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1. INTRODUCTION 

In modern times, measurement devices have integrated 
microprocessors to augment their functionalities and 
adaptability. Typically, this entails an initial analog front end for 
signal conditioning, succeeded by an analog-to-digital converter 
(ADC) responsible for converting the relevant quantities into 
digital format [1], [2]. A microprocessor or microcontroller is 
then employed for digital signal processing and various other 
tasks. The solutions presented here have been the subject of a 
previous publication in the proceedings of a conference [3]. 

There are several methods commonly used to measure active 
power using digital methods where voltage and current 
waveforms are digitized: 

Instantaneous Power Method: In this method, the 
instantaneous power is calculated as the product of the 
instantaneous voltage and current values at each sample point. 
The power samples are then averaged over a period to obtain the 
average active power. 

Discrete Fourier Transform (DFT) Method: The DFT can be 
used to convert the digitized voltage and current waveforms 
from the time domain to the frequency domain. By multiplying 
the corresponding voltage and current frequency components, 
the active power can be calculated as the sum of the products. 

Windowed-Sinc Filter Method: This method involves 
applying a windowed-sinc filter to the digitized voltage and 

current waveforms to obtain the filtered versions. The filtered 
waveforms are then multiplied point-wise, and the resulting 
waveform is integrated over time to obtain the active power. 

Goertzel Algorithm: The Goertzel algorithm is a digital signal 
processing technique that can be used to calculate the power in 
a specific frequency component. By applying the Goertzel 
algorithm to the digitized voltage and current waveforms at the 
fundamental frequency, the active power can be measured. 

Quadrature Component Method: This method involves 
calculating the quadrature (imaginary) components of the voltage 
and current waveforms by using digital signal processing 
techniques, such as Hilbert transform or complex least squares. 
The product of the quadrature components represents the 
reactive power and subtracting it from the instantaneous power 
yields the active power. 

Extended Kalman Filter Method: The extended Kalman filter 
is a recursive estimation algorithm used to estimate the state of a 
system. By modelling the voltage and current waveforms as a 
state-space system and applying the extended Kalman filter, the 
active power can be estimated. 

These methods vary in complexity and performance, and the 
choice of method depends on factors such as accuracy 
requirements, computational resources, and the specific 
characteristics of the current and voltage signals being measured. 

ABSTRACT 
Digitized voltage and current waveforms can be used to estimate active power by processing the obtained samples through two 
methods: Discrete Integration and Spectral Analysis. The former involves computing the average of the sample-by-sample product of 
the two waveforms, while the latter uses sine fitting algorithms to estimate the amplitude and initial phase of each waveform. Precision 
expressions for both estimators are derived as a function of the number of samples acquired and the amount of additive random noise 
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2. MEASUREMENT SYSTEM 

A similar methodology is applied in power and energy 
measurement. Voltage and current transducers are employed, 
yielding an output voltage or current that traverses a known 
resistor, resulting in a voltage that is subsequently converted into 
digital form, as illustrated in Figure 1. This traditional circuit 
configuration finds application in multiple systems discussed in 
existing literature [4]-[6]. 

The conventional method for calculating active power is the 
Discrete Integration Method. This method entails capturing a 

defined number of samples (𝑀) from the voltage and current 
waveforms over an integer number of cycles and subsequently 
multiplying these samples together to obtain the instantaneous 

power (𝑣𝑛 𝑖𝑛) on a per-sample basis. The resultant vector is then 
subjected to averaging in order to obtain the active power: 

𝑃̂ =
1

𝑀
∑𝑣𝑛 𝑖𝑛

𝑀

𝑛=1

. (1) 

If we presume the absence of any offset error requiring 
correction, a condition attainable by subtracting the product of 
the average voltage and current as outlined in [7], an alternative 
approach for active power estimation becomes viable. This 
method is gaining prominence, driven by the robust 
computational capabilities of contemporary microcontrollers 
and microprocessors. It revolves around a spectral analysis of the 
voltage and current waveforms, affording greater versatility by 
enabling the assessment of supplementary parameters like 
distortion and power quality metrics [8]-[9]. 

Spectral analysis can be conducted using either the 
three-parameter sine fitting (SF) or the Discrete Fourier 
Transform (DFT) approach [10]. In both of these techniques, 

the amplitude (𝐴̂) and initial phase (𝜑̂) of every harmonic 
component within both the voltage and current are determined, 
as depicted in Figure 2. 

When there are no harmonics present, the active power can 
be estimated with: 

𝑃̂ =
1

2
 𝐴V̂ 𝐴Î cos(𝜑V̂ − 𝜑Î) . (2) 

The precision of the active power estimation can be 
influenced by several non-ideal factors, including random noise, 
sampling irregularities, frequency discrepancies, and quantization 
errors. This research specifically delves into the influence of 
random additive noise on the certainty of these estimations. It 
establishes mathematical expressions for computing the standard 
deviation of active power estimation for each of the two 
methods, considering factors like the number of collected 
samples and the standard deviation of additive noise in each data 
acquisition channel, as discussed in sections 2 and 3. These 
analytical formulations are subsequently utilized to determine the 
method that outperforms the other under identical measurement 
conditions, as elucidated in section 4. Finally, the last section 
presents conclusions regarding the performance of both 
methods and the utility of the derived analytical expressions. 

3. SPECTRAL ANALYSIS METHOD 

The two voltages at the input of both ADCs are given by 

𝑣ADC1(𝑡) = 𝑉 𝐾V cos(𝜔 𝑡 + 𝜑V) + 𝑛ADC1(𝑡) 

𝑣ADC2(𝑡) = 𝐼 𝐾I cos(𝜔 𝑡 + 𝜑I) + 𝑛ADC2(𝑡) . 
(3) 

In this section, we will distinguish between two ADCs: ADC1, 
which is responsible for digitizing the voltage-proportional 
waveform, and ADC2, tasked with digitizing the current-
proportional waveform. It's important to emphasize that both 
signals fed into these ADCs are in voltage form. The constants 

𝐾V and 𝐾I relate the measured voltage and current to the ADC 
input voltage, respectively. These constants vary depending on 
the transducer in use and, if applicable, the sampling resistors, as 

illustrated in Figure 1. The variables 𝑛ADC1 and 𝑛ADC2 represent 

the random noise present at the ADC inputs. This noise may 
originate from the voltage and current being measured, the 
sensors, the signal conditioning circuit, or even the ADCs 
themselves [11]. Regardless of its source, this additive type of 
noise can be considered as present at the ADC input. It's also 
worth noting that the quantization error of the ADC can 
contribute to this noise. 
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Figure 1. Block diagram of a power/energy measuring instrument. 
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Figure 2. Illustration of the Discrete Integration Method and the Spectral 
Analysis Method of estimating active power. 
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With 𝑀 data samples acquired from each channel a 

sine-fitting procedure is used to estimate the amplitudes, 𝐴V and 

𝐴I, where 

𝐴V = 𝑉 𝐾V  and  𝐴I = 𝐼 𝐾I , (4) 

and initial phase (𝜑V and 𝜑I). To estimate the power, one uses 

𝑃̂ =
1

2
 
𝐴V̂ 𝐴Î
𝐾V 𝐾I

cos(𝜑V̂ − 𝜑Î) . (5) 

The estimator standard deviation can be computed from the 
second moment with 

𝐸{𝑃̂2} = 𝐸 {[
1

2
 
𝐴V̂ 𝐴Î
𝐾V 𝐾I

cos(𝜑V̂ − 𝜑Î)]

2

} . (6) 

After some manipulation one has 

𝐸{𝑃̂2} = 𝐸

{
 
 
 
 

 
 
 
 1

4

𝐴V̂
2

𝐾V
2 cos

2(𝜑V̂)
𝐴Î
2

𝐾I
2 cos

2(𝜑Î) +

1

4

𝐴V̂
2

𝐾V
2 sin

2(𝜑V̂)
𝐴Î
2

𝐾I
2 sin

2(𝜑Î) +

1

2

𝐴V̂
𝐾V
cos(𝜑V̂)

𝐴Î
𝐾I
cos(𝜑Î) ×

𝐴V̂
𝐾V
sin(𝜑V̂)

𝐴Î
𝐾I
sin(𝜑Î) }

 
 
 
 

 
 
 
 

. (7) 

Using the properties of the expected value leads to 

𝐸{𝑃̂2} =
1

4 𝐾V
2 𝐾I

2 𝐸 {𝐴V̂
2
cos2(𝜑V̂)} 𝐸 {𝐴Î

2
cos2(𝜑Î)} 

+
1

4 𝐾V
2 𝐾I

2 𝐸 {𝐴V̂
2
sin2(𝜑V̂)} 𝐸 {𝐴Î

2
sin2(𝜑Î)} 

+
1

2 𝐾V
2 𝐾I

2 𝐸 {𝐴V̂
2
cos(𝜑V̂) sin(𝜑V̂)} 

× 𝐸 {𝐴Î
2
cos(𝜑Î) sin(𝜑Î)} . 

(8) 

Now, using (38), (39) and (40), given in the appendix, we can 
write (8) as  

𝐸{𝑃̂2}

=
(𝐴V

2  cos2(𝜑V) +
2
𝑀
𝜎V
2) × (𝐴I

2 cos2(𝜑I) +
2
𝑀
𝜎I
2)

4 𝐾V
2 𝐾I

2

+
(𝐴V

2  sin2(𝜑V) +
2
𝑀
𝜎V
2) × (𝐴I

2 sin2(𝜑I) +
2
𝑀
𝜎I
2)

4 𝐾V
2 𝐾I

2

+
(𝐴V

2  cos(𝜑V) sin(𝜑V)) × (𝐴I
2 cos(𝜑I) sin(𝜑I))

2 𝐾V
2 𝐾I

2  . 

(9) 

The estimated active power standard deviation is given by [12], 

𝜎P̂ = √𝐸{𝑃̂
2} − 𝐸2{𝑃̂} . (10) 

Inserting equation (9), and assuming there is no estimation 

bias (𝐸{𝑃̂} = 𝑃) and making use of (4) leads to 

𝜎𝑃̂ =
1

√2 𝑀
√𝑉2 (

𝜎I
𝐾I
)
2

+ 𝐼2 (
𝜎V
𝐾V
)
2

+
4

𝑀
(
𝜎V
𝐾V
)
2

(
𝜎I
𝐾I
)
2

 . (11) 

This method enables the computation of the standard 
deviation of active power estimation, considering the real voltage 
and current values, the quantity of gathered samples, and the 
standard deviation of the random noise [13] existing at each 
ADC channel input. 

To validate the precision of our calculations, we carried out a 
Monte Carlo analysis employing simulated ADCs and random 
noise. This procedure entailed performing active power 
estimations 105 times, each time with different simulated random 
noise levels, followed by the computation of the standard 
deviation of the estimated active power. The outcomes of this 
analysis are illustrated in Figure 3. This figure illustrates the 
concordance between the simulated and theoretical values. 

In Figure 4, you can observe the disparity between these 
values, with vertical bars denoting the confidence interval for a 
99.9% confidence level, derived from the Monte Carlo 
estimation of the active power estimation standard deviation. 
Notably, all the vertical bars are centred around zero, signifying 
that the analytical expression derived aligns consistently with the 
Monte Carlo simulation results. 
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Figure 3. The circles in the graph represent the results of the Monte Carlo 
study of the standard deviation of the active power estimated using the 
spectral analysis method, plotted against the standard deviation of the 
random noise in the ADC voltage measurement channel. The theoretical 
values given by equation (11) are shown as a dashed line. 
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Figure 4. In this graph, we present the contrast between the outcomes of the 
Monte Carlo analysis and the theoretical values derived from equation (11) 
for the standard deviation of active power estimation when employing the 
spectral analysis method. These values are represented as circular data 
points, plotted against the standard deviation of random noise within the 
ADC voltage measurement channel. The vertical bars depicted on the graph 
represent the confidence intervals resulting from the Monte Carlo estimation 
of the standard deviation of active power estimation. It's noteworthy that all 
of these vertical bars are centred around zero, affirming the congruity 
between the analytical expression and the Monte Carlo simulation outcomes. 
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4. DISCRETE INTEGRATION METHOD 

The voltage waveform at each ADC channel input is 
proportional to the voltage and current signals used to calculate 
the active power, as expressed by equations (3). The ADC then 

samples these voltages at a specific sampling rate, 𝑓𝑠, resulting in 
the sampled voltages being expressed as: 

𝑣ADC1 𝑖
= 𝑉 𝐾V ⋅ cos(𝛺 ⋅ 𝑖 + 𝜑V) + 𝑛ADC1𝑖

 

𝑣ADC2 𝑖
= 𝐼 𝐾I ⋅ cos(𝛺 ⋅ 𝑖 + 𝜑I) + 𝑛ADC2𝑖

 , 
(12)  

where 𝛺, given by 𝜔/𝑓s  represents the digital frequency. 
Within the discrete integration method, the voltage 

waveforms corresponding to voltage and current are 
multiplicatively combined on a per-sample basis. As depicted in 
equation (12), this yields: 

𝑣ADC1 𝑖
⋅ 𝑣ADC2𝑖

=
1

2
 𝑉 𝐼 𝐾V 𝐾I cos(𝜑V − 𝜑I) 

+
1

2
 𝑉 𝐼 𝐾V 𝐾I cos(2 𝛺 𝑖 + 𝜑V + 𝜑I) 

+𝑛ADC1𝑖
⋅ 𝑛ADC2𝑖

+ 𝑛ADC2𝑖
⋅ 𝑉 𝐾V cos(𝛺 𝑖 + 𝜑V) 

+𝑛ADC1𝑖
⋅ 𝐼 𝐾I cos(𝛺 𝑖 + 𝜑I) . 

(13)  

The power estimation involves computing the average of this 

vector and subsequently dividing it by the factor 𝐾V 𝐾I 

𝑃̂ =
1

𝐾V 𝐾I
⋅
1

𝑀
∑𝑣ADC1 𝑖

 𝑣ADC2𝑖

𝑀

𝑖=1

 . (14) 

By inserting equation (13) and taking into account that the 
data acquisition occurs over an integer number of complete 
periods, we arrive at: 

𝑃̂ =
1

𝐾V 𝐾I

[
 
 
 
 
 
 
 
 
 
 
1

2
 𝑉 𝐼 𝐾V 𝐾I cos(𝜑V − 𝜑I) +

1

𝑀
∑𝑛ADC1𝑖

⋅ 𝑛ADC2𝑖

𝑀

𝑖=1

+

𝑉 𝐾V
𝑀

∑𝑛ADC2𝑖
cos(𝛺 𝑖 + 𝜑V)

𝑀

𝑖=1

+

𝐼 𝐾I
𝑀

∑𝑛ADC1𝑖
cos(𝛺 𝑖 + 𝜑I)

𝑀

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 

 . (15) 

The variance of the estimator can be derived from equation 
(15) by assuming that the additive noise terms are independent 
of the signals. 

𝑉𝐴𝑅{𝑃̂} =
1

𝑀2 𝐾V
2 𝐾I

2 𝑉𝐴𝑅 {∑𝑛ADC1𝑖
⋅ 𝑛ADC2𝑖

𝑀

𝑖=1

} 

+
𝑉2

𝑀2 𝐾I
2 𝑉𝐴𝑅 {∑𝑛ADC2𝑖

cos(𝛺 𝑖 + 𝜑V)

𝑀 

𝑖=1

} 

+
𝐼2

𝑀2 𝐾V
2 𝑉𝐴𝑅 {∑𝑛ADC1𝑖

cos(𝛺 𝑖 + 𝜑I)

𝑀

𝑖=1

} . 

(16) 

The variance encountered in the first summation in (16) is, by 
definition, 

𝑉𝐴𝑅 {∑𝑛ADC1𝑖
⋅ 𝑛ADC2𝑖

𝑀

𝑖=1

} = 

𝐸 {[∑𝑛ADC1𝑖
⋅ 𝑛ADC2𝑖

𝑀

𝑖=1

]

2

} − 𝐸2 {∑𝑛ADC1𝑖
⋅ 𝑛ADC2𝑖

𝑀

𝑖=1

}. 

(17) 

This can be written as 

𝑉𝐴𝑅 {∑𝑛ADC1𝑖
𝑛ADC2𝑖

𝑀

𝑖=1

} = 

∑ 𝐸{𝑛𝐴𝐷𝐶1 𝑖
⋅ 𝑛𝐴𝐷𝐶2 𝑖

⋅ 𝑛𝐴𝐷𝐶1𝑗
⋅ 𝑛𝐴𝐷𝐶2𝑗

}

𝑀

𝑖,𝑗=1

 

−[∑𝐸 {𝑛𝐴𝐷𝐶1 𝑖
⋅ 𝑛𝐴𝐷𝐶2 𝑖

}

𝑀

𝑖=1

]

2

. 

(18) 

As the random noises at both ADC inputs are presumed to 
be independent, the final term in the equation becomes null. 

Additionally, the terms of the double summation are non-zero 

only when 𝑖 = 𝑗. We thus have 

𝑉𝐴𝑅 {∑𝑛ADC1𝑖
𝑛ADC2𝑖

𝑀

𝑖=1

} =∑𝐸 {𝑛ADC1𝑖
2} 𝐸 {𝑛ADC2𝑖

2}

𝑀

𝑖=1

 . (19) 

Given that we are dealing with a random noise signal with null 
mean, its variance is equal to its second moment. The standard 
deviation of the noise can be different for each channel, 

represented by 𝜎V and 𝜎I, respectively. Equation (19) then 
becomes 

𝑉𝐴𝑅 {∑ 𝑛ADC1𝑖
⋅ 𝑛ADC2𝑖

𝑀

𝑖=1
} = 𝑀 𝜎V

2 𝜎I
2. (20) 

Using the variance definition, we can express the other two 
variance terms in equation (16) which are equivalent but 
correspond to different variables as follows: 

𝑉𝐴𝑅 {∑𝑛𝑖 cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

} = 

𝐸 {[∑𝑛𝑖 cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

]

2

} 

−𝐸2 {∑𝑛𝑖  cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

}, 

(21) 

where 𝑛𝑖 can represent 𝑛ADC1𝑖
or 𝑛ADC2𝑖

. 

The expected value of the summation is zero because the 
noise is considered here a null mean random variable: 

𝐸 {∑𝑛𝑖 cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

} = ∑𝐸{𝑛𝑖} cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

= 0. (22) 

The expected value of the square of the sum can be expressed 
as follows: 
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𝐸 {[∑𝑛𝑖  cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

]

2

}

= ∑ 𝐸{𝑛𝑖  𝑛𝑗} cos(𝛺 𝑖 + 𝜑) cos(𝛺 𝑗 + 𝜑)

𝑀

𝑖,𝑗=1

. 

(23) 

The only non-zero terms of the double summation are those 

where 𝑖 = 𝑗. We thus have 

𝐸 {[∑𝑛𝑖  cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

]

2

} =∑𝐸{𝑛𝑖
2} cos2(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

, (24) 

which leads to 

𝐸 {[∑𝑛𝑖  cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

]

2

} =
𝑀

2
𝐸{𝑛𝑖

2} . (25) 

Considering that the noise has a null mean, the expected value 
of its square is just its variance. We thus have 

𝑉𝐴𝑅 {∑𝑛𝑖 cos(𝛺 𝑖 + 𝜑)

𝑀

𝑖=1

} =
𝑀

2
 𝜎𝑛
2 . (26) 

Inserting (20) and (26) into (16) leads to 

𝑉𝐴𝑅{𝑃̂} =
1

2 𝑀
[𝑉2 (

𝜎I
𝐾I
)
2

+ 𝐼2 (
𝜎V
𝐾V
)
2

+ 2(
𝜎V
𝐾V
)
2

(
𝜎I
𝐾I
)
2

] . (27) 

The standard deviation of the estimated active power is 
simply the square root of the variance.  

𝜎𝑃̂ =
1

√2 𝑀
√𝑉2 (

𝜎I
𝐾I
)
2

+ 𝐼2 (
𝜎V
𝐾V
)
2

+ 2(
𝜎V
𝐾V
)
2

(
𝜎I
𝐾I
)
2

 . (28) 

To validate the findings, a Monte Carlo analysis was 
conducted on the simulated discrete integration method. The 
results acquired are presented in Figure 5, illustrating a 
favourable agreement between the simulation and the theoretical 
values. 

The contrast between the results from the Monte Carlo 
simulation and the theoretical expression (28) is presented in 
Figure 6, where vertical bars are used to denote confidence 
intervals at a 99.9% confidence level. Notably, all these bars are 
centred around zero, affirming the applicability of expression 
(28) under the specified conditions. 

5. ESTIMATOR COMPARISON 

Following the derivation of analytical expressions for the 
standard deviation of active power estimation using both digital 
techniques, we can now make a comparison. In both methods, 
the standard deviation of estimation relies on the amplitudes of 
the voltage and current being measured, as well as the standard 
deviation of random noise in each ADC channel. It's essential to 
note that these standard deviations are normalized by the 
constants KV and KI, signifying that what truly matters is the 
amount of random noise in relation to the input quantities, i.e., 
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Figure 7. Contrast between the standard deviation of active power 
estimation employing the spectral analysis method (lower) and the discrete 
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voltage and current. Furthermore, in both scenarios, an increase 
in the number of collected samples leads to a reduction in the 
standard deviation of the estimated active power. 

Upon scrutinizing equations (11) and (28), it becomes evident 
that the sole distinction lies within the third term enclosed by the 
square root. The discrete integration method incorporates a 
factor of 2, while the spectral analysis method integrates a factor 
of 4/M. Since M must surpass 2, the 4/M factor consistently 
remains smaller than the 2 factor. Consequently, we can conclude 
that the spectral analysis method yields a lower standard 
deviation (enhanced precision) compared to the discrete 
integration method. Nevertheless, this disparity assumes 
significance primarily when there is a substantial presence of 
random noise. In scenarios where such noise is minimal, the third 
term becomes inconsequential relative to the first two terms 
beneath the square root, rendering the distinctions between the 
expressions minimal. 

Figure 7 provides a visual representation of this comparison 
by graphing both analytical expressions against the standard 
deviation of random noise (in both ADC channels) for a dataset 
of 100 samples. The displayed surfaces pertain to the normalized 
active power estimation, as defined by: 

𝜉𝑃̂ =
𝜎𝑃̂
𝑉 𝐼
 . (29) 

It's noticeable that the two surfaces closely overlap when the 
random noise is at a low level. Only as the noise level escalates 
does a disparity between the surfaces become evident. In such 
instances, the surface associated with the discrete integration 
method overlays the other, signalling a higher standard deviation 
in estimation (lower precision). 

In this research, we have conducted a comparative analysis of 
two methods for estimating active power based on digital 
measurements of voltage and current, focusing on precision in 
estimation. These two methods are the discrete integration 
method and the spectral analysis method. We have formulated 
analytical expressions that facilitate the calculation of the 
standard deviation of active power estimation, considering the 
level of random noise and the quantity of acquired samples. 
These expressions serve to compute confidence intervals for the 
measurements, constituting a Type B evaluation of uncertainty. 

Furthermore, these expressions allow us to ascertain the 
minimum number of samples necessary to achieve a desired level 
of precision in the measurement outcomes. While increasing the 
number of samples enhances precision, it also extends the 
measurement duration. Determining the minimum requisite 
number of samples ensures an efficient measurement process in 
terms of time and memory usage, thereby contributing to cost-
effective system implementation. 

6. CONCLUSION 

The comparison between the two ways of estimating active 
power from digital measurements of voltage and current has 
been a subject of extensive analysis, leading to a significant 
finding that sheds light on their respective strengths and 
limitations. Specifically, it has been observed that the spectral 
analysis method outperforms the discrete integration method in 
terms of precision when subjected to identical measurement 
conditions. This finding has significant implications for accurate 
power measurement in various applications. 

However, it is important to consider the trade-off associated 
with the spectral analysis method. While it offers superior 

precision, it necessitates higher computing power, which relies 
heavily on the available hardware resources. The computational 
demands of the spectral analysis method may pose challenges in 
certain situations, particularly in resource-constrained 
environments or when dealing with large-scale power monitoring 
systems. Therefore, the choice between the two methods should 
take into account the available computational capabilities and the 
specific requirements of the application. 

It is worth noting that the improved precision of the spectral 
analysis method becomes particularly pronounced in scenarios 
characterized by the presence of extreme random noise. In such 
cases, where accurate power measurement is paramount, the 
spectral analysis method proves to be a more reliable choice. 
However, in situations with small to moderate levels of noise, 
both methods exhibit similar levels of precision, making the 
discrete integration method a viable and computationally 
efficient alternative. 

It is crucial to acknowledge that the analysis presented in this 
context is limited in scope, as it does not consider certain 
non-ideal factors that can influence the precision of both 
methods. Factors such as phase noise, sampling jitter [14], and 
frequency error can introduce distortions and uncertainties into 
the measurement process, potentially influencing the 
performance of each method differently. Furthermore, the 
nonlinearity inherent in the analog-to-digital converter (ADC) 
used for digitizing the voltage and current waveforms can 
introduce errors that need to be accounted for in accurate power 
estimation. 

Given these considerations, further in-depth studies are 
warranted to explore the impact of these non-ideal factors on the 
precision and reliability of both methods. It is important to 
understand how phase noise, sampling jitter, frequency error, 
and ADC nonlinearity affect the estimation process and to 
develop appropriate compensation techniques to mitigate their 
effects [15]-[18]. By addressing these factors, the accuracy and 
robustness of the active power measurement methods can be 
enhanced, leading to more reliable and consistent results across 
a range of measurement scenarios. 

Moreover, the analytical expressions derived in this study 
provide valuable tools for practical implementation. They enable 
the calculation of confidence intervals for measurements, 
allowing for the quantification of uncertainties associated with 
the estimated active power values. Additionally, these 
expressions can help determine the minimum number of samples 
required to achieve a desired level of precision, enabling 
optimized measurement strategies in terms of time and memory 
requirements, particularly in microcontroller-based systems. By 
leveraging these analytical tools, researchers and engineers can 
develop efficient and reliable power measurement systems 
tailored to their specific needs. 

In conclusion, the comparison of active power estimation 
methods based on digital measurements of voltage and current 
waveforms has yielded important insights. The spectral analysis 
method demonstrates superior precision, albeit with higher 
computational demands, while the discrete integration method 
offers a computationally efficient alternative with comparable 
performance under low to moderate noise levels. However, 
further investigations are needed to explore the impact of non-
ideal factors and develop compensation techniques. The 
analytical expressions derived in this study provide practical 
utility in terms of calculating confidence intervals and optimizing 
measurement strategies, facilitating the development of accurate 
and efficient power measurement systems. 
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7. APPENDIX 

This appendix is devoted to deriving the second moment of 
the estimated in-phase and in-quadrature amplitudes of a sine 
wave, as well as their product, obtained using the three-parameter 
sine-fitting algorithm recommended in [19]. 

As per [20], the in-phase amplitude is estimated using the 

following equation with the set of data points 𝑦𝑖 , where 𝜔𝑎 
represents the frequency of the sine wave being fitted to the data 

and 𝑡𝑖 are the sampling instants: 

𝐴1̂ =
2

𝑀
∑𝑦𝑖  cos(𝜔𝑎 𝑡𝑖)

𝑀

𝑖=1

 . (30) 

Likewise, the quadrature component is estimated using 

𝐴2̂ =
2

𝑀
∑𝑦𝑖  sin(𝜔𝑎  𝑡𝑖)

𝑀

𝑖=1

 . (31) 

As per the sine wave model, the data points are obtained by 

corrupting a sine wave with additive noise (𝑑): 

𝑦𝑖 = 𝐶 + 𝐴 cos(𝜔𝑥 𝑡𝑖 + 𝜑) + 𝑑𝑖  , (32) 

where the variables 𝐶, 𝐴, 𝜔𝑥 and 𝜑 are the offset, amplitude 
angular frequency and initial phase of sinusoidal signal that 
resulted in the data points extracted.  

In this context, we assume that the frequency used for fitting 
the sine wave to the data is known and equal to the frequency of 

the sine wave we are trying to estimate (i.e., 𝜔𝑥 = 𝜔𝑎). 
Inserting (32) into (30) leads to 

𝐴1̂ =
2

𝑀
∑[𝐶 + 𝐴 cos(𝜔𝑎  𝑡𝑖 + 𝜑) + 𝑑𝑖] cos(𝜔𝑎  𝑡𝑖)

𝑀

𝑖=1

 . (33) 

The square of the estimated in-phase amplitude is 

𝐴1̂
2
=

4

𝑀2
∑{

[𝐶 + 𝐴 cos(𝜔𝑎  𝑡𝑖 + 𝜑) + 𝑑𝑖] ×

[𝐶 + 𝐴 cos(𝜔𝑎  𝑡𝑗 + 𝜑) + 𝑑𝑗] ×

cos(𝜔𝑎  𝑡𝑖) cos(𝜔𝑎 𝑡𝑗)

}

𝑀

𝑖,𝑗=1

. (34) 

After performing some algebraic manipulation and 
considering that the data covers a whole number of periods of 
the sine wave, we obtain: 

𝐴1̂
2
=

4

𝑀2
∙ 

∑[
1

4
𝐴2 cos2(𝜑) + 𝑑𝑖  𝑑𝑗  cos(𝜔𝑎 𝑡𝑖) cos(𝜔𝑎  𝑡𝑗)]

𝑀

𝑖,𝑗=1

. 

(35) 

This, in turn, can be written as 

𝐴1̂
2
= 𝐴2 cos2(𝜑) + 

4

𝑀2
∑[𝑑𝑖 𝑑𝑗  cos(𝜔𝑎  𝑡𝑖) cos(𝜔𝑎  𝑡𝑗)].

𝑀

𝑖,𝑗=1

 
(36) 

The expected value of the square in-phase amplitude 
estimation is 

𝐸 {𝐴1̂
2
} = 𝐴2 cos2(𝜑) + 

4

𝑀2
∑ 𝐸{𝑑𝑖  𝑑𝑗} cos(𝜔𝑎 𝑡𝑖) cos(𝜔𝑎  𝑡𝑗)

𝑀

𝑖,𝑗=1

 . 
(37) 

The expected value inside the double summation is only non-

zero when 𝑖 = 𝑗, since 𝑑 is a random variable with a null mean. 
We thus have 

𝐸 {𝐴1̂
2
} = 𝐴2 cos2(𝜑) +

2

𝑀
 𝜎2 , (38) 

where 𝜎 is the random noise standard deviation. 
A similar derivation can be applied to the in-quadrature 

amplitude estimate, which yields 

𝐸 {𝐴2̂
2
} = 𝐴2 sin2(𝜑) +

2

𝑀
 𝜎2. (39) 

It can also be demonstrated that the expected value of the 
product between the in-phase and in-quadrature amplitudes is 
expressed as 

𝐸{𝐴1̂ 𝐴2̂} = 𝐴2 cos(𝜑) sin(𝜑). (40) 
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