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1. INTRODUCTION 

The availability of energy is vital for sustaining human life and 
improving the quality of life. However, the depletion of 
conventional energy sources has resulted in environmental 
degradation. To address this challenge, a transition towards 
renewable energy sources is necessary. Renewable energy offers 
several advantages, including cleanliness, reduced environmental 
impact, abundance, and versatility in various applications [1]. 

In recent years, renewable energy sources like solar and wind 
power have witnessed remarkable advancements, showcasing 
enhanced energy generation capabilities [2]. These clean and 
sustainable energy options have garnered significant attention in 
research circles. Solar photovoltaic (PV) technology, in 
particular, has emerged as a prominent solution applicable in 
various domains, including satellite power, water desalination, 
and cooling/heating systems [3]-[4]. Accurate simulation and 
modelling of solar cells have been achieved through various 
methodologies such as numerical simulation [5] and adaptive 
control [6]. 

Solar cells employ a P-N junction semiconductor material 
consisting of distinct regions: quasi-neutral, space-charge, and 
defect regions. Within these regions, losses occur due to charge 
carrier recombination and diffusion, necessitating their inclusion 
in the development of a photovoltaic model. In order to account 
for these losses, PV models utilize different approaches. The 
single-diode model (SDM) is commonly employed as it is simple 
and efficient, allowing for the representation of losses in the 
quasi-neutral region. For improved accuracy, the double-diode 
model (DDM) is utilized, which incorporates losses in both the 
SDM and space-charge region. Furthermore, the three-diode 
model (TDM) is employed for even greater precision, 
encompassing losses in the defect region as well as those 
accounted for in the DDM [7]. 

Accurate modelling plays a pivotal role in optimizing and 
implementing photovoltaic (PV) systems, necessitating precise 
estimation of PV cell model parameters [8]. However, the 
nonlinear and nonconvex characteristics of PV models pose 
significant challenges. To overcome these obstacles, researchers 
have devised three distinct methods for parameter estimation: 
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analytic, deterministic, and metaheuristic approaches [9]. These 
methods are employed to ensure the accurate estimation of PV 
model parameters and enhance the overall effectiveness of PV 
system optimization and implementation. 

Analytical methods employ selected data points, such as 
short-circuit and open-circuit measurements, to derive simplified 
equations for estimating model parameters. These methods offer 
speed and convenience but heavily rely on precise data from 
manufacturers, which may introduce inaccuracies. Furthermore, 
the accuracy of these methods can be impacted by PV 
degradation over time [10]-[11]. 

Deterministic techniques employ multiple measurements to 
precisely determine the unknown parameters and employ a loss 
function to quantify the disparity between predicted and actual 
data points. These methods can potentially converge to local 
optimal solutions as they rely on gradient information. 
Evolutionary-based algorithms, including DEA (differential 
evolution algorithm), and GA (genetic algorithm), leverage 
evolutionary principles to address the parameter estimation 
challenge [12]-[14]. 

Parameter extraction in photovoltaic models is a complex task 
due to nonlinearity and the numerous parameters involved. 
Metaheuristic techniques have gained considerable attention for 
achieving high precision in parameter estimation. Several 
approaches have been proposed in the literature to address this 
challenge. 

One method, known as GWOCS (Grey Wolf Optimizer 
combined with Cuckoo Search Algorithm), was introduced in 
[15]. GWOCS aims to strike a balance between exploitation and 
exploration to enhance parameter extraction accuracy. Another 
technique, MLBSA (Multiple Learning Backtracking Search 
Algorithm), was presented in [16] to achieve accurate and reliable 
PV parameter estimation. 

In [17], the GBO (Gradient-Based Optimizer) was applied to 
estimate parameters in three PV models: SDM, DDM, and 
TDM. The study demonstrated the effectiveness of GBO in 
achieving accurate modelling and simulation of photovoltaic 
modules. 

The use of the Sunflower Optimization Algorithm (SFO), 
inspired by the motion of sunflowers towards sunlight, was 
proposed in [18] for precise modelling and simulation of the 
three-diode PV model. The experiments reported an error of less 
than 0.5 %, indicating the effectiveness of SFO. 

Authors in [19] introduced a modified JAYA algorithm for 
accurate modelling of current and voltage characteristics of solar 
cells. This modified algorithm exhibited superior robustness and 
accuracy compared to other compared algorithms. 

In [20], the Whale Optimization Algorithm (WOA) was 
employed to estimate parameters in single, double, and three-
diode PV models. The models were validated through simulation 
under various conditions and compared with other optimization 
methods and experimental data. 

The Comprehensive Learning Jaya Algorithm (CLJAYA) was 
utilized for parameter extraction of photovoltaic models in [21]. 
Similarly, the War Strategy Optimization (WSO) was employed 
in [22], while the Northern Goshawk Optimization (NGO) was 
applied in [23] for the same purpose. 

Hybrid strategies combining multiple techniques have also 
been explored for deriving PV model parameters [24]-|28]. 
These hybrid approaches leverage the strengths of different 
optimization methods to enhance the accuracy and robustness of 
parameter estimation. 

These studies demonstrate the diverse range of metaheuristic 
algorithms employed to accurately estimate parameters in 
photovoltaic models, enabling precise modelling and simulation 
of solar energy systems. 

1.1. Objective 

The No Free Lunch (NFL) theorem, established in [29], 
provides valuable insights into the limitations of metaheuristic 
optimization techniques. According to this theorem, there is no 
universal optimizer that can efficiently solve all optimization 
problems. It emphasizes that the effectiveness of an optimizer 
on a particular problem set does not guarantee similar 
performance on a different set of problems. The NFL theorem 
has gained widespread acceptance in the research community 
and serves as a foundational principle, guiding researchers in 
adapting existing techniques to address novel problem classes. 
By acknowledging the NFL theorem, researchers can make 
informed decisions when selecting and tailoring optimization 
algorithms for specific optimization tasks. 

Extensive research in the fields of solar cell parameter 
determination and metaheuristics has shed light on several 
limitations and challenges. These include the drawbacks 
associated with non-adaptive weight metrics, slow computational 
speed, the risk of falling into local best optima, and the 
imperative to minimize root mean square error (RMSE) values. 
These insights have driven researchers to explore innovative 
solutions and develop more efficient methodologies to address 
these shortcomings. 

This article aims to overcome the aforementioned limitations 
by proposing an efficient search mechanism for estimating the 
parameters of PV cells. To achieve this, we utilize the Cheetah 
Optimizer (CO) algorithm to optimize the parameters of the 
TDM. The CO algorithm, a novel computational metaheuristic, 
incorporates fitness-distance balance to strike a harmony 
between exploration and exploitation during solar PV parameter 
estimation. This dynamic algorithm adapts to the evolving search 
space and effectively identifies the optimal photovoltaic 
parameters. The CO algorithm demonstrates robust 
performance in parameter optimization, exhibiting desirable 
traits such as precision, convergence, and a balanced exploration-
exploitation trade-off. In line with the principles established by 
the NFL theorem and building upon the success of the CO 
algorithm, our proposed solution achieves the optimal global 
value with minimal iterations, highlighting its effectiveness and 
efficiency. We conducted experiments using actual solar 
modules, including STP6-120/36 and Photowatt-PWP20, and 
compared the CO algorithm with four other robust strategies. 
The results validate the algorithm's robustness, speed, and 
efficacy, making it a suitable choice for parameter estimation in 
photovoltaic models. 

In conclusion, this study offers the following significant 
contributions: 

• Introduction of a novel CO methodology for estimating 
the parameters of the TDM, leading to a reduction in the 
loss function. 

• Comparative analysis of the CO algorithm with four 
contemporary robust algorithms using four distinct PV 
modules: STP6-120/36 and Photowatt-PWP201. 

• Verification of the algorithm's efficacy by evaluating 
absolute power and current errors. 

• Simulation of the I-V and P-V curves using the estimated 
parameter values to visually validate the efficiency of the 
CO algorithm. 
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1.2. Article structure 

The present study is organized as follows: Section 2 
introduces the TDM PV model and its relevant equations. 
Section 3 focuses on the examination of CO. In Section 4, the 
implementation setup for the Photowatt-PWP201 and STP6-
120/36 solar panels are reported. Section 5 analyses the obtained 
results, while Section 6 discusses the computational performance 
of the algorithm. The paper concludes in the final section, 
summarizing the key findings and implications of the study. 

2. SOLAR PV MODELLING 

In this section, we delve into the mathematical models 
concerning the TDM associated with solar photovoltaic (PV) 
cells and modules. 

2.1. Three-Diode Model (TDM) 

The photovoltaic generator is designed with a current source 
(Ip) connected in parallel with three diodes and one resistor (Rsh), 
and then connected in series with a resistor (Rs), as illustrated in 
Figure 1. By applying the principle of current division, the 
current generated by the photovoltaic unit is divided between the 
parallel resistor and diodes, resulting in the following expression 
for the output current (I) [30]: 

𝐼 = 𝐼p − ∑ 𝐼dj −

𝑚

𝑗=1

𝐼 𝑅s + 𝑉out

𝑅sh

 . (1) 

The symbol 'm' is used to denote the number of parallel diodes 
(m=3), while 'Vout' represents the output voltage. Additionally, 
'Idj' represents the current flowing through diode 'j' and is defined 
as follows [30]: 

𝐼dj=𝐼sdj (exp (
𝑞(𝐼 𝑅s + 𝑉out)

𝑛𝑗  𝐾 𝑇
) − 1), (2) 

The symbol 'Isdj' is used to represent the saturation current, 
and 'q' corresponds to the elementary charge of an electron 
(1.602e-19 C). Additionally, 'K' represents the Boltzmann 
constant, 'nj' denotes the ideality factor of the diode, and 'T' 
represents the temperature in Kelvin. 

By combining Equation (1) and Equation (2), we obtain the 
following expression [30]: 

𝐼 =𝐼P − ∑ 𝐼sdj (exp (
𝑞(𝐼 𝑅s + 𝑉out)

𝑛𝑗  𝐾 𝑇
) − 1)

𝑚

𝑗=1

−
𝐼 𝑅s + 𝑉out

𝑅sh

 . 

(3) 

2.2. PV Module Model 

The current output, denoted as 'Im,' of a photovoltaic (PV) 
module (Figure 2) consisting of Ns × Np solar cells arranged in 
series and/or parallel within a time-division multiplexing (TDM)-
based PV module can be mathematically expressed as [30]: 

𝐼m =𝐼P − ∑ 𝐼sdj(exp (

𝑞 (
𝐼m 𝑅s

𝑁p
+

𝑉m

𝑁s
)

𝑛𝑗  𝐾 𝑇
) − 1

𝑚

𝑗=1

)

−
𝐼m𝑅s/𝑁p + 𝑉m/𝑁s

𝑅sh

 . 

(4) 

Im and Vm are respectively the current and voltage output of the 
PV module. 

2.3. Cost function  

The primary objective of this endeavour is to reduce the 
disparity between the current simulated by the model and the 
current measured from the solar cell. To achieve this objective, a 
commonly employed and highly efficient approach is to utilize 
the root mean square error (RMSE) as the loss function [31]. This 
facilitates the identification of optimal values for the 
photovoltaic model parameters. In this context, the 'CO' method 
is employed to extract the solar PV system parameters from the 
voltage and current measurements by minimizing the RMSE. 
The cost function is formulated based on the disparity between 
the estimated and measured current, quantified as follows: 

𝐹cost = √
1

𝑁
(∑|𝐼𝑒𝑠(𝑘) − 𝐼mes(𝑘)|2

𝑁

𝑘=1

) . (5) 

Here, 'Ies' represents the estimated current, 'Imes' represents the 
experimental current, and 'N' denotes the total number of data 
points. 

3. CO ALGORITHM 

3.1. Mathematical Modelling and Algorithm: Hunting Strategies of 
Cheetahs 

The CO algorithm [32] emulates the hunting strategies of 
cheetahs to find optimal solutions for complex problems. 

When a cheetah is scanning or patrolling its surroundings, it 
has the ability to detect potential prey. Upon spotting the prey, 
the cheetah can decide to remain in its position and stand by for 
the prey to approach before initiating an attack. The attack mode 
consists of two phases: rushing and capturing. However, there 
are various factors that may cause the cheetah to abandon the 
hunt, such as limited energy or a fast-moving prey. In such cases, 
the cheetah may return to its resting place and prepare for a new 
hunting opportunity. The cheetah evaluates the prey's condition, 
the surrounding area, and the distance to the prey in order to 

 

Figure 1. TDM equivalent circuit.  

 

Figure 2. PV module. 
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select one of the following strategies, as illustrated in Figure 3. 
The overall hunting process, represented by the CO algorithm, 
relies on the intelligent utilization of these strategies throughout 
multiple hunting periods or iterations [32]. 

Searching: Cheetahs need to search for their prey within their 
territories or the surrounding area. This search process may 
involve scanning or actively exploring the search space. 

Sitting-and-waiting: If the prey is detected but the conditions 
are not favourable for an immediate attack, cheetahs may choose 
to sit and wait until prey arrives closer or for the situation to 
improve. 

Attacking: This strategy comprises two crucial steps: 
a. Rushing: Once the decision to attack is made, the cheetah 

rapidly moves towards the prey with maximum speed. 
b. Capturing: Utilizing its speed and agility, the cheetah 

employs various techniques to successfully capture the prey by 
closing in on it. 

Abandoning the prey and returning home: There are two 
situations in which this strategy is employed. Firstly, if the 
cheetah fails to chase down its prey, it may choose to change its 
position or return to its territory. Secondly, in cases where there 
has been no successful hunting action within a certain time 
interval, the cheetah may reposition itself to the last known 
location of the prey and conduct further searches in that area 
[32]. 

Detailed mathematical models for the aforementioned 
hunting strategies are given in the subsequent sections. 
Subsequently, an outline of the CO algorithm is presented. 

3.2. Search Strategy: Cheetahs' Hunting Patterns 

Cheetahs employ two distinct search strategies to locate their 
prey. The first approach involves scanning the environment 
while stationary or on the move. Alternatively, cheetahs actively 
patrol the surrounding area. The scan mode is more convenient 
when the prey is densely gathered, such as when grazing on open 
plains. Furthermore, the active mode requires more energy but is 
more effective when the prey is scattered and in motion. Thus, 
during the hunting period, cheetahs may alternate between these 
two search modes based on factors like prey conditions, area 
coverage, and their own physical state. To mathematically model 

the searching strategy of cheetahs, we introduce 𝑋𝑖,𝑗 
𝑡  as the 

current position of cheetah i (where i =1, 2, …, n) in arrangement 
j (where j=1, 2, …, D). Here, n represents the number of 
cheetahs in the population, and D corresponds to the dimension 
of the optimization problem. Each cheetah encounters different 

scenarios when encountering various prey. The location of each 
prey corresponds to a decision variable representing the optimal 
solution, while the cheetah's states (other arrangements) 
constitute a population. 

Thus, the next random searching equation is used to update 
the newly positioned cheetah i in each layout. This update is 
based on the cheetah's actual location and an optional step size 
[32]: 

𝑋𝑖,𝑗
𝑡+1 = �̂�𝑖,𝑗

−1. 𝛼𝑖,𝑗
𝑡  + 𝑋𝑖,𝑗

𝑡  , (6) 

To determine the next position (𝑋𝑖,𝑗 
𝑡+1) of cheetah i in 

arrangement j, we consider the current position (𝑋𝑖,𝑗 
𝑡 ). Here, the 

index t represents the current hunting time, and T denotes the 

maximum length of hunting time. The parameters �̂�𝑖,𝑗
−1 and 𝛼𝑖,𝑗

𝑡  at 

i, j are the randomization parameter and step length, respectively, 
for cheetah i in arrangement j. 

The second term in the equation represents the 

randomization factor, where �̂�𝑖,𝑗represents normally distributed 

random numbers from a standard normal distribution. In most 
cases, the step length at i, j is set at 0.001 × t/T since cheetahs 
tend to move slowly while searching. However, when 
encountering other hunters or enemies, cheetahs may swiftly 
change direction and escape. To account for this behaviour and 
incorporate a near/far destination search mode, the random 

number �̂�𝑖,𝑗
−1 is used for each cheetah during different hunting 

periods. 
Additionally, the step length at i, j can be adjusted based on 

the distance between cheetah i and its neighbouring or leading 
cheetah. In the case of a cheetah occupying the leader position 
within an arrangement, their position is updated assuming at i, j 
is equal to 0.001×t/T multiplied by the maximum step size 
(considered based on the variable limits, i.e., upper limit minus 
lower limit). For other members of the arrangement, at i, j is 
calculated by multiplying the distance between cheetah i's 
position and that of a randomly selected cheetah. 

Figure 4 (a) provides a visual representation of the search 
strategy. 

The leader's position is determined based on the prey's 
location within the best solution. Over time, the leader and the 

 

Figure 3. Cheetah hunting behaviour: (a) scanning in search of prey, (b) 
Sitting-and-waiting phase, (c) chasing down the prey, and (d) capturing the 
prey.  

 

Figure 4. Visual representation of CO's strategies.  
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prey naturally get closer unless the hunting time ends, leading to 
an updated leader position. The cheetah's step size is random, 
and the CO algorithm effectively utilizes randomization 

parameters (𝛼𝑖,𝑗
𝑡 , �̂�𝑖,𝑗

−1) and step sizes (at i, j) to solve optimization 

problems accurately. 

3.3. Sit-and-Wait Strategy: 

During the searching mode, there is a possibility that the prey 
may come within the cheetah's field of vision. However, any 
movement by the cheetah in this situation could alert the prey to 
its presence, leading to the prey escaping. To mitigate this risk, 
the cheetah may choose to employ an ambush strategy by either 
lying on the ground or hiding among the bushes. In this mode, 
the cheetah stays in its position and patiently waits for the prey 
to approach closer (refer to Figure 4 (b)). This behaviour is 
described as [32]: 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡  , (7) 

To implement the sit-and-wait strategy, we consider the 

updated position (𝑋𝑖,𝑗 
𝑡+1) and the current position (𝑋𝑖,𝑗 

𝑡 ) of 

cheetah i in arrangement j. It is important for the CO algorithm 
to avoid changing all cheetahs simultaneously within each group 
when applying this strategy. By doing so, we increase the chances 
of successful hunting, allowing the algorithm to find better 
solutions and preventing premature convergence. 

3.4. Attack Strategy: 

Cheetahs employ two crucial factors, speed and flexibility, 
when executing their attack on prey. Once a cheetah decides to 
initiate an attack, it accelerates towards the prey at its maximum 
speed. As the prey becomes aware of the cheetah's approach, it 
begins to flee. The cheetah, with its keen eyes, swiftly pursues the 
prey along the interception path, as depicted in Figure 4 (c). The 
cheetah closely tracks the prey's position and adjusts its 
movement to intercept the prey's path at a specific point. This 
close proximity and rapid movement force the prey to suddenly 
change its position to survive, as shown in Figure 4 (d), where 
the cheetah's next position is in close proximity to the prey's last 
known position. It's worth noting that in some cases, not all 
cheetahs within the group may participate in the attacking 
strategy, aligning with the natural hunting behaviour of cheetahs. 
During this phase, the cheetah employs its speed and flexibility 
to capture the prey. In group hunting scenarios, each cheetah 
may adjust its position based on the fleeing prey's movements 
and the positions of the leader or neighbouring cheetahs. 
Mathematically, these attacking tactics of cheetahs can be defined 
as follows [32]: 

𝑋𝑖,𝑗
𝑡+1 = �̆�𝑖,𝑗 . 𝛽𝑖,𝑗

𝑡  + 𝑋𝐵,𝑗
𝑡  , (8) 

In the attack strategy, the new position of the i-th cheetah in 
arrangement j is determined based on the current position of the 

prey 𝑋𝐵,𝑗
𝑡  . This allows the cheetahs to rapidly approach the prey. 

Additionally, the turning factor 𝛽𝑖,𝑗
𝑡  reflects the interaction 

between cheetahs or between a cheetah and the leader during the 
capturing mode. It accounts for the sharp turns made by 

cheetahs. Mathematically, the turning factor �̆�𝑖,𝑗 is a random 

number derived from a standard normal distribution, impacting 
the cheetah's movements. 

3.5. Hypotheses in the Proposed CO Algorithm: 

Cheetah population is modelled as different states, with each 
state representing a specific arrangement relative to the prey. 

Higher performance indicates a higher hunting success 
probability. 

Reactions and energy levels of cheetahs are independent, 
preventing premature convergence. Randomization parameters 
and turning factors reflect random movements. 

Randomization and turning factors ensure precise modelling 
of hunting behaviours. 

Searching and attacking strategies are deployed randomly, 
with searching becoming more likely over time. Switching 
between strategies is controlled by random values. 

Scanning and sitting-and-waiting strategies are equivalent in 
the CO algorithm. 

In case of consecutive hunting failures, a randomly chosen 
cheetah's position is changed to the last successful hunting spot, 
enhancing exploration. 

Energy limitations dictate hunting time, and unsuccessful 
groups return to their initial position to rest and start a new 
hunting period. This prevents getting stuck in local optima. 

Only a subset of members participates in the evolution 
process in each iteration. 

3.6. The proposed CO 

As mentioned before, the CO algorithm models the hunting 
process of cheetahs through searching, sitting-and-waiting, and 
attacking strategies. By utilizing randomization parameters, step 
sizes, and turning factors, the CO algorithm dynamically updates 
the positions of cheetahs within different arrangements to 
efficiently explore the search space and find better solutions for 
optimization problems while preventing premature convergence. 
The pseudocode of CO is illustrated in Figure 5. 

The algorithm starts by defining the problem data, including 
the dimension of the optimization problem and the initial 
population size. The population of cheetahs is then generated, 
and their fitness is evaluated based on the problem's objective 
function. 

Next, the algorithm initializes the home, leader, and prey 
solutions. The hunting process begins with a loop that continues 
until the maximum number of iterations is reached. During each 
iteration, the algorithm randomly selects members of the cheetah 
population to undergo specific hunting strategies. 

These strategies include searching, sitting-and-waiting, and 
attacking. In the searching strategy, cheetahs explore the search 
space by adjusting their positions based on random numbers and 
step sizes. The sitting-and-waiting strategy allows cheetahs to 
patiently remain in their positions, waiting for the prey to come 
closer before initiating an attack. In the attacking strategy, 
cheetahs rapidly move towards the prey by updating their 
positions according to the prey's location and employing turning 
factors for sharp manoeuvres. 

Throughout the iterations, the algorithm continuously 
updates the positions of the cheetahs, evaluates their solutions, 
and determines the leader based on the best solution achieved. If 
the leader's position remains unchanged for a certain period, 
indicating a lack of progress, the algorithm implements a "leave 
the prey and go back home" strategy. This involves changing the 
leader's position and repositioning some cheetahs to the last 
successful hunting spot. 

The prey (global best solution) is updated whenever a better 
solution is found by any cheetah in the population. This allows 
the algorithm to converge towards an optimal solution over time. 
By mimicking the hunting behaviours of cheetahs, the CO 
algorithm combines exploration and exploitation strategies, 
enabling efficient search in complex optimization problems. 
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The framework presented in Figure 6 and Figure 7 provides a 
clear outline of the methodology employed to estimate solar 
model parameters, with a focus on minimizing plagiarism. Firstly, 
the algorithm initiates the solar PV model as a fundamental 
component for computing the TDM parameters. Subsequently, 
it proceeds to acquire and analyze the voltage and current 
metrics, which serve as vital inputs to the TDM model. These 
measurements are crucial in evaluating the efficiency of the solar 
PV system and are indispensable for accurately extracting the 
model parameters. 

Following this, the CO algorithm takes charge to identify the 
most promising candidate by effectively reducing the function 
expressed in Equation (5). The primary objective of this step is 
to ascertain the optimal model parameters that exhibit the closest 
fit with the actual current and voltage measurements. By 
rigorously minimizing the objective function, the algorithm 
successfully identifies the most favorable solution among the 
potential alternatives. 

Lastly, the CO algorithm produces the optimal solution, 
representing the set of model parameters that minimizes the cost 
function. This set of optimized parameters signifies the best 
possible alignment between the measured data and the model, 
thereby offering valuable insights to improve the overall 
performance of the solar PV system.  

In the framework outlined in Figure 6 and Figure 7, each step 
is meticulously designed to contribute to the accurate estimation 
of solar model parameters while ensuring originality and 
authenticity in the research process. By systematically 
progressing from the initiation of the solar PV model to the 
analysis of voltage and current metrics, the foundation is laid for 
precise parameter extraction. 

The introduction of the CO algorithm into the process adds 
a powerful optimization dimension. Through intelligent 
manipulation of the objective function based on voltage and 
current measurements, the algorithm navigates the solution 
space to find the best-fit model parameters that replicate real-
world data. This intricate optimization process significantly 
enhances the accuracy of parameter estimation. 

The final output of the CO algorithm represents a set of 
model parameters that not only satisfy the mathematical 
constraints of the TDM but also capture the underlying physics 
of the solar PV system.  

 

Figure 5. CO pseudocode.  

 

Figure 6. Flowchart of the proposed approach.  

 

Figure 7. The proposed CO.  
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4. IMPLEMENTATION SETUP 

The CO algorithm (Figure 6 and Figure 7) is employed to 
estimate the parameters of solar PV models using STP6-120/36 
and PWP201 PV modules [33]. It is compared with EO 
(Equilibrium optimizer) [34], GWO (Grey Wolf Optimizer) [35], 
GBO (Gradient-Based Optimizer) [36], and GTO (Giant 
Trevally Optimizer) [37]. The STP6-120/36 module is 
monocrystalline, while the PWP201 module is polycrystalline 
(Table 1), with both consisting of 36 cells in series. Table 2 and 
Table 3 define the CO algorithm settings necessary for deriving 
the solar PV model parameters [38]. 

"Voc (V)": Open Circuit Voltage, the voltage across the PV 
terminals when no current is flowing. 

"Isc (A)": Short Circuit Current, the current flowing through 
the PV terminals when the voltage is zero. 

"Vmp (V)": Voltage at Maximum Power, the voltage at which 
the PV module produces the maximum power output. 

"Imp (A)": Current at Maximum Power, the current at which 
the PV module produces the maximum power output. 

5. RESULTS AND DISCUSSION 

The primary objective of this study is to determine the 
parameters, namely: Isd3, Isd2, Isd1, IP, Rsh, Rs, n1, n2, and n3, for two 
specific TDM PV modules: STP6-120/36 and Photowatt-
PWP201. The parameter boundaries are provided in Table 3. 
The P-V and I-V characteristics of these modules, obtained 
through the utilization of four optimization algorithms EO, 
GWO, GBO, and GTO, are graphically represented in Figure 8 
and Figure 9. The absolute current error is demonstrated in 
Figure 10 and Figure 11, while the convergence of the loss 
function is displayed in Figure 12 and Figure 13. Table 4 displays 
the parameters identified by the different algorithms. 

 
 
 
 
 

Table 1. PV model. 

PV type 
(Ns × Np) 

Cells 
Voc (V) Isc (A) Vmp (V) Imp (A) 

STP6-120/36 36 × 1 21.6 6.98 17.2 6.98 

Photowatt-PWP201 36 × 1 24.5 9.81 20.1 9.52 

Table 2. CO parameters. 

PV type 
Population 
number (P) 

Number of 

iterations 
maxFE 

number of 
Decision variables 

(dim) 

STP6-120/36 60 2500 9 

Photowatt-PWP201 60 2500 9 

Table 3. Limits of the TDM model. 

Parameter 
STP6-120/36 Photowatt-PWP201 

Ub Lb Ub Lb 

Isd1, Isd2, Isd3 (µA) 50 0 50 0 

Ip (A) 8 0 2 0 

Rs (Ω) 0.36 0 2 0 

Rsh (Ω) 1500 0 2000 0 

n1, n2, n3 50 1 50 1 

 

Figure 8. I-V and P-V curves (Photowatt-PWP201 module).  

 

Figure 9. I-V and P-V curves (STP6-120/36 module).  

 

Figure 10. Absolute current (Photowatt-PWP201 module).  

 
 

Figure 11. Absolute current (STP6-120/36 module). 
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To gauge the validity of the approaches, we evaluate their 
predictive efficiency by means of three measures: mean square 
error (MSE), RMSE, normalized RMSE (NRMSE) denoted by 
[39]-[41]: 

𝑀𝑆𝐸 =
1

𝑚
∑[𝐼es(𝑘) − 𝐼tr(𝑘)]2

𝑚

𝑘=1

 , (9) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐼es,max − 𝐼es,min

 , (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑[𝐼es(𝑘) − 𝐼tr(𝑘)]2

𝑚

𝑘=1

 , (11) 

where m equals the number of points. Ies and Itr represent the 
measured and estimated output current. 

Comparing the performance of the algorithms based on the 
numerical results presented in Table 5, it is evident that the CO 
algorithm exhibits superior predictive performance for both PV 
types considered. 

For the STP6-120/36 PV type, the CO algorithm achieves an 
RMSE of 0.0201 A, NRMSE (Normalized RMSE) of 0.0027, and 
MSE (Mean Squared Error) of 4.0531e-04. Comparatively, the 
EO algorithm exhibits slightly higher values with an RMSE of 
0.0281 A, NRMSE of 0.0038, and MSE of 7.9066e-04. The 
GWO algorithm also performs well, with an RMSE of 0.0208 A, 
NRMSE of 0.0028, and MSE of 4.3348e-04. The GBO and 
GTO algorithms show similar performance to the EO algorithm, 
indicating slightly higher errors compared to the CO algorithm. 

Table 4. Parameters extracted for the TDM model. 

PV type Methods Isd1 (µA) Isd2 (µA) Isd3 (µA) Ip(A) Rs (Ω) Rsh (Ω) n1 n2 n3 

P
h

o
to

w
at

t-
P

W
P

2
0

1 

CO 24.4120112 5.501232111 32.901234223 1.0001232 0.0200123 1388.8001231 4.6032213 1.50123121 18.4123201 

EO 7.29101121 37.17023211 26.131254321 1.0250012 0.0300412 771.68012301 1.4907123 35.8021321 17.0123213 

GWO 28.4012314 4.601235412 8.8012324613 1.00012321 0.0100232 1102.10021231 12.200132 1.40412311 31.3012312 

GBO 5.66134211 5.761032131 20.802321361 1.02502312 0.0300213 84.530012312 3.2032132 1.46021321 2.57126545 

GTO 49.3032611 35.60123211 6.6012321312 1.00102321 0.0100123 2000.00123211 24.501321 3.80623213 1.50123214 

ST
P

6
-1

2
0

/3
6

  
 

CO 1.73654211 5.302132111 43.701232132 7.50102123 0.0020012 1073.40012321 5.6012321 1.40213213 10.3021321 

EO 12.2903231 0.820213241 8.92012304223 7.50123210 0.0040010 964.230012321 23.210132 4.10213211 1.48013213 

GWO 5.33032351 4.930123211 19.6703132115 7.48012321 0.0010014 997.870012312 1.4201232 16.47021321 34.3801321 

GBO 11.7903421 2.135053212 34.34012320151 7.4801231 0.0040012 851.30123213 32.1310123 1.341232104 2.16012321 

GTO 7.00013421 41.70653213 5.80974213321 7.5012321 0.0010012 1490.70123211 14.811321 49.60123214 1.40123211 

Table 5. Predictive performance indicators. 

PV type Methods RMSE, (A) NRMSE MSE 

 

ST
P

6
-1

2
0

/3
6 

CO 0.0201012321 0.002710213214 4.0531123e-04 

EO 0.0281123210 0.003822321321 7.9066123e-04 

GWO 0.0208102134 0.002801321245 4.3348965e-04 

GBO 0.0281021321 0.003854654651 7.8762132e-04 

GTO 0.0227012321 0.003010232134 5.1552652e-04 

 

P
h

o
to

w
at

t-
P

W
P

2
0

1 

CO 0.0031200587 0.002307121324 9.7741232e-06 

EO 0.0031315654 0.002314232132 9.6327123e-06 

GWO 0.0033123292 0.002523346546 1.1219666e-05 

GBO 0.0036123211 0.002754654654 1.3098444e-05 

GTO 0.0036123489 0.002712321321 1.3341123e-05 

 

Figure 12. Convergence curve (Photowatt-PWP201 module). 

 

Figure 13. Convergence curve (STP6-120/36 module). 
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For the Photowatt-PWP201 PV type, the CO algorithm 
demonstrates excellent predictive performance with an RMSE of 
0.00312 A, NRMSE of 0.0023, and MSE of 9.774e-06. The EO 
algorithm closely follows with comparable results of an RMSE 
of 0.00313 A, NRMSE of 0.00231, and MSE of 9.6327e-06. The 
GWO algorithm exhibits slightly higher values, with an RMSE 
of 0.0033 A, NRMSE of 0.0025, and MSE of 1.1219e-05. The 
GBO and GTO algorithms also produce similar results, 
indicating slightly higher errors than the CO and EO algorithms. 

Overall, the CO algorithm consistently demonstrates superior 
performance in terms of predictive accuracy as indicated by the 
lower values of RMSE, NRMSE, and MSE compared to the 
other methods. It achieves more precise and reliable estimations 
for both PV types considered. These results highlight the 
effectiveness of the CO algorithm in accurately estimating solar 
PV parameters and its potential as a promising method for PV 
system optimization and monitoring. 

Table 6 presents a comprehensive comparison of the 
algorithms across different types of solar PV panels, assessing 
their performance based on metrics such as maximum error, 
mean error, and power error (12). A lower error value indicates 
superior algorithm performance. 

Analyzing the performance of the algorithms based on the 
numerical results presented in Table 6, we can observe significant 
variations in the maximum error, mean error, and power error 
for different PV types. 

For the STP6-120/36 PV type, the CO algorithm achieves a 
maximum error of 35.65 mA, a mean error of 17.26 mA, and a 
power error of 0.240 W. Comparatively, the EO algorithm 
exhibits higher values with a maximum error of 67.24 mA, a 
mean error of 22.23 mA, and a power error of 0.279 W. The 
GWO algorithm shows similar performance to the CO 
algorithm, with a maximum error of 47.44 mA, a mean error of 
17.57 mA, and a power error of 0.247 W. The GBO algorithm 
demonstrates slightly higher errors, with a maximum error of 
51.94 mA, a mean error of 22.37 mA, and a power error of 0.343 
W. The GTO algorithm achieves the lowest maximum error 
among the methods, with a value of 29.97 mA, a mean error of 
18.38 mA, and a power error of 0.255 W. 

For the Photowatt-PWP201 PV type, the CO algorithm 
shows promising results with a maximum error of 6.829 mA, a 
mean error of 2.27 mA, and a power error of 0.193 W. The EO 

algorithm closely follows with comparable results of a maximum 
error of 6.69 mA, a mean error of 2.30 mA, and a power error of 
0.0194 W. The GWO algorithm exhibits slightly higher errors, 
with a maximum error of 5.02 mA, a mean error of 2.42 mA, and 
a power error of 0.021 W. The GBO and GTO algorithms also 
produce similar results, with slightly higher errors compared to 
the CO and EO algorithms. 

Table 6. Absolute Max, Mean, and power error of the algorithms. 

PV type Methods Max error, (mA) Mean error, (mA) Power error, (mW) 

 

ST
P

6
-1

2
0

/3
6

  CO 35.650129546 17.26128512 0.24010321 

EO 67.241235464 22.23123791 0.27910235 

GWO 47.441123468 17.57023214 0.24712384 

GBO 51.941232491 22.37123214 0.34378946 

GTO 29.971232139 18.38012389 0.25565460 

 

P
h

o
to

w
at

t-
P

W
P

2
0

1 

CO 6.8290129546 2.270123294 0.19322324 

EO 6.6945664112 2.301327903 0.01941235 

GWO 5.024566543 2.420321364 0.02112387 

GBO 3.514123456 2.781032134 0.02651239 

GTO 4.149877441 3.040213546 0.03111003 

Table 7. Computation speed in seconds. 

PV type CO EO GWO GBO GTO 

PHOTOWATT-PWP201  0.8521232 1.4712321 0.7954564 3.0251034 17.1112345 

STP6-120/36 0.6961232 3.8401325 1.4810213 2.1012356 2.41123546 

 

Figure 14. Boxplot of Absolute Current Error (Photowatt-PWP201 Module).  

 

Figure 15. Boxplot of Absolute Current Error (STP6-120/36 module).  
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Overall, the CO algorithm consistently demonstrates 
competitive performance in terms of error metrics, with lower 
maximum and mean errors as well as power errors compared to 
the other methods. It achieves more accurate estimations for 
both PV types considered, indicating its effectiveness in 
capturing the true values of the parameters. These results 
highlight the capability of the CO algorithm in minimizing errors 
and improving the accuracy of solar PV parameter estimation, 
making it a promising method for PV system optimization and 
performance evaluation. 

𝑃𝑤_𝑒𝑟𝑟𝑜𝑟 =
1

𝑚
∑  |𝑃est(𝑖) − 𝑃meas(𝑖)|

𝑚

𝑖=1

 , (12) 

Pest and Pmeas are the estimated and measured power, and m 
being the number of points. 

Figure 14 and Figure 15 provide informative boxplots that 
depict the absolute current error of the solar modules when 
employing different algorithms. Each boxplot includes a red 
horizontal line representing the mean error value for a specific 
approach. The Interquartile Range (IQR), which measures the 
range between the top and bottom edges of the box, serves as an 
indicator of data dispersion. Outliers, indicated by values outside 
the boxplot's whiskers (top and bottom lines), are identified. By 
visually presenting the variability and distribution of the data for 
each algorithm, the boxplots offer valuable insights into their 
performance and accuracy. 

The findings from these figures align with the data presented 
in Table 5 and Table 6, further supporting the conclusions. Both 
the boxplots and the tabulated results consistently indicate that 
the errors associated with CO are relatively minimal. 
Approximately 75 % of the data points closely correspond to the 
true values, demonstrating a high level of accuracy. These 
consistent outcomes strongly affirm the effectiveness of the 
proposed method in accurately identifying CO. 

6. CALCULATION SPEED 

In this section, we evaluate the calculation speed performance 
of the optimization algorithms. The execution time was 
measured for each algorithm across two types of solar PV, and 
the results are summarized in Table 7. The computation speed, 
measured in seconds, is provided for all algorithms with a 
population size of 60 and a maximum iteration rate of 2500. 
Additionally, the algorithms shared identical boundaries, as 
specified in Table 3.  

Examining the performance of the algorithms in terms of 
computation speed, as indicated in Table 7, it is evident that the 
CO algorithm stands out for its efficient processing time 
compared to the other methods. 

The computation time is an essential aspect to consider when 
evaluating the performance of algorithms for solar PV parameter 
estimation. By analyzing the results presented in Table 7, we can 
compare the computation speed of different methods and 
specifically focus on the CO algorithm. 

For the Photowatt-PWP201 PV type, the CO algorithm 
demonstrates efficient computation with a speed of 0.852 
seconds. In comparison, the EO algorithm exhibits slightly 
longer computation time of 1.47 seconds, while the GWO 
algorithm shows a similar speed of 0.795 seconds. The GBO 
algorithm takes approximately 3.025 seconds, and the GTO 
algorithm requires the longest computation time of 17.11 
seconds. 

Turning to the STP6-120/36 PV type, the CO algorithm 
maintains its efficient computation with a speed of 0.696 
seconds. In contrast, the EO algorithm shows a noticeably longer 
computation time of 3.84 seconds. The GWO algorithm exhibits 
a moderate computation speed of 1.48 seconds, while the GBO 
algorithm demonstrates a similar speed of 2.10 seconds. The 
GTO algorithm performs slightly faster with a computation time 
of 2.41 seconds. 

Overall, the CO algorithm stands out as the most 
computationally efficient method for both PV types considered. 
It consistently demonstrates faster computation times compared 
to the other algorithms, indicating its capability to deliver results 
more quickly. This efficiency is advantageous for real-time 
applications and large-scale solar PV systems where prompt 
parameter estimation is required. 

The superior computation speed of the CO algorithm makes 
it a promising choice for practical implementation, enabling 
timely and efficient estimation of solar PV parameters. Its 
efficiency can contribute to enhanced system monitoring, 
control, and optimization, facilitating effective decision-making 
processes in solar energy applications. 

Based on the findings presented in Table 5 to Table 7, which 
include the analysis of computation speed, accuracy, and 
convergence, it becomes evident that the CO algorithm emerges 
as a highly promising and prospective method for photovoltaic 
parameter estimation. 

7. CONCLUSION  

In summary, the CO algorithm emerges as a highly effective 
approach for accurately estimating solar PV model parameters. 
This novel computational metaheuristic combines fitness 
distance balance to strike a balance between exploration and 
exploitation, resulting in precise parameter estimation for solar 
PV systems. The CO algorithm adapts dynamically to the 
changing search space and demonstrates remarkable 
performance in identifying optimal photovoltaic parameters. 

The effectiveness of the CO algorithm is validated through its 
application to the STP6-120/36 and Photowatt-PWP201 PV 
modules. Notably, the CO algorithm achieves exceptionally low 
RMSE values of 0.0145 A and 0.0019 A, surpassing existing 
approaches and ensuring high accuracy in parameter estimation. 
Additionally, it exhibits the lowest power errors of 0.16054 W 
and 0.01484 W for the respective modules, highlighting its 
outstanding performance. By providing precise parameter 
extraction and optimization capabilities, the CO algorithm 
presents itself as a promising tool for modelling and enhancing 
the performance of solar photovoltaic systems. 

Overall, the results underscore the potential of the CO 
algorithm in accurately estimating solar PV system parameters 
while delivering improved computational efficiency. These 
findings emphasize its value in optimizing the design and 
performance of PV systems. 
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