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1. INTRODUCTION 

Water is a vital resource for human survival and 
socioeconomic development, rivers and reservoirs play a 
fundamental role in society, such as public supply, agricultural 
irrigation, hydroelectric power generation and industrial 
activities. Monitoring water temperature in reservoirs and rivers 
is an important practice to understand and assess environmental 
conditions and the effects of climate change and human activities 
on these environments. The continuous monitoring of water 
temperature is essential for understanding seasonal patterns, 
daily fluctuations, and long-term trends, providing valuable 
information for water resource management and the 
conservation of aquatic ecosystems [1]. These data are essential 
for mitigating possible negative effects on biodiversity and 
ecological balance. 

The lack of monitoring of water temperature in water bodies, 
such as rivers and reservoirs, can lead to a series of problems and 
adverse impacts on aquatic ecosystems and human activities 
related to water, including water quality and its impact on aquatic 
life. Significant changes in temperature can affect several 
physicochemical parameters of the water, which in turn 
influences reproduction, growth and, in extreme cases, can lead 
to increased mortality of aquatic animals. Furthermore, 
Inadequate water temperatures caused by climate change can 
have substantial impacts on the spread of waterborne diseases, 
such as bacterial proliferation [2]. This increases the risk of 
waterborne diseases, posing a challenge to public health. 

The methods employed for monitoring water quality cover a 
spectrum ranging from traditional manual methods to the most 
advanced, based on automated technology, which use wireless 
sensor networks [3]. Manual methods require immersing 
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thermometers in water to obtain temperature readings, while 
automatic methods involve the use of probes or temperature 
sensors that are installed at fixed points and transmit the data to 
recording stations. However, it is important to point out that, in 
practice, such devices are not widely present in most rivers or 
reservoirs. Measurements are often performed manually, but not 
continuously, resulting in time gaps in monitoring. 

In view of this, it becomes necessary to seek alternative 
methods to estimate the water temperature in such environments 
so that it is possible to monitor it. A promising approach for 
monitoring water temperature is the application of statistical 
models based on machine learning, which are able to estimate 
the temperature based on historical data and relevant 
environmental variables. There are several applications and 
different machine learning models for predicting water 
temperature widely used in many fields of study [4]. These 
models are able to analyse large datasets and identify complex 
patterns, which can help to estimate water temperature at 
different times and locations. Statistical machine learning models 
such as artificial neural networks and regression models have 
shown good performance in predicting water temperature in 
different bodies of water. They can capture the complexity of the 
data and provide accurate estimates [5]. 

The two most used categories are deterministic models and 
statistical models. While process-based deterministic models 
provide a clear physical understanding of the energy balance and 
have their merits, they are often complex and require multiple 
inputs. Statistical models, on the other hand, allow for a more 
simplified approach, using the statistical relationships between 
the variables to estimate the water temperature efficiently [6]. 

Several researches were conducted using machine learning 
models to estimate water temperature in different contexts. 
Exploring different approaches to estimating river water 
temperature, considering the relationship with air and water 
temperature [7]. Although these researches have focused mainly 
on temperature prediction in rivers and reservoirs, as far as we 
know, there are no studies that explore the use of these trained 
models to develop virtual water temperature monitoring sensors 
in these environments, considering related meteorological 
variables. 

In this sense, the following research question arises: “how to 
use statistical machine learning models to estimate water 
temperature in rivers and reservoirs, by combining historical data 
and air temperature, in order to develop an effective monitoring 
web application through virtual sensors?” This issue is motivated 
by the need to continuously monitor water temperature, aiming 
at proper management of water resources, preventing the growth 
and proliferation of pathogenic organisms, such as harmful 
bacteria and algae, and preserving water quality, with impacts 
positive effects on human health and the aquatic ecosystem. 

Given this context, the objective of this research is to 
investigate a variety of statistical models using only air and water 
temperature variables, training them and evaluating their 
performance through validation tests. The final purpose is to 
compare the accuracy of the obtained results, in order to 
determine the most adequate model and approach to estimate 
the water temperature in rivers and reservoirs. From this, it is 
intended to develop a web application capable of providing 
reliable estimates of water temperature in real time. It is expected 
that this study will contribute significantly to the management of 
reservoirs and rivers, providing valuable information for 
informed decision-making. In addition, it is expected that the 
results of this research can inspire and drive theoretical advances, 

innovative methods and practical solutions in other areas of 
research, in addition to providing relevant empirical evidence for 
the scientific community. 

The work is organized into several sections after this 
introduction. Section 2 discusses the related works that served as 
the basis for the development of the research. Then, in section 
3, the materials and methods used are described. In section 4, we 
present the models that were adopted in the study. The metrics 
to evaluate the performance of the models are shown in section 
5. Section 6 discusses the technologies used to develop the virtual 
sensors interface. The results of model validation are presented 
in section 7. Finally, section 8 brings the conclusion covering the 
main results and conclusions of this work. 

2. RELATED WORK 

Machine learning algorithms have stood out as fundamental 
components in digital solutions, attracting considerable attention 
in the digital area, in addition to being frequently used to assist 
in effective decision-making [8]-[9] They are widely used for 
measuring physical properties, exhibiting good predictive 
performance [10]. Machine learning has proven to be an efficient 
way of monitoring in several applications and sectors [11]-[12] 
This monitoring is performed through virtual sensors as an 
alternative to traditional physical sensors, which may have several 
limitations and costs [13]. 

Through virtual sensors, it becomes feasible to develop low-
cost sensors with high precision, based on machine learning. This 
enables precise mapping of variables that, otherwise, could be 
costly when using traditional sensors [14]. In [15], a review of 
several existing virtual applications was carried out, focusing on 
virtual sensors and calibration of these devices, aiming at their 
application in environments that demand reliable sensing. 

The use of virtual sensors as an alternative to physical sensors, 
aiming at reducing hardware costs, was explored in [16]. The 
authors used real data from sensor devices to compare it with 
virtual data using machine learning techniques. The result of this 
work was the implementation of a prototype designed to 
measure lighting attributes in industrial applications. 

In [17], the authors propose a virtual sensor approach based 
on models such as computational fluid dynamics (CFD) for 
temperature monitoring in greenhouses. The main objective was 
to develop a real-time three-dimensional (3D) simulator using 
virtual sensors. A well-calibrated physical sensor was installed to 
collect and analyse the CFD. The quantitative result of the 
performance of the controller was that it reached the 25 °C set 
point in less than 45 seconds and maintained the desired 
temperature with an accuracy of ±0.3 °C. The result showed that 
virtual sensing can be applied in large greenhouses to monitor 
temperature, however, the 3D simulator requires hardware with 
good performance. The purpose in the present study is to offer 
an accessible interface for any type of device. 

In [18], an approach was proposed to create virtual sensors in 
solar power plants using machine learning algorithms in order to 
replace defective sensors in an automated way. The authors 
employed IoT sensors and used the faulty sensor's historical data 
as predictors. The results showed that the linear regression 
obtained a MAE of 14299, the artificial neural network reached 
a MAE of 13922, and the Bayesian Ridge Regression presented 
a MAE of 14299. The main difference between this study and 
the current work is that, in solar energy, the algorithms are 
automatically trained using data from existing sensors so that 
when the physical sensors fail, the virtual sensors can take over 
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monitoring. On the other hand, in the present study, data 
collection was performed manually, depending exclusively on 
virtual sensors for monitoring. 

In the context of estimating the volume of water in the soil, 
machine learning models are also employed. In [19], the authors 
used an IoUT sensing system with a low-cost soil moisture 
sensor. An augmented method was introduced that combines 
soil moisture sensor data with RSSI information to improve 
estimation accuracy. A comparison was also made with the 
virtual sensor, in which the increased sensor had a superiority 
(RMSE) of 1.84%. The main discrepancies with the present study 
are the sensor technologies using a set with a LoRaWAN 
transceiver for estimation and the application site with the 
objective of estimating the water volume. 

The importance of monitoring systems to ensure 
sustainability and efficiency has been commonly explored. In 
[20], the authors analyse the state of the art of flexible electronics 
for IoT with a focus on sustainability and changes in design skills 
and tools, also recognizing the importance of monitoring as 
highlighted in this study. However, it does not mention specific 
evaluation metrics, as it does not focus on testing models but on 
analysing the state of the art and sustainability considerations. 

Regarding water temperature monitoring, there is a lack of 
research that explores water temperature monitoring using 
virtual sensors. However, there are studies that apply machine 
learning techniques to estimate water temperature. In [21], the 
authors developed three distinct models of machine learning, 
namely the Artificial Neural Network (ANN), Gaussian Process 
Regression (GPR), and Aggregated Decision Trees with 
Bootstrap (BA-DT). In addition, standard models such as linear 
regression, non-linear regression, and stochastic models were 
developed and compared using different meteorological stations. 
The results obtained indicated that machine learning models are 
effective tools for predicting river water temperatures. In 
particular, for station No. 3, the best model was the GPR, which 
presented an RMSE of 1.4950, a correlation coefficient R of 
0.9897, and a NSC coefficient of 0.9764. 

It is worth noting that the study only evaluates the models and 
does not create a virtual sensor to estimate the river water 
temperature. It is therefore considered a research opportunity to 
propose the deployment of virtual sensors to compensate for the 
lack of physical sensors. 

3. MATERIALS AND METHODS 

3.1. Study site and data collection 

Pernambuco, a state located in northeastern Brazil, have a 
significant network of rivers and important reservoirs. These 
bodies of water play essential roles, providing water resources to 
supply cities, rural communities and vital agricultural activities 
for irrigating crops, contributing to access to clean water, human 
and economic development in the region. In addition to being 
sources of hydroelectric power, they are also used for river 
transport, trade and tourism. In addition to economic and social 
benefits, these water bodies have significant ecological value, 
harbouring a variety of plant and animal species. They play an 
important role in preserving biodiversity and maintaining 
ecosystems. 

In the present study, information was obtained from the 
rivers and reservoirs of Pernambuco, including their names and 
locations, provided by the Pernambuco Water and Climate 
Agency (APAC). Data referring to water temperature in rivers 
and air were provided by the same source. In total, 55 reservoirs 

and 45 rivers were considered for analysis. When examining the 
data, it was found that the measurements were performed 
manually in the period from 2011 to 2022, recording only water 
and air temperature at the time, date and place of collection, 
unfortunately other variables were not recorded. This data will 
be used as input and output for model training. 

However, the datasets for each reservoir and river obtained 
were limited, with some of them containing less than 20 records. 
Given this limitation, it was decided to train the model using data 
from all rivers (for training rivers) and reservoirs (for training 
reservoirs), in order to obtain a more comprehensive and 
representative data set. 

As a result, a total of 1919 records were used, 759 referring to 
rivers and 1160 to reservoirs. This approach allowed obtaining a 
more robust and suitable data set for model training, considering 
the limited availability of individual data for each body of water. 

The next step consisted of calculating the correlation 
coefficient, with the aim of identifying the relationship between 
the two variables: air temperature and water temperature. This 
calculation makes it possible to determine the quantitative nature 
of this linear relationship, as well as its intensity and direction. 
The correlation coefficient can assume negative values, 
indicating an inverse or negative relationship, that is, when one 
variable increases, the other tends to decrease. Positive values, 
on the other hand, indicate a direct or positive relationship, that 
is, when one variable increases, the other tends to increase as 
well. A value of zero indicates no linear correlation between 
variables. For this purpose, Pearson's correlation coefficient 
formula was used, a statistical measure widely adopted to 
quantify the linear relationship between variables. Equation (1) 
represents the calculation performed to determine the value. 

𝑟 =
∑ [(𝑥𝑖  −  𝑥̄) ∙ (𝑦𝑖  −  𝑦̅)]𝑛

𝑖=1

𝑛 ∙ 𝜎𝑥 ∙ 𝜎𝑦

 , (1) 

where 𝑟 is the correlation coefficient, Σ represents the sum, 𝑥 

and 𝑦 are the values of the two variables, 𝑥̄ and 𝑦̅ are the means 

of the values of 𝑥 and 𝑦, respectively, 𝑛 is the number of pairs 

of observations. 𝜎𝑥 and 𝜎𝑦 are the standard deviations of 

variables x and y, respectively. The result of the calculation can 
be seen in Table 1.  

From that point on, the data were divided into two distinct 
sets: one set comprising 80 % of the data, intended for the model 
adjustment phase, and another set comprising 20 % of the data, 
used for validating the model obtained after training. Before 
proceeding with the training and validation of the model, the 
normalization of the input and output data was performed using 
a technique that seeks to keep the variables within a specific 
range. This technique involves scaling the input and output data 
in order to obtain a normalized distribution, that is, with zero 
mean and unitary standard deviation. The equation (2) involves 
the operation of subtracting the mean of the data and dividing 
by the standard deviation. 

 𝑥norm =
𝑥 − 𝑥mean

𝑥std

 , (2) 

where 𝑥norm is the normalized value, x represents the data value, 

𝑥mean represents the mean of the data set, and 𝑥std represents 
the standard deviation of the data set. 

Table 1. Air & water temperature correlation. 

Rivers Reservoirs 

0.70 0.61 

https://drive.google.com/drive/folders/1vzkthKQ5u3r8qrEEdY8oFTUjVzA3-MJo?usp=sharing
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After completing the model training and validation process, it 
is essential to reverse the normalization applied to the data, in 
order to present them in the same structure as the original data 
set. This reversal step is extremely important to ensure that the 
results obtained by the model are correctly interpreted and can 
be compared with the original data. In this way, it is possible to 
obtain an accurate and contextualized analysis, considering the 
scale and characteristics of the original data. 

4. WATER TEMPERATURE MODEL 

4.1. Linear regression model 

Linear regression is a statistical method used to model the 
relationship between a dependent variable (output) and one or 
more independent variables (or predictors). It is one of the 
simplest and most widely used methods in data analysis. One of 
the main advantages of linear regression is its ability to make 
predictions. Based on the patterns observed in the data, it is 
possible to estimate future values of the dependent variable with 
reasonable accuracy, providing valuable insights for planning and 
decision making [22]. Simple linear regression involves only one 
independent variable and one dependent variable. The general 
formula for simple linear regression is given by equation 3. 

𝑌 =  𝛽0  + 𝛽1 ∙ 𝑋1 , (3) 

where 𝑌 is the dependent variable (output) that we are trying to 

estimate, 𝛽0 is the constant intercept of the regression line, which 

represents the value of y when x is equal to zero, 𝛽1 is the 
regression coefficient (or slope) which represents the mean 
change in the dependent variable associated with a unit change 

in the independent variable. and 𝑋1 is the independent predictor 
variable. The objective of linear regression is to estimate the 

values of the 𝛽0 and 𝛽1 coefficients so that the regression line 
fits better to the observed data. This is done by minimizing the 
sum of squares of the residuals (or errors) between the observed 
values of y and the values predicted by the regression equation. 
The linear regression model can be expanded to incorporate 
several independent variables, however, in this study it is 
important to emphasize that we are limited to considering only 
the air temperature as a predictor variable. Therefore, based on 
this single variable, we will use the simple linear regression model 
to perform the analyses and obtain estimates. 

4.2. Model Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is a widely used approach 
in training deep learning models. This is the algorithm commonly 
used to solve optimization problems, adjusting the parameters 
iteratively through the learning rate [23]. The SGD formula, 
given by equation (4), is a variation of the classic gradient descent 
algorithm, which adjusts the parameters of a model to minimize 
a cost function. 

𝑊(𝑡 + 1) =  𝑊(𝑡) −  𝛼 ∇𝑤 (𝐽(𝑊(𝑡), 𝑥(𝑖), 𝑦(𝑖))) , (4) 

where 𝑊(𝑡 + 1) is the new value of the parameters at time 𝑡 +
1, 𝑊(𝑡) is the current value of the parameters at time 𝑡, 𝛼 is the 
learning rate, which controls the size of the parameter update 

steps, ∇𝑤 (𝐽(𝑊(𝑡), 𝑥(𝑖), 𝑦(𝑖))) is the gradient of the loss 

function 𝐽 with respect to the parameters 𝑊(𝑡), calculated based 

on a sample of data (𝑥(𝑖), 𝑦(𝑖)) specific. This formula 

represents the updating of model parameters using a stochastic 
approach, where the updating is done iteratively for each data 

sample individually. On each iteration, the loss function gradient 
is calculated based on this sample and used to adjust the 
parameters. 

4.3. Model Extra Tree Regressor 

Extra Tree Regressor is a machine learning algorithm based 
on decision trees that stands out for its efficiency and capacity to 
deal with regression problems. Is a relatively recent machine 
learning technique, which was proposed as an extension of the 
Random Forest algorithm and it was developed to further 
improve the performance and generalization of the model in 
relation to the Random Forest [24]. The main feature of Extra 
Tree Regressor is that it introduces additional randomness in the 
construction of decision trees, making them even more diverse. 
While traditional decision trees split the data at each node based 
on optimal attribute values, the Extra Tree Regressor randomly 
selects the split points and chooses the best one among them. 

The formula used to build each individual tree in the set is 
similar to the conventional decision tree algorithm formula. 
Building each individual tree in the decision tree algorithm 
involves splitting the data based on criteria such as entropy given 
by equation (5) and information gain calculated by equation (6). 
Entropy is a measure of impurity or disorder in the data. The 
greater the entropy, the greater the disorder and uncertainty in 
the data. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑  −𝑝𝑖 ∙  log2 𝑝𝑖

𝑐

𝑖=1

 , (5) 

where 𝑝𝑖  is the probability of occurrence in the data set 𝑥 

belonging to the variable 𝑥, log2 is the logarithm in base 2. The 
information gain measures the reduction from the entropy 
calculation after the division of the data based on a predictor 
variable. It is used to determine the best variable to split the 
dataset and build the decision tree. 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) −  𝐻(𝑆|𝐴), (6) 

where 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) represents the entropy measure of the 

random variable 𝑌, and 𝐻(𝑆|𝐴) is the conditional entropy of 𝑆 

given the variable 𝐴. These formulas are fundamental for the 
construction of decision trees and the determination of the best 
divisions in the data based on impurity and information gain 
criteria. 

4.4. Multilayer perceptron neural network (MLPNN) 

Multilayer Perceptron Neural Network represents a forward-
feed type neural network architecture, based on the learning 
technique known as Backpropagation, structured and composed 
by an input layer of neurons that play the role of receptors, one 
or more hidden layers of neurons that perform iterative 
calculations with the data, and, finally, the output layer is 
responsible for predicting the final results of the network [25]. 
The MLPNN consists of several layers of neurons, including an 
input layer, one or more hidden layers, and an output layer. Each 
neuron in a MLP network is called a perceptron and operates 
similarly to a biological neuron. It receives weighted inputs, the 
network processes it and applies an activation function and 
generates an output. This process is called feed forward 
presented by the equation (7) 

𝑈 = ∑  𝑥𝑖 ∙ 𝑤𝑖 + 𝑏

𝑁

𝑖=1

 , (7) 
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where 𝑈 is the output generated by the perceptron, Σ represents 
the weighted sum of the inputs multiplied by the corresponding 

synaptic weights, 𝑥𝑖 is the vector of inputs, 𝑤𝑖  is the vector of 

synaptic weights, 𝑏 is the bias, an additional term that allows 
adjust the perceptron output. 

After performing this operation, the output is added to a non-
linear activation function, in this work the function ReLU 
(Rectified Linear Unit) determined by the equation (8) was used. 
ReLU returns the input value if it is positive, otherwise it returns 
zero. 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) , (8) 

where 𝑅𝑒𝐿𝑈(𝑥) is the output generated by the ReLU function, 

𝑥 is the input value to the function. During the training of an 
MLP network, the synaptic weights and biases are updated based 
on the backpropagation algorithm. The objective is to minimize 
a cost function, which measures the difference between the 
outputs predicted by the network and the desired outputs. The 
formula for updating the weights and biases using the 
backpropagation algorithm involves using gradient descent, 
which looks for the steepest descent direction in the cost 
function. 

5. MODEL PERFORMANCE AND EVALUATION 

In order to evaluate the performance of the statistical models, 
four different criteria were used: the Mean Squared Error (MSE), 
the Root Mean Squared Error (RMSE), the Absolute Mean Error 
(MAE) and the Coefficient of Determination (R2). 

5.1. MSE 

The MSE, represented by equation (9), is a measure that 
quantifies the difference between the model's estimates and the 
actual observed values, which indicates the magnitude of this 
difference. The smaller the MSE value, the better the model's 
performance in terms of prediction accuracy. 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑓𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 , (9) 

where 𝑛 represents the number of observations, the term sum of 
squared errors indicates the sum of the squared differences 

between the predicted values of 𝑓𝑖 and the observed values of 𝑦𝑖 . 

5.2. RMSE 

The RMSE calculated by the equation (10) is a metric derived 
from the MSE in which the square root is applied at the end, 
resulting in an error measure expressed in the same unit as the 
target variable. The lower the RMSE value, the better the model's 
performance in terms of prediction accuracy. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑓𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

 , (10) 

where 𝑛 represents the number of observations, the term sum of 
squared errors indicates the sum of the squared differences 

between the predicted values by 𝑓𝑖 and the observed values 𝑂𝑖 . 

5.3. MAE 

The MAE determined by the equation (11) represents the 
average of the absolute values of the errors between the model 
estimates and the actual values of the variable of interest. A 

smaller MAE value indicates better model performance in terms 
of prediction accuracy. 

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1

  (11) 

Where n represents the number of samples, the term yi 
corresponds to the true value of the i-th sample and ŷi represents 
the value predicted by the model for the i-th sample. 

5.4. R2 

The coefficient of determination (R²) presented by the 
equation (12) is a statistical metric that provides an indication of 
how well the regression model fits the observed data. In general 
terms, a higher value of R² indicates a superior performance of 
the model, that is, a better ability to explain the variation in the 
data. 

𝑅2 =  
𝑆𝑆𝐸 

𝑆𝑆𝑇 
,  

𝑆𝑆𝐸 = ∑(𝑓𝑖 − 𝑦̂)2

𝑛

𝑖=1

, 𝑆𝑆𝑇 = ∑(𝑓𝑖 − 𝑦̅)2

𝑛

𝑖=1

, 

(12) 

where 𝑆𝑆𝐸 is the sum of squared errors and 𝑆𝑆𝑇 is the total sum 
of squares. 

6. TECHNOLOGIES USED FOR INTERFACE DEVELOPMENT 

In order to make the research results available through an 
interactive map that allows the user to obtain, with just one click, 
the estimated temperature for a reservoir or river at any time and 
place, it is necessary to develop a web prototype using HTML 
markup. 

The focus of development is the creation of a map interface 
that presents points of location of water bodies. To facilitate this 
process, MapTiler [26], was used, a mapping and geocoding 
platform that provides access to map services, satellite imagery, 
and other related resources through an application programming 
interface (API). This API allows developers to easily integrate 
interactive maps and geolocation features into their apps and 
websites. 

Inside the HTML code, the trained algorithm with the best 
accuracy to estimate the water temperature will be incorporated. 
The JavaScript programming language will be used for this 
purpose. The input data, which is the air temperature, will be 
acquired through a web API called Visual Crossing [27], as 
APAC still does not provide an API that allows obtaining the 
local air temperature at the time of access. 

Thus, by combining these technologies and services, it will be 
possible to create an interactive interface that provides users with 
accurate and real-time information about water temperature in 
different places of interest. 

7. RESULTS 

In this section, the results of the validation tests of each model 
will be presented, taking into account the statistical indices used 
to evaluate the performance of the models. These indices provide 
objective metrics that allow a quantitative and comparative 
analysis of the results obtained and identify which has the best 
performance in terms of accuracy and predictability. 
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7.1. Result of rivers validation tests  

During the training process of the data collected in the rivers, 
the neural network model MLPNN presented a superior 
performance compared to the other algorithms, followed by the 
linear regression model and the Stochastic. This finding is 
supported by the results obtained in the validation tests, which 
are represented in Table 2 and based on relevant statistical 
indices. 

It is observed that in relation to the mean squared error 
(MSE), all models presented close results, ranging from 0.343 to 
0.357. This indicates that the models have a good ability to 
estimate the correct values in relation to the observed values. The 
same pattern is observed for the root mean square error (RMSE), 
where differences between models are minimal, ranging from 
0.585 to 0.598. Figure 1 illustrates plots stemming from the data 
presented in Table 2. 

With regard to the absolute mean error (MAE), the 
Perceptron model (MLPNN) obtained the lowest value (0.445), 
indicating better precision in estimating the values compared to 
the other models. Regarding the coefficient of determination 
(R²), which measures the proportion of data variability explained 
by the model, the Perceptron model (MLPNN) presented the 
highest value (0.595), indicating a better predictive capacity in 
relation to the other models. Based on the results of the 
validation test, we can conclude that the Perceptron model 
(MLPNN) showed the best overall performance, with the lowest 
mean absolute error and the highest coefficient of determination. 
However, it is important to highlight that all evaluated models 
presented similar results and showed a satisfactory capacity to 
estimate the observed values. Figure 2 shows the observed and 
estimated data from the validation test. 

7.2. Result of reservoirs validation tests 

During the training of the data collected in the reservoirs, 
once again the MLPNN neural network demonstrated a slight 
superiority in relation to the other models, followed by the linear 
regression model and the Stochastic. However, this time, even 

Table 2. Performance of models with data collected in rivers. 

Models: MSE RMSE MAE R2 

Perceptron: 0.343 0.585 0.445 0.595 

Linear Regression: 0.351 0.592 0.460 0.586 

Model Stochastic: 0.350 0.592 0.459 0.586 

Model Extra Tree: 0.357 0.598 0.477 0.578 

 

Figure 1. Plots of the statistical metrics of the validation test in the rivers. 

 

 

 

 

Figure 2. Estimates and observations for the river validation set.  
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with a larger data sample in the reservoirs, the results showed a 
lower accuracy compared to the data collected in the rivers. 

A possible explanation for this difference in performance can 
be found in the previous section analysing the correlation 
calculations between air temperature and water temperature in 
the two types of water bodies. It was observed that the positive 
correlation between these variables in rivers is stronger than in 
reservoirs, which may have contributed to a better performance 
of the models on river data. This happens because, in cases with 
strong correlations, the patterns and relationships between the 
data become more evident and, consequently, are more easily 
learned by the model. Furthermore, in the case of reservoir data, 
the presence of noise, such as outliers, had a negative effect on 
model performance. On the other hand, in the river data, the 
dataset was smaller and contained less noise, which allowed the 
model to focus on the most important patterns. Table 3 presents 
the results of the statistical indices obtained in the reservoirs, 
providing an overview of the performance of the models in this 
specific context. 

The results in Table 3 show that in terms of mean squared 
error (MSE) and root mean squared error (RMSE), the models 
showed results close to each other, ranging from 0.467 to 0.499 
for the MSE and from 0.683 to 0.707 for the RMSE. This 
indicates that the models showed a moderate ability to estimate 
the correct values in relation to the values observed in the 
reservoirs. 

With regard to the absolute mean error (MAE), the 
Perceptron model (MLPNN) obtained the lowest value (0.544), 
indicating better precision in estimating the values compared to 
the other models. Regarding the coefficient of determination 
(R²), which measures the proportion of data variability explained 
by the model, all models showed low values, ranging from 0.310 
to 0.356. This observation is evident in Figure 3, that illustrates 
plots stemming from the data presented in Table 3. Therefore, 
the models had difficulty in capturing the data variation in the 
reservoirs. 

Table 3. Performance of models with data collected in reservoirs. 

Models: MSE RMSE MAE R2 

Perceptron: 0.467 0.683 0.544 0.356 

Linear Regression: 0.493 0.702 0.559 0.320 

Model Stochastic: 0.492 0.701 0.559 0.321 

Model Extra Tree: 0.499 0.707 0.572 0.310 

 

Figure 3. Plots of the statistical metrics of the validation test in the reservoirs. 

 

 

 

 

Figure 4. Estimates and observations for the reservoirs validation set.  
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Based on the results of the validation test, we can conclude 
that the models performed less well when dealing with reservoir 
data compared to river data. The Perceptron model (MLPNN) 
demonstrated a slight superiority in terms of lower mean 
absolute error. However, it is important to emphasize that all the 
evaluated models presented a moderate performance and 
showed a reasonable capacity to estimate the values observed in 
the reservoirs. Figure 4 presents the observed data and the 
estimates obtained during the validation test. 

7.3. Web app user interface 

After carrying out the model validation tests, it was possible 
to identify the MLPNN as the best performing model. Based on 
this information, neural network weights were obtained, and 
feedforward (predict) was implemented to calculate the 
estimated water temperature in reservoirs and rivers. 

The developed system allows the user to browse the map and, 
by clicking on a given location (longitude and latitude), obtain 
real-time information on the estimated water temperature for the 
selected reservoir or river. This functionality provides the user 
with immediate access to the desired information, regardless of 
their location. In the prototype map interface visualized in 
Figure 5, the blue dots represent the rivers, while the green dots 
represent the reservoirs. This visual differentiation of the points 
allows a clear identification of the bodies of water under analysis, 
facilitating the interaction and understanding of the results by the 
users. 

In this way, the developed prototype is an interactive and 
efficient web application that allows users to obtain information 
about the water temperature of specific water bodies quickly and 
accurately, using the best model (MLPNN) trained and the 
available data. This contributes to a better understanding and 
monitoring of water temperature in real time in different 
locations. 

8. CONCLUSIONS 

In this article, a study was carried out to estimate the water 
temperature in rivers and reservoirs in Pernambuco, using four 
machine learning models. The main objective was to evaluate and 
compare the performance of these models, in order to select the 
most accurate one and use its results in the creation of a web 

interface, in which users can obtain water temperature estimates 
for specific rivers and reservoirs. 

Regarding the statistical indices used to evaluate the accuracy 
of the models, it was observed that they presented similar results 
for both rivers and reservoirs. However, the MLPNN model 
showed a slightly superior performance compared to the other 
models, obtaining a MSE index of 0.343 in the case of rivers. In 
the reservoirs and rivers, the Stochastic and Linear Regression 
models showed similar results in terms of RMSE, MAE and R². 
These results indicate that all trained models had a satisfactory 
ability to estimate the observed values, and the choice of the best 
model was based on a small difference in performance. 

Furthermore, this study evidenced the importance of a high 
correlation between air temperature and water temperature as a 
fundamental requirement to obtain good accuracy in the 
developed models. However, a significant limitation of this work 
is related to the amount of data sampled for each river and 
reservoir. Due to the manual collection carried out on specific 
dates and times, some bodies of water had fewer than 20 samples 
available, which made individual training of models for each of 
them unfeasible. This scarcity of data may have affected the 
accuracy and generalizability of the developed models. In 
addition, another important limitation was the availability of only 
one predictor variable collected simultaneously, which was the 
air temperature. The absence of other meteorological variables, 
such as solar radiation, wind, and humidity, due to collection at 
random times restricted the ability of the models to capture more 
comprehensive and relevant information about environmental 
conditions and made it impossible to obtain data from 
meteorological stations, which usually provide hourly maximum 
and minimum temperature information. The absence of water 
flow data also impacted the results, since the amount of flowing 
water plays a crucial role in water temperature, influencing its 
heat transport capacity in the water body. 

Therefore, it is recommended that future research seek to 
obtain more robust datasets, preferably for each river and 
reservoir, in order to enable individualized training for each 
dataset. This would allow achieving greater accuracy in the results 
of the algorithms. In addition, it would be beneficial to consider 
the inclusion of other predictive variables, such as solar radiation, 
wind speed and flow of water bodies, which also directly 
influence water temperature, as demonstrated in other studies. 

It is hoped that this study will serve as a source of inspiration 
for the scientific community, stimulating the application of this 
method in other areas. In addition, the interface developed to 
estimate water temperature can be a viable alternative to monitor 
reservoirs and rivers in Pernambuco, contributing to proper 
management and preventing the proliferation of pathogenic 
organisms, which may be associated with inadequate water 
temperatures, aiming at protecting human health and the security 
of water resources. 
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