝(𝑥) is a uniform PDF with a support 
width of 2 · a. Then, it follows [11]: 

𝐴U,L = 𝑇U,L ∓ 𝑎 ⋅ (1 − 2 ⋅ MAR) , (5) 

that is, the acceptance limit is obtained by shifting the tolerance 

limit to the right/left by quantity 𝑎 ⋅ (1 − 2 ⋅ MAR). The 
direction of the shift follows the same considerations as those 
given in Section 2.1. 

2.3. Triangular PDF 

Let us suppose that 𝑝(𝑥) is a symmetrical triangular PDF with 
a support width of 2 · a. Then, it follows [11]: 

𝐴U,L = 𝑇U,L ∓ 𝑎 ⋅ (1 − √2 ∙ MAR) (6) 

that is, the acceptance limit is obtained by shifting the tolerance 

limit to the right/left by quantity 𝑎 ⋅ (1 − √2 ∙ MAR). The 

direction of the shift follows the same considerations as those 
given in Section 2.1. 

2.4. Trapezoidal PDF  

Let us suppose that 𝑝(𝑥) is a symmetrical trapezoidal PDF 
with a support width of 2 · a (major basis), and the ratio between 

the minor and the major bases is . Then, it follows [11]: 

𝐴U,L = 𝑇U,L ∓ 𝑎 ⋅ (1 − √2 ∙ MAR ⋅ (1 − 𝛽2)) , (7) 

that is, the acceptance limit is obtained by shifting the tolerance 

limit to the right/left by quantity 𝑎 ⋅ (1 − √2 ∙ MAR ⋅ (1 − 𝛽2)). 

The direction of the shift follows the same considerations as 
those given in Section 2.1. 

3. APPLICATION OF THE MONTE-CARLO SIMULATIONS IN 
THE DECISION-MAKING PROCEDURE BASED ON THE 
MAXIMUM ADMISSIBLE RISK 

In the previous section, the method proposed in [11] has been 
briefly recalled.  

This procedure defines a clear relationship between tolerance 
limits, measurement uncertainty, acceptance limits and risk of 
exceeding the tolerance limits. Consequently, given a tolerance 
limit and two of the other quantities, the third one can be readily 
obtained. In [11] this procedure was applied to obtain the 
acceptance limit, having set uncertainty and MAR, under the 
assumption that the PDF of the distribution of values that can 
be reasonably attributed to the measurand was one of those 
considered in Section 2. 

Considering only these PDFs is justified by the fact that they 
represent most of the practical situations for measurement 
results and their associated uncertainties. 

However, since other situations cannot be a priori excluded, in 
order for the proposed decision-making procedure to be 
generally applied, a general method valid for whichever PDF 
should be defined. 

3.1. The general method 

In the method proposed in [11] and briefly recalled in Section 
2, the key point is the evaluation of the cumulative distribution 
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function. When the PDF associated to the measurement result is 
known, together with its mathematical equation, and this is 
integrable, it is possible to find the mathematical equation of the 
cumulative distribution function, so that a closed-form formula 
can be found for the evaluation of the acceptance limits 𝐴𝑈 or 𝐴𝐿 

(as recalled in Section 2 [11]). 
When the above conditions are not met, the proposed 

method does not lose validity, provided that a numerical method 
can be implemented. 

In particular, numerical methods based on Monte Carlo 
simulations are already recommended [12] whenever a 
mathematical function representing the distribution of values 
that can be reasonably attributed to the measurand is not 
available, such as, for instance, when the measurand is not 
measured directly, but is determined through other quantities 
through a functional relationship [2] and the Central Limit 
Theorem cannot be applied [12]. 

By applying a Monte Carlo simulation, or by experimentally 
repeating the measurement procedure, if possible, N values are 
obtained for the measurand, and their PDF can be approximated 
by the histogram of the relative frequencies [12]. 

When N values are available, the best estimate of the 
measurand is generally supposed to be their mean value. Since 
we have to determine if the value of the measurand is lower or 
greater than a given tolerance limit, then let us suppose initially 
that the tolerance limit is exactly the mean value of the N 
measured values. This means that there is a 50 % probability to be 
below the tolerance limit and a 50 % probability to be above it. 

The histogram of the N measured values allows one to 
evaluate its associated CDF in a numerical way as: 

𝐹X(𝑥) = ∑ ℎ(𝑥)

𝑥

−∞

  (8) 

where, for each class of the histogram, h(x) represents the relative 
frequency of the class. 

Let us now first consider the situation where the property of 
the measurand must be below the given tolerance limit TU and let 

us suppose that the maximum admissible risk to be above the limit 
TU is set to MAR. Since the CDF is a function that can assume 
all values – and only the values – between 0 and 1, MAR can be 
set between 0 and 1, where 0 corresponds to a percentage of 0 % 

and 1 corresponds to 100 % (100MAR). 
Under the above assumption, on the obtained curve FX(x), 

the point corresponding to 1 – MAR is numerically found. This 
point, denoted as xMAR, satisfies to: 

𝑥MAR|𝐹X(𝑥MAR) = 1 − 𝑀𝐴𝑅 (9) 

and corresponds to that specific value for which the probability 
that the measurand is greater than it is exactly equal to MAR. 

Let us now consider the opposite situation where the 
measurand must be above the given tolerance limit TL. In this 
case, the point corresponding to MAR on the FX(x) function is 
numerically found. This means to find the xMAR value that 
satisfies to: 

𝑥MAR|𝐹X(𝑥MAR) = 𝑀𝐴𝑅 , (10) 

which corresponds to that specific value for which the 
probability that the measurand is lower than it is exactly equal to 
MAR. 

Once xMAR is found, by applying either (9) or (10), the 
difference between this value and the tolerance limit is evaluated 
as: 

𝛥 = 𝑥MAR − 𝑇U,L . (11) 

It should be noted that  can be both positive or negative, 
depending on where, on the cumulative probability curve, the 
point xMAR is found, to the right or the left of TU or TL. 

Since the mean value of the considered histogram has been 
considered equal to the tolerance limit, thus meaning that this 
value corresponds exactly to 0.5 in the CDF, it can be stated that, 
if a risk lower than 0.5 is considered (as it seems to be the most 
likely situation to occur), then:  

• If 𝑥 < 𝑇U is required, the desired value 𝑥MAR will be at the 

right of 𝑇U, so that  will be positive. 

• If 𝑥 > 𝑇L is required, the desired value 𝑥MAR will be at the 

left of 𝑇L, so that  will be negative. 
The evaluation of xMAR on the CDF, by applying either (9) or 
(10), leads to easily evaluate the acceptance limits as: 

𝐴U,L = 𝑇U,L − 𝛥 = 2 ∙ 𝑇U,L − 𝑥
MAR

 (12) 

This means that, in order not to exceed the tolerance limit 
TU,L with a risk greater than MAR, the initial histogram should be 

shifted on the left/right by quantity , i.e. the histogram should have 
a mean value equal to 𝐴U,L. Hence: 

• If 𝑥 < 𝑇U is required and the maximum admissible risk that 

𝑥 > 𝑇U is set to MAR, then this is surely satisfied whenever 
the measured value is lower than AU. 

• If 𝑥 > 𝑇L is required and the maximum admissible risk that 

𝑥 < 𝑇L is set to MAR, then this is surely satisfied whenever 
the measured value is greater than AL. 

It can be readily checked that AU and AL represent the 
acceptance limits when guarded acceptance is required with a 
guard band that ensures that the probability of exceeding TU (or 
TL) is not greater than MAR for the considered PDF. 

To verify the above statement, it is possible to find and draw 
the CDF associated to the shifted histogram and to evaluate its 
value in correspondence to TU,L. Of course, the CDF associated 
to the shifted histogram is simply the shifted CDF associated to 
the original histogram. In the shifted CDF, the acceptance limit 
AU or AL, is exactly the value for which the CDF is equal to 0.5. 
On the other hand, it can be verified that the CDF’s value in TU 
or TL is exactly, respectively, 1 – MAR or MAR. 

3.2. Comparison with the results obtained in closed-form  

In this Section, the results obtained by applying the method 
described in Section 3.1 are shown. In particular, in order to 
validate the proposed general method, the same examples given 
in [11] are considered, where the concentration of a pollutant in 
water must be lower than a given tolerance limit, as summarized 
in Table 1. 

In Table 1, TU represents the upper tolerance limit, MAR the 
maximum admissible risk and AU is the acceptance limit, as 
obtained with the closed-form formulas derived in [11] and 
recalled in Section 2. Furthermore, when considering the 
distribution of the measured values (the readers are addressed to 

Table 1. Considered numerical example and values of the acceptance limits 
obtained with the closed-form formulas defined in [11]. 

𝑻𝐔 MAR pdf type 𝑨𝐔 

50 mg/l 0.05 Normal (𝜎 = 5 mg/l) 41.8 mg/l 

50 mg/l 0.05 Uniform (𝑎 = 10 mg/l) 41 mg/l 

50 mg/l 0.05 Triangular (𝑎 = 10 mg/l) 43.2 mg/l 

50 mg/l 0.05 Trapezoidal (𝑎 = 10 mg/l; β = 0.5) 42.7 mg/l 
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[11] for the details):  is the standard deviation of the normal 

pdf; 𝑎 is the semi-width of the considered pdf and β is the ratio 
between the two bases, in the case of the trapezoidal pdf.  

For all examples given in Table 1, the following assumption 
is made, when applying the proposed general method based on 
Monte-Carlo simulations: N = 500,000 iterations are considered 
and a number of classes equal to N/10 is taken, to obtain the 
histogram of the simulated values, according to the assumed 
PDF (third column in Table 1). 

3.2.1. The measurement results distribute according to a normal 
posterior PDF 

When the measured values are supposed to distribute 
according to a normal PDF, the histogram of the relative 
frequencies is given in Figure 1 and the following procedure is 
applied.  

• The cumulative probability function (blue line in Figure 2) 
is numerically evaluated by applying equation (8). 

• It can be noted that, on this function, the probability of 
exceeding 𝑇U is exactly 50 %.  

• On this function, the point xMAR corresponding to a 
probability 1 – MAR (0.95 in the considered example in 
Figure 2) is numerically obtained, as in equation (9). 

• The difference 𝛥 = 𝑥MAR − 𝑇U is evaluated, which 
corresponds to how far xMAR is from TU.  

• The new acceptance limit AU is found by applying equation 
(12).  

By applying the above method, it follows AU = 41.8 mg/l, 
which corresponds exactly to the value obtained when the 
closed-form formulas are applied [11] (see first row in Table 1). 

This means that, when the measured value is equal to AU, then 
there is a probability of exceeding TU exactly equal to MAR (5 % 

the considered example). This means that every measured value 
lower than AU will provide a probability of exceeding TU lower 
than the required MAR. 

To verify the proposed numerical approach, let us consider 
the shifted CDF (cyan line in Figure 2), obtained by shifting to 

the left by quantity  the original CDF. It is worth noting that 
the cumulative distribution function is shifted to the left because, 
according to the example, an upper tolerance limit was assumed. 
In the case of a lower tolerance limit, the cumulative probability 
function should be shifted to the right. 

It can be immediately seen (Figure 2) that, on the shifted 
CDF, the probability of exceeding TU is exactly MAR (5 % in 
this example). 

3.2.2. The measurement results distribute according to a uniform 
posterior PDF 

When the measured values are supposed to distribute 
according to a uniform PDF with the characteristics given in 
Table 1, the histogram of the relative frequencies is given in 
Figure 3. Figure 4 shows the CDF (blue line) associated to the 
histogram of Figure 3, and the shifted CDF (cyan line) obtained 
as explained in the previous section. As described in detail in 
Section 3.2.1, this procedure allows one to find the acceptance 
limit AU, which should not be exceeded to have a risk lower than 
MAR to exceed TU. In particular, it follows AU = 41 mg/l, which 
corresponds exactly to the value obtained when the closed-form 
formulas are applied [11] (see second row in Table 1). 

3.2.3. The measurement results distribute according to a triangular 
posterior PDF 

When the measured values are supposed to distribute 
according to a triangular PDF with the characteristics given in 

 

Figure 1. Histogram of the measured values in the case of Table 1, first row.  

 

Figure 2. Cumulative distribution function (blue line) associated to the 
histogram of Figure 1 and shifted cumulative distribution function (cyan line). 

 

Figure 3. Histogram of the measured values in the case of Table 1, second 
row.  

 

Figure 4. Cumulative distribution function (blue line) associated to the 
histogram of Figure 3 and shifted cumulative distribution function (cyan line).  

xMAR AU xMAR AU 
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Table 1, the histogram of the relative frequencies is given in 
Figure 5. Figure 6 shows the CDF (blue line), associated to the 
histogram of Figure 5, and the shifted CDF (cyan line) obtained 
as explained in Section 3.2.1. As described in detail in that 
section, this procedure allows one to find the acceptance limit 
AU, which should not be exceeded to have a risk lower than 
MAR (0.05 % or 5 % in this example) to exceed TU. In 
particular, it follows AU = 43.2 mg/l, which corresponds 
exactly to the value obtained when the closed-form formulas are 
applied [11] (see third row in Table 1). 

3.2.4. The measurement results distribute according to a 
trapezoidal posterior PDF 

When the measured values are supposed to distribute 
according to a trapezoidal PDF with the characteristics given in 
Table 1, the histogram of the relative frequencies is given in 
Figure 7. Figure 8 shows the CDF (blue line), associated to the 
histogram of Figure 7, and the shifted CDF (cyan line) obtained 
as explained in Section 3.2.1. As described in detail in that 
section, this procedure allows one to find the acceptance limit 
AU, which should not be exceeded to have a risk lower than 
MAR (5 % in this example) to exceed TU. In particular, it follows 
AU = 42.7 mg/l, which corresponds exactly to the value obtained 
when the closed-form formulas are applied [11] (see last row in 
Table 1). 

4. EXPERIMENTAL VALIDATION  

In this section, the proposed method is experimentally 
validated. 

As a general example, let us consider the measurement of the 
RMS value of a sinusoidal voltage, whose amplitude is not strictly 
constant, but varies according to a given PDF.  

The aim of this experiment is to define an acceptance limit, 
having set a tolerance limit for the admissible variability of the 
voltage signal amplitude, and a MAR of wrong decision. 

As a PDF of the variability of the sinusoidal amplitude, an 
asymmetrical trapezoidal probability distribution is assumed, and 
25,000 different random values are extracted.  

A voltage signal is then generated, using the 25,000 extracted 
values as the rms values of the signal as follows: for every rms 
value, 4 periods are generated, so that, in total, we have 100,000 
periods of the voltage signal (25,000 groups of 4 periods). 

The signal is acquired, and the RMS value is evaluated for 
every group, by considering, in particular, only the two central 
periods (and avoiding the first and last periods which could be 
affected by transient phenomena, due to the change in the 
parameters). Figure 9 shows the obtained histogram of the 
cumulative frequencies associated to the evaluated RMS values. 

In Table 2, the considered values of the tolerance limits TU,L 
and the value of MAR are reported. According to the procedure 

 

Figure 5. Histogram of the measured values in the case of Table 1, third row.  

 

Figure 6. Cumulative distribution function (blue line) associated to the 
histogram of Figure 5 and shifted cumulative distribution function (cyan line).  

 

Figure 7. Histogram of the measured values in the case of Table 1, last row.  

 

Figure 8. Cumulative probability function (blue line) and shifted cumulative 
probability function (cyan line) associated to the histogram of Figure 7.  

 

Figure 9. Histogram associated to the voltage RMS values.  

xMAR 

xMAR AU xMAR AU 
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discussed in Section 3.1, the sinusoidal signal is generated, at first, 
in such a way that the considered tolerance limit TU,L is the same 
as the mean value of the 25,000 measured values. 

Let us first suppose that the voltage RMS value must be lower 
than 𝑇U. Then, by applying the proposed method, Figure 10 can be 
drawn and the acceptance limit 𝐴U can be found as AU = 4.11 V 
(dashed pink line in Figure 10). In particular, the blue line in 
Figure 10 corresponds to the CDF - numerically evaluated as in 
(8) - associated to the histogram in Figure 9. As expected, the 
obtained CDF shows that the probability of exceeding TU is 0.5 
(green dashed lines).  

The acceptance limit AU can be obtained from (12), after 
having shifted the CDF to the left by (11). The shifted CDF is 
represented by the cyan plot in Figure 10, from which it can be 
readily checked that the probability of exceeding TU is now 0.05.  

A new set of 25,000 sinusoidal signals was then generated, in 
such a way that the mean value of the measured values 
corresponds to AU. The number of measured values exceeding 
TU was found to be the 5 % of the total number of measured 
values, thus confirming the validity of the proposed method. 

For the sake of completeness, let us now suppose, on the 
other hand, that the voltage RMS value must be greater than TL. 
Then, by applying the proposed method, Figure 11 can be drawn 
and the acceptance limit AL can be found as AL = 4.51 V (dashed 
pink line in Figure 11). 

In this case, the CDF is shifted to the right by (11), so that the 
AL value is obtained from (12). A similar experimental validation 
as the one above mentioned was implemented and the validity of 
the method was confirmed in this case too. 

5. CONCLUSIONS 

This paper has generalized the method proposed in [11] 
aimed at providing a method for proving conformity capable of 
ensuring that, given a measurement uncertainty, the risk of a 
wrong declaration of conformity is kept below a desired MAR 
value. 

The method proposed in [11] was applied to the case when 
the known PDFs representing the distribution of values that can 
be reasonably attributed to the measurand can be expressed by 
mathematical integrable functions, so that both the 
corresponding CDFs and the acceptance limits can be derived in 
closed form. This way, when the measurement result lies inside 
the acceptance interval, the risk of exceeding the tolerance limits 
remains lower than the desired MAR. 

However, cases exist, especially when the measurand cannot 
be measured directly [12], in which the PDF representing the 
distribution of values that can be reasonably attributed to the 
measurand cannot be expressed in terms of a known 
mathematical function. In such cases, a Monte Carlo simulation 
is recommended to estimate such distribution of values [12]. 

This paper has extended the method proposed in [11] to this 
case and has proved that suitable acceptance limits can be 
obtained from a Monte Carlo simulation too, capable of ensuring 
that, if the measurement result remains within the obtained 
acceptance interval, the risk of exceeding the tolerance limits is 
not greater than the desired MAR also in this case. 

The proposed method has been validated both in simulation, 
by comparison with the case studies discussed in [11], and 
experimentally, by considering conformity of the amplitude of a 
sinusoidal signal to given tolerance limits for its variability. 

The obtained results proved that the method can be usefully 
employed. 
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